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Abstract—The network intrusion is becoming a big threat for 

a lot of companies, organization and so on. Recent intrusions 

are becoming more clever and difficult to detect. Many of 

today’s intrusion detection systems are based on 

signature-based. They have good performance for known 

attacks, but theoretically they are not able to detect unknown 

attacks. On the other hand, an anomaly detection system can 

detect unknown attacks and is getting focus recently. We study 

an anomaly detection system as one application area of machine 

learning technology. In this paper, we study the effectiveness 

and the performance experiments of one of the major anomaly 

detection scales, LOF, on distributed online machine learning 

framework, Jubatus. After basic experiment, we propose a new 

machine learning method and show our new method has a 

better performance than the original method. 

 
Index Terms—Anomaly detection, machine learning, jubatus, 

LOF.  

 

I. INTRODUCTION 

As the internet is spreading in our daily life and in the 

business scene, the attacks using the internet are increasing. 

Although the technology of defense from such attacks is 

making progress rapidly, the attacks are becoming smarter. 

There are mainly two different approaches for network 

intrusion detection technology [1]. One is signature-based 

technology, and another is anomaly detection technology.  

With signature-based technology, the system has set of 

attack patterns and compares them with actual transferred 

data. When the data match the attack patterns, it means the 

data is an attack. This system can detect all the data in the 

attack dataset, but cannot detect new attacks which are not 

included in the attack dataset.  

The anomaly detection system has a normal behavior 

pattern profile about the defense system. When the coming 

data pattern is different from the normal pattern, it is assumed 

as an attack. This system can detect new attacks. The problem 

is that this system has a possibility of alarming for normal 

data as attacks. 

Majority of intrusion detection studies had been about 

signature-based technology. The anomaly detect technology 

has been getting focus recently. Studies in the area of 

machine learning, big-data analysis and so on, have been 

applied to anomaly detection studies. As a result, anomaly 

detect systems with feasible performance are being 

developed. 

The objective of our research is to build an intrusion 

detection system combining current up-to-date big-data 
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technologies. As a preliminary study, we evaluate the 

performance of anomaly detection algorithm “LOF” [2] on 

the online machine learning framework “Jubatus” [3]. 

In this paper, after the system overview is explained in 

Section II, how our system detects intrusions is shown in 

Section III. Basic experiment is executed in Section IV and 

its result is in Section V. Our new learning method and its 

result are in Section VI and VII. The future works are in 

Section VIII. Section  IX is conclusion. 

 

II. SYSTEM OVERVIEW 

The basic processing of our system is shown in Fig. 1. The 

system collects the system logs, i.e. traffic log, manipulation 

log and so on. All the collected logs are statically analyzed 

and learned as normal data. In this period, we estimate the 

system is not attacked. The system can detect new attacks 

after this learning period. 

 
Fig. 1. Overview of system processing flow.  

 

After a suitable period, the system starts to analyze the 

collected data. When the system detects the outlier, it 

analyzes the data in more detail. The outlier is not necessarily 

the intrusion.  When new tools or new services are introduced 

in the user system, it might produce new traffic or usage 

patterns. So it is necessary to check if the outliers are the 

results of normal usage or attacks. We suppose that  these 

tasks are executed by the system administrators. When the 

outliers are intrusions from outside, they are blocked. On the 

other hand, when the outliers are results from proper but new 

procedures, they are permitted and learned as normal data. 

After some proper amounts of those data are learned, they are 

not classified as outlier data.  

This feedback step of registering the proper but new 

procedure as normal data is necessary, since a lot of new 
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services appear in a short time recently. 

The specific objectives of this system are as follows. 

 The system can detect new unknown intrusions. 

 The system can detect intrusions in real time.  

 Not only the communication from/to outside, but also 

irregular communications/operations in the local area 

network can be detected. 

 Detected incidents can be investigated by system 

administrators and decided if they are actual intrusions 

or normal usage. 

The total system configurations are shown in Fig. 2. Each 

component has the following functions.  

 
Fig. 2. System configuration. 

