



Abstract—The network intrusion is becoming a big threat for

a lot of companies, organization and so on. Recent intrusions

are becoming more clever and difficult to detect. Many of

today’s intrusion detection systems are based on

signature-based. They have good performance for known

attacks, but theoretically they are not able to detect unknown

attacks. On the other hand, an anomaly detection system can

detect unknown attacks and is getting focus recently. We study

an anomaly detection system as one application area of machine

learning technology. In this paper, we study the effectiveness

and the performance experiments of one of the major anomaly

detection scales, LOF, on distributed online machine learning

framework, Jubatus. After basic experiment, we propose a new

machine learning method and show our new method has a

better performance than the original method.

Index Terms—Anomaly detection, machine learning, jubatus,

LOF.

I. INTRODUCTION

As the internet is spreading in our daily life and in the

business scene, the attacks using the internet are increasing.

Although the technology of defense from such attacks is

making progress rapidly, the attacks are becoming smarter.

There are mainly two different approaches for network

intrusion detection technology [1]. One is signature-based

technology, and another is anomaly detection technology.

With signature-based technology, the system has set of

attack patterns and compares them with actual transferred

data. When the data match the attack patterns, it means the

data is an attack. This system can detect all the data in the

attack dataset, but cannot detect new attacks which are not

included in the attack dataset.

The anomaly detection system has a normal behavior

pattern profile about the defense system. When the coming

data pattern is different from the normal pattern, it is assumed

as an attack. This system can detect new attacks. The problem

is that this system has a possibility of alarming for normal

data as attacks.

Majority of intrusion detection studies had been about

signature-based technology. The anomaly detect technology

has been getting focus recently. Studies in the area of

machine learning, big-data analysis and so on, have been

applied to anomaly detection studies. As a result, anomaly

detect systems with feasible performance are being

developed.

The objective of our research is to build an intrusion

detection system combining current up-to-date big-data

Manuscript received July 25, 2014; revised November 8, 2014.

T. Ogino is with the Okinawa National College of Technology, Nago,

Okinawa 905-2192, Japan (e-mail: ogino@okinawa-ct.ac.jp).

technologies. As a preliminary study, we evaluate the

performance of anomaly detection algorithm “LOF” [2] on

the online machine learning framework “Jubatus” [3].

In this paper, after the system overview is explained in

Section II, how our system detects intrusions is shown in

Section III. Basic experiment is executed in Section IV and

its result is in Section V. Our new learning method and its

result are in Section VI and VII. The future works are in

Section VIII. Section IX is conclusion.

II. SYSTEM OVERVIEW

The basic processing of our system is shown in Fig. 1. The

system collects the system logs, i.e. traffic log, manipulation

log and so on. All the collected logs are statically analyzed

and learned as normal data. In this period, we estimate the

system is not attacked. The system can detect new attacks

after this learning period.

Fig. 1. Overview of system processing flow.

After a suitable period, the system starts to analyze the

collected data. When the system detects the outlier, it

analyzes the data in more detail. The outlier is not necessarily

the intrusion. When new tools or new services are introduced

in the user system, it might produce new traffic or usage

patterns. So it is necessary to check if the outliers are the

results of normal usage or attacks. We suppose that these

tasks are executed by the system administrators. When the

outliers are intrusions from outside, they are blocked. On the

other hand, when the outliers are results from proper but new

procedures, they are permitted and learned as normal data.

After some proper amounts of those data are learned, they are

not classified as outlier data.

This feedback step of registering the proper but new

procedure as normal data is necessary, since a lot of new

Evaluation of Machine Learning Method for Intrusion

Detection System on Jubatus

Tadashi Ogino

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

137DOI: 10.7763/IJMLC.2015.V5.497

services appear in a short time recently.

The specific objectives of this system are as follows.

 The system can detect new unknown intrusions.

 The system can detect intrusions in real time.

 Not only the communication from/to outside, but also

irregular communications/operations in the local area

network can be detected.

 Detected incidents can be investigated by system

administrators and decided if they are actual intrusions

or normal usage.

The total system configurations are shown in Fig. 2. Each

component has the following functions.

Fig. 2. System configuration.

