

Abstract—Abduction is inference to the best explanation.

While abduction has long been considered a promising

framework for natural language processing (NLP), its

computational complexity hinders its application to practical

NLP problems. In this paper, we propose a method to

predetermine the semantic relatedness between predicates and

to use that information to boost the efficiency of first-order

abductive reasoning. The proposed method uses the estimated

semantic relatedness as follows: (i) to block inferences leading

to explanations that are semantically irrelevant to the

observations, and (ii) to cluster semantically relevant

observations in order to split the task of abduction into a set of

non-interdependent subproblems that can be solved in parallel.

Our experiment with a large-scale knowledge base for a real-life

NLP task reveals that the proposed method drastically reduces

the size of the search space and significantly improves the

computational efficiency of first-order abductive reasoning

compared with the state-of-the-art system.

Index Terms—Natural language processing, logical inference,

abduction.

I. INTRODUCTION

Abduction is inference from a given set of observations to

the best explanation about why those observed events

happened. This mode of inference has long been applied to a

range of AI tasks including text/story understanding and

plan/intention recognition [1]-[6].

An epoch-making study in this line of research can be seen

in a paper in Artificial Intelligence by Hobbs et al. [1]; they

demonstrate that a wide range of subtasks in the

understanding of natural language can be uniformly

formulated as abductive reasoning. Let us take an example

from their paper: John went to the bank. He got a loan. Given

this text as input, it is assumed that the model of Hobbs et al.

semantically parses it to obtain a logical form, which consists

of a flat conjunctive set of observed literals, as shown at the

bottom of Fig. 1. The model then uses a knowledge base (i.e.,

a collection of axioms representing linguistic and

common-sense knowledge) to search for the best explanation

for the given observations. As a by-product of this abductive

reasoning, the model obtains an interpretation of the given

text, which includes the coreference relation between John

Manuscript received October 10, 2014; revised December 11, 2014. This

work was supported in part by the Grant-in-Aid for JSPS Fellows (22-9719)
and Grant-in-Aid for Scientific Research (23240018).

Kazeto Yamamoto, Naoya Inoue, and Kentaro Inui are with Tohoku

University, Japan (e-mail: {kazeto,naoya-i,inui}@cl.ecei.tohoku.ac.jp).
Yuki Arase is with Osaka University, Japan (e-mail:

arase@ist.osaka-u.ac.jp).

Jun’ichi Tsujii is with Microsoft Research Asia, China (e-mail:

jtsujii@microsoft.com).

and he, and the purpose-means relation between get a loan

and went into the bank.

This way of formulating intelligent inference has several

distinct advantages. First, it provides a uniform framework

for integrating subtasks of multiple levels of abstraction; in

the above example, finding the best explanation jointly

resolves the coreference relation, the discourse relation, and

the word-sense ambiguity. Second, the declarative nature of

abduction allows us to abstract away from the procedural

process of inferences. When multiple levels of

interdependent subtasks are involved, it is often crucially

difficult to predetermine the optimal order in which to solve

the problems. This difficulty can be avoided by using joint

inference. In spite of these promising properties, however,

the abduction-based approaches to text/story understanding

and plan/intention recognition have never produced

significant positive evidence that supports their effectiveness

in real-life problems.

Fig. 1. An example of discourse understanding with abductive reasoning.

One strong reason for this failure has been lack of

knowledge. As in other approaches, the bottleneck for

applying abduction to practical problem settings in the 1980s

and 1990s was the acquisition of knowledge. However, this

problem has now been at least partly resolved by recent

remarkable advances in the automatic acquisition of
linguistic and common-sense knowledge from large-scale

text data and the Internet [7], [8]. As a result of these efforts,

a number of Web-scale structured and formalized knowledge

bases are publicly available [9].

Another big issue is the computational cost of abductive

reasoning. Abduction on first-order logic (FOL) or similarly

expressive languages is computationally expensive, and thus

substantial improvements are necessary in order to make it

practical for real-life problems. For this purpose, Inoue and

Inui [10], [11] have recently proposed encoding abductive

Boosting the Efficiency of First-Order Abductive

Reasoning Using Pre-estimated Relatedness between

Predicates

Kazeto Yamamoto, Naoya Inoue, Kentaro Inui, Yuki Arase and Jun’ichi Tsujii

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

114DOI: 10.7763/IJMLC.2015.V5.493

john(x1)� go(e1,x1,x2)� bank(x2)� he(y1)� get(e2,y1,y2)�

issue(e2,u2,y2,y1)�

issue(e1,x2,u1,x1)�

financial_inst(x2)�

loan(y2)�

money(y2)�

Observation�

issue(e,x,y,z);
=>;go(e,z,x)�

financial_inst(x);
=>;bank(x)�

issue(e,x,y,z);
=>;get(e,z,y)�

loan(x);=>;
issue(e,y,x,z);�;
financial_inst(y)�

e1#=#e2#
x2#=#u2#
u1#=#y2#
x1#=#y1�

loan(y2)�

loan(x);=>;
money(x)�

Explanation�

Input:� John went to the bank. He got a loan.�

John and he!
are coreferent�

went to the bank !
is the purpose of !