 

External Communication Point: Communication points 

between external networks, i.e. internet and internal systems 

(LAN). For the purpose of BCP enhancement, more than two 

external communication points might be equipped. Traffic 

logs from/to internet are collected from these points. 

Internal Communication Point: Communication points 

between local clients and servers. Usually these points are 

built by routers/switches. Traffic logs in the local system are 

collected from these points. 

Servers: File servers, print servers, application servers, etc. 

Server operation logs are collected. 

Clients: Each client in the system. Client operation logs 

are collected. 

 Data Collect/Analyze Point: Data Collect/Analyze Points 

collect all the traffic logs and operation logs, analyze all the 

data and find the abnormal data. In the case of servers/clients, 

data analysis function can be executed by themselves. 

Total Management Console: All the found suspicious 

incidents are gathered. System administrators can invest and 

manage all the incidents.  

This paper describes the evaluation of collecting traffic 

data at External Communication Point and detecting anomaly 

data. 

 

III. DETECTION METHOD 

This chapter explains how our system analyzes the traffic 

data and finds anomaly data  in real time. 

A. Anomaly Detection 

A couple of studies have been conducted on anomaly 

detection from huge data sets. Most of them come from 

extensive studies for clustering. The main objectives of such 

studies are to find anomalies to remove them from the data set, 

since they are “noises” for clustering purpose.  There are less 

studies about anomalies in order to process anomalies as 

main subject. In this paper, we use LOF (Local Outlier Factor) 

algorithm [2] from such ‘outlier-oriented’ studies. It is 

reported that LOF is superior to other outlier detect algorithm 

for detecting network intrusion [4]. Another reason to use 

LOF is that machine learning framework Jubatus has LOF 

algorithm for its standard repertoire. Jubatus will be 

explained later in this chapter. 

B. LOF 

There are a couple of definitions for outliers. Hawkins 

gave the definition of outliers as “an observation that derives 

so much from other observations as to arouse suspicion that it 

was generated by a different mechanism” [5]. 

 Most of the cases, this definition is enough for detecting 

outliers. But, in the case of Fig. 3 [2], though o1 can be 

detected as an outlier,  o2 can not be detected. LOF is 

designed to find such cases. The details of LOF algorithm are 

explained in the original paper. 

 
Fig. 3. 2d dataset example. 

 

C. Detection Examples 

Some examples of detecting cyber attacks using outlier 

detect algorithm are as follows: 

Example 1: When the time period of packet transmission 

is too short, there are possibilities of DoS attacks. 

 Example 2: When the length of the packet is too long, 

there are possibilities of BufferOverFlow attacks. 

Even in the case of new unknown attacks, since there may 

exist some different parameters for normal traffic, the 

possibility to be detected as outliers might be high. 

D. Jubatus 

The amount of network traffic is increasing dramatically. 

In order to analyze those data in real time, it would be better 

to apply ‘big data’ analysis technology to manipulate huge 

data. 

One of the most famous big data analysis tools is Hadoop 

[6]. Hadoop is an open source software tool. It is used in the 

wide areas such as recommendation, web search, text mining, 

etc. Hadoop is usually used under batch processing. It is not 

suitable to use it for real time analysis. 

We use Jubatus [3] for our real time analysis platform. 

Jubatus is a distributed machine learning platform developed 

by NTT and PFI.  It is developed for the purpose of real-time, 

deep analysis in a distributed environment. 

 

IV. BASIC EXPERIMENT 

For the purpose of preliminary study, we evaluate the 

performance of LOF algorithm running on Jubatus 
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framework with KDD Cup 99 data [7].  

A. Evaluation System Hardware 

We use an aws (Amazon Web Service) t2.micro instance 

(1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB memory) with 

Ubuntu Server 14.04 as an evaluation platform. Jubatus is ver 

0.6.0. 

B. Evaluation Data 

We use KDD Cup ’99 data as the experiment traffic data. 