External Communication Point: Communication points

between external networks, i.e. internet and internal systems

(LAN). For the purpose of BCP enhancement, more than two

external communication points might be equipped. Traffic

logs from/to internet are collected from these points.

Internal Communication Point: Communication points

between local clients and servers. Usually these points are

built by routers/switches. Traffic logs in the local system are

collected from these points.

Servers: File servers, print servers, application servers, etc.

Server operation logs are collected.

Clients: Each client in the system. Client operation logs

are collected.

 Data Collect/Analyze Point: Data Collect/Analyze Points

collect all the traffic logs and operation logs, analyze all the

data and find the abnormal data. In the case of servers/clients,

data analysis function can be executed by themselves.

Total Management Console: All the found suspicious

incidents are gathered. System administrators can invest and

manage all the incidents.

This paper describes the evaluation of collecting traffic

data at External Communication Point and detecting anomaly

data.

III. DETECTION METHOD

This chapter explains how our system analyzes the traffic

data and finds anomaly data in real time.

A. Anomaly Detection

A couple of studies have been conducted on anomaly

detection from huge data sets. Most of them come from

extensive studies for clustering. The main objectives of such

studies are to find anomalies to remove them from the data set,

since they are “noises” for clustering purpose. There are less

studies about anomalies in order to process anomalies as

main subject. In this paper, we use LOF (Local Outlier Factor)

algorithm [2] from such ‘outlier-oriented’ studies. It is

reported that LOF is superior to other outlier detect algorithm

for detecting network intrusion [4]. Another reason to use

LOF is that machine learning framework Jubatus has LOF

algorithm for its standard repertoire. Jubatus will be

explained later in this chapter.

B. LOF

There are a couple of definitions for outliers. Hawkins

gave the definition of outliers as “an observation that derives

so much from other observations as to arouse suspicion that it

was generated by a different mechanism” [5].

 Most of the cases, this definition is enough for detecting

outliers. But, in the case of Fig. 3 [2], though o1 can be

detected as an outlier, o2 can not be detected. LOF is

designed to find such cases. The details of LOF algorithm are

explained in the original paper.

Fig. 3. 2d dataset example.

C. Detection Examples

Some examples of detecting cyber attacks using outlier

detect algorithm are as follows:

Example 1: When the time period of packet transmission

is too short, there are possibilities of DoS attacks.

 Example 2: When the length of the packet is too long,

there are possibilities of BufferOverFlow attacks.

Even in the case of new unknown attacks, since there may

exist some different parameters for normal traffic, the

possibility to be detected as outliers might be high.

D. Jubatus

The amount of network traffic is increasing dramatically.

In order to analyze those data in real time, it would be better

to apply ‘big data’ analysis technology to manipulate huge

data.

One of the most famous big data analysis tools is Hadoop

[6]. Hadoop is an open source software tool. It is used in the

wide areas such as recommendation, web search, text mining,

etc. Hadoop is usually used under batch processing. It is not

suitable to use it for real time analysis.

We use Jubatus [3] for our real time analysis platform.

Jubatus is a distributed machine learning platform developed

by NTT and PFI. It is developed for the purpose of real-time,

deep analysis in a distributed environment.

IV. BASIC EXPERIMENT

For the purpose of preliminary study, we evaluate the

performance of LOF algorithm running on Jubatus

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

138

framework with KDD Cup 99 data [7].

A. Evaluation System Hardware

We use an aws (Amazon Web Service) t2.micro instance

(1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB memory) with

Ubuntu Server 14.04 as an evaluation platform. Jubatus is ver

0.6.0.

B. Evaluation Data

We use KDD Cup ’99 data as the experiment traffic data.

KDD Cup is a Data Mining and Knowledge Discovery

competition organized by ACM. In 1999, the main topic was

Network Intrusion Detector. The competition data of KDD

Cup 99 can be used as the evaluation data for network

intrusion detection system [8]. The data simulates the typical

U.S. Air Force LAN. The raw data was 4GB of compressed

TCPdump format from seven weeks of network traffic. This

data was processed to 5 million connection records. Each

connection record is labeled as either a normal, or an attack.

An attack data has its attack type such as buffer_overflow,

guess_passwd etc. Each record consists of 41 columns and

the record size is around 100 bytes. They also supply 10%

data, which has the same data distribution and 500 thousand

records. We use this 10% KDD Data as an evaluation data.