got a loan!

bank refers to!
a financial bank�

inference on FOL into a problem of integer linear

programming (ILP) and showed that their method

significantly improves computational efficiency for a

knowledge base containing hundreds of thousands of axioms

representing both linguistic and common-sense knowledge.

However, the problem of computational cost has not yet been

fully solved. The search space for the method of Inoue and

Inui still grows exponentially with the size of the knowledge

base.

Given this background, in this paper, we explore two

methods for improving the computational efficiency of

first-order abductive inference. We first explore a method

that uses an A
*
 search to reduce the size of the search space.

We then explore a method for dividing a given problem into

independent subproblems that can be solved in parallel. In

our experiments, we show that our system is several tens

times as efficient as the state-of-the-art abductive reasoner.

This paper is organized as follows. We first give a brief

review of related work. We then show our approach.

Afterwards, we demonstrate the efficiency of our methods

and compare them with the state-of-the-art system. Finally,

we discuss areas of potential future work.

II. BACKGROUND

A. Abduction

Abduction is inference to the best explanation. Formally,

logical abduction is defined as follows:

Given: Background knowledge B and observations O,

where B is a set of Horn clauses on FOL and O is a

conjunction of FOL literals.

 Find: A hypothesis (explanation) H such that 𝐻 ∪ 𝐵 ⊨ 𝑂,

𝐻 ∪ 𝐵 ⊭⊥, where H is a conjunction of first-order literals.

Typically, there are several hypotheses H that explain O.

We call these the candidate hypotheses, each literal in a

candidate hypothesis is an elemental hypothesis, and each

literal in possible candidate hypotheses is called a potential

elemental hypothesis. A candidate hypothesis is a subset of

the potential elemental hypotheses, and we can regard the

potential elemental hypotheses as defining the search space

of the solution.

The goal of abduction is to find the best hypothesis �̂�

among the candidate hypotheses by using a specific

evaluation measure. We call �̂� the solution hypothesis.

Formally, the solution hypothesis is defined as follows:

(1)

where ℍ is a set of possible candidate hypotheses, and E is a

function 𝐻 → ℝ that evaluates the plausibility of each

candidate hypothesis. Here, we assume that E(H) returns −∞

if 𝐻 ∪ 𝐵 ⊭⊥, and we call this the evaluation function. In the

literature, several kinds of evaluation functions have been

proposed [1], [6], [11]-[13].

As noted, each candidate hypotheses can be regarded as a

subset of the potential elemental hypotheses. Potential

elemental hypotheses are generated by applying the

following two operations to the observations and the

potential elemental hypotheses being generated:

 Backward chaining: Assuming an axiom 𝑝1(𝑥) ∧

𝑝2(𝑥) ∧ ⋯ ∧ 𝑝𝑛(𝑥) ⟹ 𝑞(𝑥) ∈ 𝐵 and a literal 𝑞(𝑎), this

operation hypothesizes new literals {𝑝𝑖(𝑎)}𝑖=1
𝑛 and adds

them to the potential elemental hypotheses.

 Unification: This operation unifies two literals that have

the same predicate and makes the assumption that each

term of a literal is equal to the corresponding term of the

other literal. For example, given 𝑂 = 𝑝(𝑥) ∧ 𝑝(𝑦) ∧ 𝑞(𝑦),

a candidate hypothesis 𝐻 = (𝑥 = 𝑦) is created.

For example, given the knowledge base shown in Table I,

let us consider creating the potential elemental hypotheses for

the observation 𝑂 = {𝑝2(𝑎) ∧ 𝑝6(𝑏, 𝑐) ∧ 𝑝7(𝑑)} . Applying

backward chaining and unification to the potential elemental

hypotheses as shown in Figure 2, we can obtain the potential

elemental hypotheses 𝑃 = {𝑝1(𝑏)1 ∧ 𝑝1(𝑏)2 ∧ 𝑝2(𝑏) ∧
𝑝3(𝑏) ∧ 𝑝4(𝑢2, 𝑢1) ∧ 𝑝5(𝑢1) ∧ 𝑝8(𝑐) ∧ 𝑝9(𝑐) ∧ (𝑎 = 𝑑)}. In

Fig. 2, a solid arrow indicates backward chaining, a dotted

line indicates unification, and the terms in the gray boxes

represent the IDs of the axioms used for the corresponding

backward chaining.