KDD Cup is a Data Mining and Knowledge Discovery 

competition organized by ACM. In 1999, the main topic was 

Network Intrusion Detector. The competition data of KDD 

Cup 99 can be used as the evaluation data for network 

intrusion detection system [8].  The data simulates the typical 

U.S. Air Force LAN. The raw data was 4GB of compressed 

TCPdump format from seven weeks of network traffic. This 

data was processed to 5 million connection records. Each 

connection record is labeled as either a normal, or an attack. 

An attack data has its attack type such as buffer_overflow, 

guess_passwd etc. Each record consists of 41 columns and 

the record size is around 100 bytes. They also supply 10% 

data, which has the same data distribution and 500 thousand 

records. We use this 10% KDD Data as an evaluation data. 

Although we know that there are a couple of discussions 

about using KDD99 data as evaluation data [9], for now it is 

the only candidate for using network intrusion evaluation 

data. 

C. Jubatus Parameters 

Jubatus has LOF processing function. We use this function 

with no modification to the source code. KDD Cup 99 data is 

also used with no modification. It is treated as 41 dimensional 

data. 

Jubatus Server configuration parameters are shown in Fig. 

4. 

D. Learning Method 

In this experiment, we use a very simple learning method 

which is as follows: 

Step 1: Use first fixed number of normal data as training 

data. 

Step 2:  Analyze the remaining data using LOF. 

E. Jubatus APIs 

We use 2 Jubatus APIs for our system. 

add(data) : Add data as a training data and returns LOF 

score. 

calc_score(data) : Calculates and returns LOF 

score. Data is not added as a training data 

As add( ) API has to update Jubatus internal data model, it 

takes more time than calc_score( ) API which just calculates 

LOF score for the data. 

We measured the execution time for each 2 APIs. 

The execution time of add( ) is measured as follows: 

1) add( ) all the normal data 

2) Measure execution time for each add( ) API 

3) Calculate minimum, average and maximum of 100 

consecutive API executions 

The execution time of calc_score( ) is measured as follows: 

1) add( ) fixed number of normal data 

2) calc_score( ) all the remaining data 

3) Calculate the average time for calc_score() 

 

 
Fig. 4. Jubatus parameters. 

 

V. RESULTS OF BASIC EXPERIMENT 

We evaluate the system with different number of training 

data, including from1000 to 10000. 

A. API Execution Time 

The execution time for 2 APIs depends on the number of 

training data. Theoretically, these times are in proportion to 

n
2
, where n is the number of training data. As a matter of fact, 

Jubatus uses a couple of techniques to decrease execution 

time. Fig. 5 shows the actual execution time for add( ) API. 

As the execution time changes according to the data itself and 

Jubatus internal model, the result is shown with minimum, 

average and maximum time. 

 
Fig. 5. Execution time of add( ) API. 

 
Fig. 6. Execution time of calc_score( ) API. 
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Fig. 6  shows the execution time for calc_score()  

API. Be careful that units of each graph are different, seconds 

for Fig. 5 and milliseconds for Fig. 6. 

Total execution time is shown in Fig. 7. 

 
Fig. 7. Total execution time. 

 
Fig. 8. Histgram of normal/attack data and 4 classifications. 

B. ROC Curve 

As our system uses LOF for analytic algorithm, the direct 

output of the each data is LOF score. We need to set a 

threshold to decide if the data is an attack or not (Fig. 8). 

After we set a threshold, we can count True Negative (normal 

data under threshold), False Positive (normal data over 

threshold), False Negative (attack data under threshold) and 

True Positive (attack data over threshold). True Positive Rate 

and False Positive Rate are calculated with these data. 

We can draw ROC curves with different threshold. Fig. 9 

shows the ROC curve of the basic experiment. 

 
Fig. 9. ROC curve of basic experiment. 

From this result, the accuracy of detecting increases 

according to the size of training data as a rough trend. On the 

other hand, the total execution time increases with more 

training data. In order to meet the conditions of these 

conflicting, we propose a new learning method in the next 

chapter. 

 
Fig. 10. ROC curve of proposed method. 