Although we know that there are a couple of discussions

about using KDD99 data as evaluation data [9], for now it is

the only candidate for using network intrusion evaluation

data.

C. Jubatus Parameters

Jubatus has LOF processing function. We use this function

with no modification to the source code. KDD Cup 99 data is

also used with no modification. It is treated as 41 dimensional

data.

Jubatus Server configuration parameters are shown in Fig.

4.

D. Learning Method

In this experiment, we use a very simple learning method

which is as follows:

Step 1: Use first fixed number of normal data as training

data.

Step 2: Analyze the remaining data using LOF.

E. Jubatus APIs

We use 2 Jubatus APIs for our system.

add(data) : Add data as a training data and returns LOF

score.

calc_score(data) : Calculates and returns LOF

score. Data is not added as a training data

As add() API has to update Jubatus internal data model, it

takes more time than calc_score() API which just calculates

LOF score for the data.

We measured the execution time for each 2 APIs.

The execution time of add() is measured as follows:

1) add() all the normal data

2) Measure execution time for each add() API

3) Calculate minimum, average and maximum of 100

consecutive API executions

The execution time of calc_score() is measured as follows:

1) add() fixed number of normal data

2) calc_score() all the remaining data

3) Calculate the average time for calc_score()

Fig. 4. Jubatus parameters.

V. RESULTS OF BASIC EXPERIMENT

We evaluate the system with different number of training

data, including from1000 to 10000.

A. API Execution Time

The execution time for 2 APIs depends on the number of

training data. Theoretically, these times are in proportion to

n
2
, where n is the number of training data. As a matter of fact,

Jubatus uses a couple of techniques to decrease execution

time. Fig. 5 shows the actual execution time for add() API.

As the execution time changes according to the data itself and

Jubatus internal model, the result is shown with minimum,

average and maximum time.

Fig. 5. Execution time of add() API.

Fig. 6. Execution time of calc_score() API.

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

139

Fig. 6 shows the execution time for calc_score()

API. Be careful that units of each graph are different, seconds

for Fig. 5 and milliseconds for Fig. 6.

Total execution time is shown in Fig. 7.

Fig. 7. Total execution time.

Fig. 8. Histgram of normal/attack data and 4 classifications.

B. ROC Curve

As our system uses LOF for analytic algorithm, the direct

output of the each data is LOF score. We need to set a

threshold to decide if the data is an attack or not (Fig. 8).

After we set a threshold, we can count True Negative (normal

data under threshold), False Positive (normal data over

threshold), False Negative (attack data under threshold) and

True Positive (attack data over threshold). True Positive Rate

and False Positive Rate are calculated with these data.

We can draw ROC curves with different threshold. Fig. 9

shows the ROC curve of the basic experiment.

Fig. 9. ROC curve of basic experiment.

From this result, the accuracy of detecting increases

according to the size of training data as a rough trend. On the

other hand, the total execution time increases with more

training data. In order to meet the conditions of these

conflicting, we propose a new learning method in the next

chapter.

Fig. 10. ROC curve of proposed method.

VI. LEARN LESS MACHINE LEARNING METHOD

In order to improve the total performance of our system,

we propose the following learning method.

A. Learn Less Method

To achieve the accuracy of detecting and the less execution

time at the same time, the training data should be limited to

the valuable data. That means that only the meaningful data

for the following analysis should be added. In our example,

we assume the data with high LOF score is valuable.

When the LOF score for a new data is low, it means there

are enough other data around the data and adding that data

into the training data doesn’t increase the total system

accuracy so much. On the other hand, when the LOF score for

a new data is high, it means there are less other data around

the new data so adding this new data is important for

increasing the total system performance. We call this method

as “Learn Less Method”.

A simple algorithm for “Learn Less Method” is as follows:

Step 1: Train with the first fixed number of normal data

(same as the simple learning).

Step 2: Calculate the LOF score for each data.

If LOF score is over the threshold (we call this as “Value

Threshold”), then add this data as training data.