TABLE I: A KNOWLEDGE BASE FOR AN EXAMPLE

ID Axiom ID Axiom

a1 𝑝1(𝑥) ⇒ 𝑝2(𝑥) a5 𝑝2(𝑥) ⇒ 𝑝7(𝑥)

a2 𝑝1(𝑥) ⇒ 𝑝3(𝑥) a6 𝑝5(𝑦) ⇒ 𝑝7(𝑥)

a3 𝑝4(𝑥, 𝑦) ⇒ 𝑝5(𝑦) a7 𝑝8(𝑦) ⇒ 𝑝6(𝑥, 𝑦)

a4 𝑝3(𝑥) ⇒ 𝑝6(𝑥, 𝑦) a8 𝑝9(𝑥) ⇒ 𝑝8(𝑥)

Fig. 2. An example of potential elemental hypotheses.

B. Previous Work for Efficient Abduction

Abductive inference is an NP-hard problem, and so the

computational cost increases exponentially with increases in

the knowledge base; this is a big problem. The studies that

have addressed this issue can be classified roughly into two

groups.

The first includes those methods that emulate abduction by

using a framework for deduction [6], [13], [14]. For example,

Singla and Domingos (2011) proposed a method that

emulates abduction on Markov logic networks (MLNs) [15].

However, although these methods can make use of efficient

algorithms for the target framework, they are not very

efficient [14]. The reason of this is that the grounding, i.e., the

process that converts the knowledge base or observations in

the first-order logic into propositional logic, causes the

knowledge base to increase explosively.

The second includes those methods that formulate

abduction as the problem of finding the best subset of the

potential elemental hypotheses, and then uses another

optimization algorithm to search the subset of potential

�̂� = arg max
𝐻∈ℍ

𝐸(𝐻)

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

115

elemental hypotheses that corresponds to the solution

hypothesis. For example, Inoue and Inui proposed a method

to formulate abductive reasoning as a problem of integer

linear programming (ILP) without grounding [10], [11]. With

this method, a drastic improvement was achieved by the

efficiency of the lifted inference and by using an efficient

optimization algorithm in an external ILP solver. Inoue and

Inui (2012) reported that this approach is much faster than the

MLN-based framework discussed above [11], which had

been the state of the art before being replaced by this method.

III. EFFICIENT ABDUCTION WITH RELATEDNESS BETWEEN

PREDICATES

A. Basic Strategy

We begin by discussing the optimality of the solution

obtained by the abduction. In abductive reasoning, because

the search space of the solution can increase without limit,

obtaining the global optimal solution by abductive reasoning

is expensive. Therefore, in practice, it is the local, not the

global, optimal solution that is sought; that is, we seek the

best hypothesis within some limited search space and regard

it as the best explanation. In the work of Inoue and Inui [10],

[11], a parameter depthmax was defined to be a natural number,

and the potential elemental hypotheses consist of those

elemental hypotheses that can be hypothesized through less

than depthmax backward chainings. A larger depthmax

indicates a higher probability that the solution is a global

optimum and a correspondingly higher computational cost.

The optimality of the solution and its computational cost both

depend on the size of the search space of the solution. In this

paper, we aim to reduce the size of the search space (i.e., the

number of potential elemental hypotheses) while maintaining

the optimality of the solution.

In abduction, the evaluation functions are generally

defined so that the better a hypothesis is considered to be, the

greater the probability of the assumptions included in the

hypothesis and the more observations it explains. For

example, given the knowledge base shown in Table I and an

observation 𝑂 = {𝑝6(𝑎, 𝑏) ∧ 𝑝7(𝑐)}, let us consider the three

hypotheses shown in Fig. 3. Here, the hypothesis (b) is less

optimal than hypothesis (a), because (b) includes more

hypothesized literals than (a) but explains the same number

of observations. On the other hand, since hypothesis (c)

explains as many observations as (a) with fewer literals, (c) is

considered to be better than (a). More formally, the

evaluation functions E generally have the following

properties:

1) Given a candidate hypothesis H and an operation of

backward chaining c, 𝐸(𝐻) ≥ 𝐸(𝐻 ∩ 𝑐) is satisfied.

2) A candidate hypothesis H and an operation of unification

u that satisfy 𝐸(𝐻) ≤ 𝐸(𝐻 ∩ 𝑢) can exist.

Supposing that the evaluation function that we employ has

these properties, then we can reduce the number of potential

elemental hypotheses by canceling the backward chainings

that do not result in unification.