 

VI. LEARN LESS MACHINE LEARNING METHOD 

In order to improve the total performance of our system, 

we propose the following learning method. 

A. Learn Less Method 

To achieve the accuracy of detecting and the less execution 

time at the same time, the training data should be limited to 

the valuable data. That means that only the meaningful data 

for the following analysis should be added. In our example, 

we assume the data with high LOF score is valuable.  

When the LOF score for a new data is low, it means there 

are enough other data around the data and adding that data 

into the training data doesn’t increase the total system 

accuracy so much. On the other hand, when the LOF score for 

a new data is high, it means there are less other data around 

the new data so adding this new data is important for 

increasing the total system performance. We call this method 

as “Learn Less Method”. 

A simple algorithm for “Learn Less Method” is as follows: 

Step 1: Train with the first fixed number of  normal data 

(same as the simple learning). 

Step 2: Calculate the LOF score for each data. 

If  LOF score is over the threshold (we call this as “Value 

Threshold”), then add this data as training data. 

We evaluate this method under the same environment as 

the basic experiment. Fig.10 is the ROC curve for this 

method with the number of first training data is 2000 and the 

threshold is from 1.1 to 20. Label Basic(2000) is the original 

simple learning method and the same data for label 2000 in 

Fig. 9. The result shows that the cases with Value Threshold 

of 5,10 or 20 have the better detection rates than the original 

simple method. 

 

VII. DISCUSSIONS 

A. Execution Time 

Our target is to detect cyber attacks in real time.  KDD 

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

140



  

Cup ’99 data consists of 7weeks traffic data and include 5 

million traffic data. That means 1 traffic data is around 0.8 

seconds. Jubatus calc_score( ) API is around dozens of 

milliseconds and is small enough compared to one traffic data 

time in our experiment.  Jubatus add( ) API is a couple of 

seconds in the worst case and when this API is called we need 

some buffering function to keep the analyzing procedure 

continued. And the fact that KDD Cup 99 data was made 15 

years before, we need to evaluate the overall system 

performance under current network traffic and current 

hardware. 

In order to improve system performance, we have some 

candidates: 

1) Parameter tuning 

Jubatus and LOF algorithm have some tuning parameters. 

As we haven’t tuned such parameters this time, tuning such 

parameters might improve total system performance. 

2) Distributed configuration 

As Jubatus is designed to run in a distributed environment 

with multiple servers, this can improve system performance. 

3) Discard data 

In this experiment, we learned that the number of training 

data affects the system performance dramatically. Our 

proposed method decreases the amount of training data 

increase, but not the total size of the training data. We need to 

discard some old or useless data from the training data. This 

will keep the total number of training data as fixed. 

B. Detection Rate 

As shown in the previous chapter, when we choose the 

suitable Value Threshold, our proposed method has a better 

detection rate than the original method. The problem is that 

finding suitable threshold and other parameters are difficult 

task and such parameters depend on the data features. We 

have to evaluate different dataset other than KDD Cup 99 

dataset. 

The detection rate of this experimental system is around 90% 

with False Alarm Rate is just under 10%. This number is not 

enough for actual network intrusion detection system. We 

need to study how to decrease False Alarm Rate. 

 

VIII. FUTURE WORKS 

We plan to invest the following issues. 

A. Automatic Parameter Tuning 

The performance of the proposed system might change 

with other data set or other parameter tuning. We need to 

study how to find the best combination of the parameters 

automatically or manually with ease by administrators. 

B. Better Machine Learning Algorithm 

The number of training data affects the total system 

performance. We need to find a better learning algorithm to 

continue to learn and not to decrease performance. 

C. Administration User Interface 

We need to develop the administrator interface for 

managing the incidents with ease. 

 

IX. CONCLUSION 

In this paper, we evaluate the cyber attack detection system 

using LOF algorithm running on Jubatus platform. Our 

evaluation shows the execution time of the system is small 

enough for building real time detection system. The detection 

rate can be improved with the proposed learning method. We 

need more studies to performance improvement and better 

learning strategy. 
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