We evaluate this method under the same environment as

the basic experiment. Fig.10 is the ROC curve for this

method with the number of first training data is 2000 and the

threshold is from 1.1 to 20. Label Basic(2000) is the original

simple learning method and the same data for label 2000 in

Fig. 9. The result shows that the cases with Value Threshold

of 5,10 or 20 have the better detection rates than the original

simple method.

VII. DISCUSSIONS

A. Execution Time

Our target is to detect cyber attacks in real time. KDD

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

140

Cup ’99 data consists of 7weeks traffic data and include 5

million traffic data. That means 1 traffic data is around 0.8

seconds. Jubatus calc_score() API is around dozens of

milliseconds and is small enough compared to one traffic data

time in our experiment. Jubatus add() API is a couple of

seconds in the worst case and when this API is called we need

some buffering function to keep the analyzing procedure

continued. And the fact that KDD Cup 99 data was made 15

years before, we need to evaluate the overall system

performance under current network traffic and current

hardware.

In order to improve system performance, we have some

candidates:

1) Parameter tuning

Jubatus and LOF algorithm have some tuning parameters.

As we haven’t tuned such parameters this time, tuning such

parameters might improve total system performance.

2) Distributed configuration

As Jubatus is designed to run in a distributed environment

with multiple servers, this can improve system performance.

3) Discard data

In this experiment, we learned that the number of training

data affects the system performance dramatically. Our

proposed method decreases the amount of training data

increase, but not the total size of the training data. We need to

discard some old or useless data from the training data. This

will keep the total number of training data as fixed.

B. Detection Rate

As shown in the previous chapter, when we choose the

suitable Value Threshold, our proposed method has a better

detection rate than the original method. The problem is that

finding suitable threshold and other parameters are difficult

task and such parameters depend on the data features. We

have to evaluate different dataset other than KDD Cup 99

dataset.

The detection rate of this experimental system is around 90%

with False Alarm Rate is just under 10%. This number is not

enough for actual network intrusion detection system. We

need to study how to decrease False Alarm Rate.

VIII. FUTURE WORKS

We plan to invest the following issues.

A. Automatic Parameter Tuning

The performance of the proposed system might change

with other data set or other parameter tuning. We need to

study how to find the best combination of the parameters

automatically or manually with ease by administrators.

B. Better Machine Learning Algorithm

The number of training data affects the total system

performance. We need to find a better learning algorithm to

continue to learn and not to decrease performance.

C. Administration User Interface

We need to develop the administrator interface for

managing the incidents with ease.

IX. CONCLUSION

In this paper, we evaluate the cyber attack detection system

using LOF algorithm running on Jubatus platform. Our

evaluation shows the execution time of the system is small

enough for building real time detection system. The detection

rate can be improved with the proposed learning method. We

need more studies to performance improvement and better

learning strategy.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A

survey,” ACM Computing Surveys, vol. 41, no. 3, July 2009.
[2] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, “LOF:

Identifying density-based local outliers,” in Proc. ACM SIGMOD 2000

Int. Conf. On Management of Data, 2000, pp. 93-104.
[3] Jubatus. [Online]. Available: http://jubat.us/

[4] A. Lazarevic et al., “A comparative study of anomaly detection
schemes in network intrusion detection,” in Proc. SIAM Conference on

Data Mining, 2003, pp. 25-36.

[5] D. M. Hawkins, Identification of Outliers, Chapman and Hall, 1980.
[6] Hadoop. [Online]. Available: http://hadoop.apache.org/

[7] KDDCup. [Online]. Available:

https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
[8] R. Singh and D. Singh, “A review of network intrusion detection

system based on KDD dataset,” IJETS International Journal of

Engineering and TechnoScience, vol. 5, no. 1, pp. 10-15, 2014.
[9] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed

analysis of the KDD CUP 99 data Set,” in Proc. CISDA’09, 2009, pp.

53-58.

Tadashi Ogino received his BS, MS and doctor degrees
of electric engineering from University of Tokyo in 1983,

1985 and 1988 respectively. His research interests include

distributed system, cloud computing , M2M system and
big data analysis.

 He joined Mitsubishi Electric Corp. in 1988 and

developed mid-range business servers. He is now

working at Okinawa National College of Technology as a

professor. Dr. Ogino is a member of ACM, IEEE, IPSJ and IEICE.

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

141