B. Heuristic Pre-estimation of the Distance between the

Literals

In order to estimate whether the backward chaining will

result in unification, it is necessary to know which literals can

be hypothesized from each observation and the plausibility of

each literal. Here, we define the function hed(p,q), which

provides the semantic relatedness between a literal p and a

literal q. We call the return value of hed(p,q) the heuristically

estimated distance (H.E.D.) between p and q.

Fig. 3. An example of the basic strategy.

The necessary conditions of hed(p,q) and H.E.D. are as

follows. First, they must express the semantic relatedness

between p and q. In other words, the more easily the

relevance between two literals can be inferred, the higher the

H.E.D. between them. Second, hed(p,q) must be admissible

for use in an A
*
 search, so that it can be employed as a

heuristic for the cost, as in Section III.C. Third, the

computational cost for obtaining a return value from hed(p,q)

should be as small as possible. For the third condition, we

pre-estimate all of the H.E.D.s and store them in a database.

Thus, the function hed(p,q) only has to load values from

memory. Since the size of the database of H.E.D.s increases

as the definition of hed(p,q) becomes more complex, we have

to consider the balance between efficiency and the

expressiveness of the H.E.D.s.

Therefore, we define this function as the heuristic distance

between the predicates of the literals with the abstraction of

the conjunctions of the antecedents of each of the axioms.

Formally, hed(p,q) is defined as follows:

(2)

(3)

where AH is the set of axioms that are used in H, 𝜌(𝐿) is the

function that returns the literal corresponding to the predicate

of the first-order literal L (e.g., 𝜌(𝑗𝑜ℎ𝑛(𝑥)) = 𝑗𝑜ℎ𝑛), and

𝛿(𝐴) is the distance function, which returns the heuristic

distance between the antecedents of the axiom A and the

conclusions of A. For example, given the knowledge base in

Table I and the distance function 𝛿(𝐴) = 1, the value of

ℎ𝑒𝑑(𝑝7(𝑥), 𝑝1(𝑥)) is 𝛿(𝑎5) + 𝛿(𝑎1) = 2.

In this paper, we define the distance function as 𝛿(𝐴) = 1,

for simplicity. In practice, it is necessary to select a proper

distance function because the precision of the H.E.D.s

depends on the definition of the distance function. For

example, in cost-based abduction [11], the distance function

better conforms to the evaluation function when using the

cost assigned to each axiom for 𝛿(𝐴).

Since the H.E.D.s depend only on the knowledge base, we

ℎ𝑒𝑑(𝑝, 𝑞) = min
𝐻∈{𝐻|𝐻∪𝐵∗⊨{𝜌(𝑝)∧𝜌(𝑞)}}

∑ 𝛿(𝑎)

𝑎∈𝐴𝐻

𝐵∗ = ⋃ [⋃ 𝜌(𝑝𝑖) ⇒ 𝜌(𝑞)

𝑛

𝑖=1

]

𝑝1∧…∧𝑝𝑛⇒𝑞∈𝐵

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

116

can estimate these in advance. The computational cost of the

estimation is Ο(𝑁𝑝𝑟𝑒𝑑
2) , where 𝑁𝑝𝑟𝑒𝑑 is the number of

different predicates in the knowledge base.

C. Potential Elemental Hypotheses Creation with A
*

Search

In this section, we propose an algorithm that efficiently

creates the potential elemental hypotheses. We apply an A*

search to generate the potential elemental hypotheses and

then trim without loss any that are included in the solution

hypothesis. Although we employ the same evaluation

function as used by weighted abduction, our method can be

applied to other frameworks which have the properties

discussed in Section III.A.

Now, our goal is to efficiently hypothesize the literals that

can be combined. Since we cannot know exactly which

axiom we should use in order to hypothesize those literals, we

search for them by using the H.E.D.s, as follows.

First, set positive values for distmax and depthmax, which are

hyperparameters that control the size of the search space and

initialize the open set to be an empty set. We denote the

distance of the path from a literal p to a literal q as d(p,q) and

the estimated distance between p and q as d
*
(p,q). We use the

distance function hed(p,q) as the heuristic function that

provides d
*
(p,q). In each step, the following operations are

performed:

1) Select the target literal �̂�, which is expected to result in

the least expensive unification with the literals in the open

set.

2) Pop �̂� off the open set. Enumerate the axioms whose

descendant equals �̂� , and perform backward chaining

with each of the axioms with the condition that at least

one pair of a literal 𝑝𝑖 in the antecedents of the axiom and

a literal o in the observations satisfies the following

conditions: (i) 𝑝𝑖 is considered to be reachable by o (i.e.,

ℎ𝑒𝑑(𝑝𝑖 , 𝑜) ≤ 𝑑𝑖𝑠𝑡max); (ii) there is no possibility of

unification between one of the descendants of 𝑝𝑖 and one

of the antecedents of o.

3) If a literal in X and one in the potential elemental

hypotheses are unifiable, insert the elemental hypotheses

of equality between the terms resulting from the

unification.

The search is over when the open set is empty.

For example, given the knowledge base shown in Table I

and an observation 𝑂 = {𝑝2(𝑎) ∧ 𝑝6(𝑏, 𝑐) ∧ 𝑝7(𝑑)}, the first

step of the search is performed as shown in Fig. 4; the edges

drawn with a solid line represent backward chaining, and

those drawn with a dotted line are unifications. The numbers

in the balloons connected to the nodes in the open set indicate

the estimated distance. In the initial step, since the shortest

path is expected to be the one between 𝑝7(𝑑) and 𝑝2(𝑎), the

literals 𝑝2(𝑑) and 𝑝5(𝑢1) are inserted into the open set as the

results of backward chainings.

The procedure is shown in Algorithm 1, X is the open set

for the search. Each element 𝑥 ∈ 𝑋 is a candidate for the

search and has three possible designations: x.s is the start

node, x.c is the current node, and x.g is the goal node. The

function isExplanationOf(x,y) is the binary function that

indicates which the literal x explains the literal y (i.e., if x is

an antecedent of y), and the function depth(p) returns the

number of backward chainings that are needed to hypothesize

the literal p from the observations.

Algorithm 1: A* search-based potential elemental hypothesis

creation

Input: 𝐵, 𝑂 = {𝑜1 ∧ 𝑜2 ∧ … ∧ 𝑜𝑛}, 𝑑𝑖𝑠𝑡max, 𝑑𝑒𝑝𝑡ℎmax
𝑋 ← ∅

𝑃 ← ∅

for 𝑖 = 1 to n do

for 𝑗 = 1 to 𝑖 − 1 do

𝑈 ← 𝑔𝑒𝑡𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑜𝑖 , 𝑜𝑗)

𝑃 ← 𝑃 ∪ 𝑈

if ℎ𝑒𝑑(𝑜𝑖 , 𝑜𝑗) > 0 then

𝑋 ← 𝑋 ∪ 𝑥, 𝑥. 𝑐 = 𝑜𝑖 ∧ 𝑥. 𝑠 = 𝑜𝑖 ∧ 𝑥. 𝑔 = 𝑜𝑗

𝑋 ← 𝑋 ∪ 𝑥, 𝑥. 𝑐 = 𝑜𝑗 ∧ 𝑥. 𝑠 = 𝑜𝑗 ∧ 𝑥. 𝑔 = 𝑜𝑖

end if

end for

end for

while 𝑋 ≠ ∅ do

�̂� ← arg min
𝑥∈𝑋

{𝑑(𝑥. 𝑠, 𝑥. 𝑐) + ℎ𝑒𝑑(𝑥. 𝑐, 𝑥. 𝑔)}

for all 𝑎 = {𝑝1 ∧ … ∧ 𝑝𝑛 ⇒ 𝑞} in B do

𝑅 ← 𝑑𝑜𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝐶ℎ𝑎𝑖𝑛𝑖𝑛𝑔(�̂�. 𝑐, 𝑎)

𝑃 ← 𝑃 ∪ 𝑅

for all r in R do

for all x in {𝑥|𝑥 ∈ 𝑋 ∧ 𝑥. 𝑐 = �̂�. 𝑐} do

if 𝑑(𝑥. 𝑠, 𝑥. 𝑐) + ℎ𝑒𝑑(𝑥. 𝑐, 𝑥. 𝑔) + 𝛿(𝑎) ≤ 𝑑𝑖𝑠𝑡max ∧
𝑑𝑒𝑝𝑡ℎ(𝑥. 𝑐) < 𝑑𝑒𝑝𝑡ℎmax then

𝑋 ← 𝑋 ∪ {𝑦|𝑦. 𝑠 = 𝑥. 𝑠 ∧ 𝑦. 𝑐 = 𝑟 ∧

𝑦. 𝑔 = 𝑥. 𝑔 ∧ 𝑑(𝑦. 𝑠, 𝑦. 𝑐) = 𝑑(𝑥. 𝑠, 𝑥. 𝑐) + 𝛿(𝑎)}

end if

end for

for all p in 𝑃 ∖ 𝑟 do

𝑈 ← 𝑔𝑒𝑡𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑟, 𝑝)

𝑃 ← 𝑃 ∪ 𝑈

if 𝑈 ≠ ∅ then

𝑋 ← 𝑋 ∖ {𝑥|𝑥. 𝑐 = 𝑟 ∧ 𝑖𝑠𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑝, 𝑥. 𝑔)}

𝑋 ← 𝑋 ∖ {𝑥|𝑥. 𝑐 = 𝑝 ∧ 𝑖𝑠𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑟, 𝑥. 𝑔)}

end if

end for

end for

end for

𝑋 ← 𝑋 ∖ {𝑥|𝑥. 𝑐 = �̂�. 𝑐}

end while

return P

Algorithm 2: doBackwardChaining(l,a)

Input: 𝑙, 𝑎 = {𝑝1 ∧ 𝑝2 ∧ … ∧ 𝑝𝑛 ⟹ 𝑞}

𝑃 ← ∅

if ∃𝜃, 𝑙𝜃 = 𝑞 then

for 𝜈 ∈ 𝑛𝑜𝑡𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑑𝑉𝑎𝑟𝑠({𝑝1, … 𝑝𝑛}, 𝜃) do

𝜃 ← 𝜃 ∪ {𝜈 𝑢𝑖⁄ }; 𝑖 ← 𝑖 + 1

end for

𝑃 ← 𝑃 ∪ {𝑝1, 𝑝2, … , 𝑝𝑛}𝜃

end if

return P

Algorithm 3: getEqualityAssumption(p1,p2)

Input: 𝑝1, 𝑝2

𝑃 ← ∅

if ∃𝜃, 𝑝1𝜃 = 𝑝2 then

for all 𝑥 ∕ 𝑦 in 𝜃 do

𝜃 ← 𝑃 ∪ {𝑥 = 𝑦}

end for

end if

return P

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

117

Fig. 4. An example of the creation of potential elemental hypotheses based

on an A* search.

Next, we summarize the advantages of this algorithm. First,

since this algorithm does not add literals that cannot be

included in the solution hypothesis to the potential elemental

hypotheses, it can reduce the size of the search space. We

believe that this may lead to a more efficient optimization.

Second, this algorithm prevents redundant unifications.

For example, given the knowledge base shown in Table I and

the observation 𝑂 = {𝑝7(𝑎) ∧ 𝑝7(𝑏)}, let us consider how to

generate the potential elemental hypotheses P. In Inoue and

Inui’s algorithm [10], [11], the potential elemental

hypotheses generated are 𝑃 = {𝑝2(𝑎) ∧ 𝑝2(𝑏) ∧ 𝑝1(𝑎) ∧
𝑝1(𝑏)}. However, according to Section III.A, the evaluation

of the candidate hypothesis 𝐻 = (𝑎 = 𝑏) must be better than

the evaluation of 𝐻 = {𝑝2(𝑎) ∧ 𝑝2(𝑏) ∧ (𝑎 = 𝑏)} or

𝐻 = {𝑝1(𝑎) ∧ 𝑝1(𝑏) ∧ 𝑝2(𝑎) ∧ 𝑝2(𝑏) ∧ (𝑎 = 𝑏)} . We have

no need to consider backward chainings from observations in

this case. Our algorithm can deal with such a heuristic.

Third, this algorithm adds elemental hypotheses to the

potential ones in the order of their probability of being

included in the solution. Therefore, if the generation of

potential elemental hypotheses is interrupted due to a time

out, etc., a better suboptimal solution is provided. This

property is expected to be much more useful in practice.

D. Parallelization

In the domain of the efficiency of other frameworks for

inference, some researchers have adopted the approach of

parallelizing the inference by splitting the input into

independent subproblems [16]-[19]. We explore a similar

method to parallelize abductive inference by using H.E.D.s,

which were proposed in the previous section.

First, we consider the condition that two subproblems oi

and oj are independent. This condition is defined by the

particular evaluation function that is used. For instance, in

weighted abduction, the conditions can be defined as follows:

1) There is no elemental hypothesis that explains both the

literals 𝑝 ∈ 𝑜𝑖 and 𝑞 ∈ 𝑜𝑗 (i.e.

min{(𝑝,𝑞)|𝑝∈𝑜𝑖∧𝑞∈𝑜𝑗} ℎ𝑒𝑑(𝑝, 𝑞) = ∞).

2) Equalities between any two terms cannot be hypothesized

from oi and oj together. In other words, oi and oj can share

no more than one logical variable.

Given observations O, the inference is parallelized via the

following process:

1) Split the observations O into independent subproblems

{o1, o2, ..., on}.

2) Compute in parallel the solution hypothesis for each

subproblem.

3) Merge the solution hypotheses of the subproblems, and

then output the solution hypothesis of O.

As mentioned, the computational cost of abduction grows

exponentially with the number of observations. Therefore,

dividing the observations into subproblems not only reaps the

benefits of parallel computing, but it is also expected to

reduce the total computational cost.

IV. EXPERIMENTS

A. Dataset

We used the same dataset as the one used by Inoue and Inui

[11]; it consists of sets of observations and a knowledge base.

The observation sets were created by converting the

development dataset of RTE-2
1

, the task of Textual

Entailment Recognition, with the Boxer semantic parser
2
; it

consists of 777 observation sets. The average number of

literals in each observation set was 29.6.

The knowledge base consists of 289,655 axioms that were

extracted from WordNet [20], and 7,558 that were extracted

from FrameNet [21]. The number of different predicates in

this knowledge base is 269,725.

B. Dataset

For this dataset, we compared the solving times when

using our models and when using that of Inoue and Inui

(2012), which is currently the state of the art. We will denote

their model as Baseline and ours as A
*
-single and A

*
-parallel.

A
*
-based will be used to refer to both of A

*
-single and

A
*
-parallel. We also compared the computational costs for

pre-estimating the H.E.D.s with various distmax.

In the experiment, the parameter depthmax was 3, and the

parameter distmax of A
*
-based was 6. We employed weighted

abduction [1] as the evaluation function. We defined the

distance function 𝛿(𝑎) = 1 for simplicity, and so that the

search space on A
*
-based was equal to that of Baseline.

For our experiments, we used 8-Core Opteron 6174 (2.2

GHz) 128 GB RAM machines. We used a Gurobi optimizer
3
,

which is a broadly used efficient ILP solver. It is a

commercial product but is freely available with an academic

license. For Baseline and A
*
-single, we ran the whole system

on one 8-Core machine, where Gurobi worked in the parallel

mode. For A
*
-parallel, we automatically dispatched the

generated parallel subproblems into 4 sets of 8-Core

machines.

C. Results

The results of the first experiment are shown in Table II.

Here, we excluded from the results those problems for which

1 http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/
2 http://svn.ask.it.usyd.edu.au/trac/candc
3 http://www.gurobi.com/

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

118

the whole abductive reasoning took more than 120 seconds in

at least one the settings of Baseline, A
*
-single and A

*
-parallel;

as a result, 707 problems remained out of the original 777

problems. The row # of literals shows the average number of

literals in the potential elemental hypotheses, the row # of

chains shows the average number of backward chainings in

the potential elemental hypotheses, and the row # of

unifications shows the average number of unifications in the

potential elemental hypotheses.

TABLE II: THE RESULT OF THE COMPARISON BETWEEN OUR METHOD AND

THE BASELINE

 Baseline A*-single A*-parallel

of literals 1120 349 349

of chains 1027 302 302

of unifications 460 166 166

Time (P-Gen) 0.14 0.13 0.22

Time (Conv) 0.21 0.07 0.07

Time (Solve) 5.93 1.46 0.82

Time (All) 6.29 1.67 1.13

of timeout 70 33 29

TABLE III: THE COMPUTATIONAL COST OF PRE-ESTIMATING THE H.E.D.S

 Time File Size

𝑑𝑖𝑠𝑡𝑚𝑎𝑥 = 4 106 0.8GB

𝑑𝑖𝑠𝑡𝑚𝑎𝑥 = 6 1514 5.8GB

𝑑𝑖𝑠𝑡𝑚𝑎𝑥 = 8 7841 28GB

Fig. 5. The comparison between the single thread system and the parallel

thread system.

Time (P-Gen) shows the average time (seconds) required

to generate the elemental hypotheses, Time (Conv) shows

the average time (seconds) required to convert the elemental

hypotheses into an ILP problem, Time (Solve) shows the

average time (seconds) required to optimize the ILP problem,

and # of timeout shows the number of problems that timed

out.

From Table II, it can be observed that the number of the

generated potential elemental hypotheses is significantly

smaller in the proposed A
*
 search-based settings than the

baseline, and as a result, the time for reasoning was

considerably reduced as indicated in Time (All).

The gain of the efficiency in A
*
-single and A

*
-parallel is

explored more closely in Fig. 5. Here, the problems are

divided into three bins according to the time consumed by the

Baseline system. For each bin, the figure shows the gain of

the time efficiency of A
*
-single and A

*
-parallel compared

with Baseline (i.e. the Baseline’s inference time (i.e. Time

(All)) divided by our systems’ inference time).

From this figure, it can be onserved that both A
*
-single and

A
*
-parallel work drastically efficiently compared with the

baseline particularly for complex problems. The gain of

efficiency by A
*
-single compared with A

*
-parallel is not as

impressive as expected in the present experimental setting.

A
*
-parallel tended to improve the time efficiency compared

with A
*
-single at least for complex problems. Obviously,

however it is arguable in the present setting that the

parallelization is worthwhile at the cost of the additional

computational resources. We need to further explore the

potential of this direction of research.

The costs for pre-estimating the H.E.D.s are compared in

Table III. We see that the computational cost and the size of

the database increase sharply as distmax increases. However,

in practice, it is sufficient if distmax is in the range of 4 to 8,

and so it is unlikely that this cost can be a bottleneck.

V. CONCLUSION

While abduction has long been considered to be a

promising framework for making explicit the implicit

information in sentences, its computational complexity has

hindered the application of abduction to practical NLP

problems. In this paper, we proposed a method that makes a

significant improvement over the method of Inoue and Inui

(2012), which provided the current state-of-the-art system.

Specifically, our method is designed to generates as a small

number of potential elemental hypotheses as possible by

discarding literals which have no chance to constitute the

solution (i.e. optimal) hypothesis in an A
*
 search-based

fashion. We then conducted an experiment with a

considerably large-scale knowledge base for a real-life NLP

task. The results shows that the proposed method drastically

reduces the size of the search space and significantly

improves the computational efficiency of first-order

abductive reasoning compared with the state-of-the-art

system. The gain tended to be more drastic particularly in

complex problems. We also explored a method for

parallelizing a given problem by seeking independent

subproblems. Our experiment shows that the parallelization

tended to improve the time efficiency compared with

A
*
-single at least for complex problems. However, the results

also revealed the necessity of further exploration for this

direction of research.

In our future work, since our methods have a strong

dependence on the precision of the pre-estimates, we will

refine the definition of the H.E.D.s. We note that currently

the estimation is imprecise when a predicate does not have a

concrete meaning and tends to occur with other literals in

axioms; for example, this happens with the literals for

functional verbs. This problem occurs because an axiom

𝑝1 ∧ 𝑝2 ⟹ 𝑞 in the knowledge base is split into the axioms

𝑝1 ⟹ 𝑞 and 𝑝2 ⟹ 𝑞 during the pre-estimation. Therefore, it

is important to determine how to enrich the functionality of

the pre-estimation without causing the computational cost to

explode.

REFERENCES

[1] J. R. Hobbs, M. Stickel, P. Martin and D. Edwards, “Interpretation as

abduction,” Artificial Intelligence, vol. 63, pp. 69-142, 1993.

[2] N. Inoue, E. Ovchinnikova, K. Inui and J. R. Hobbs, “Coreference
resolution with ILP-based weighted abduction,” in Proc. the 24th

0

10

20

30

40

50

60

70

~1 ~60 ~3600

S
ca

le
s

o
f

ef
fi

ci
en

cy
	

The solving time by Baseline [second]	

Single

Parallel

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

119

International Conference on Computational Linguistics, December

2012, pp. 1291-1308.

[3] H. T. Ng and R. J. Mooney, “Abductive plan recognition and diagnosis:
a comprehensive empirical evaluation,” in Proc. the Third

International Conference on Principles of Knowledge Representation

and Reasoning, 1992, pp. 499-508.
[4] E. Ovchinnikova, N. Montazeri, T. Alexandrov, J. R. Hobbs, M.

McCord, and R. Mulkar-Mehta, “Abductive reasoning with a large

knowledge base for discourse processing,” in Proc. 2011 IWCS, 2011,
pp. 225-234.

[5] R. Raina, A. Y. Ng, and C. D. Manning, “Robust textual inference via

learning and abductive reasoning,” in Proc. AAAI-2005, 2005.
[6] P. Singla and P. Domingos, “Abductive Markov logic for plan

recognition,” in Proc. AAAI-2011, 2011, 1069-1075.

[7] N. Chambers and D. Jurafsky, “Unsupervised learning of narrative
schemas and their participants,” in Proc. the Joint Conference of the

47th Annual Meeting of the ACL and the 4th International Joint

Conference on Natural Language Processing of the AFNLP, 2009, pp.
602–610.

[8] S. Schoenmackers, J. Davis, O. Etzioni, and D. Weld, “Learning

first-order horn clauses from web text,” in Proc. EMNLP-2010, 2010,
1088–1098.

[9] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase:

A collaboratively created graph database for structuring human
knowledge,” in Proc. the 2008 ACM SIGMOD International

Conference on Management of Data, 2008, New York, NY, USA:

ACM, pp. 1247-1250.
[10] N. Inoue and K. Inui, 2011, “ILP-Based reasoning for weighted

abduction,” in Proc. AAAI Workshop on Plan, Activity and Intent

Recognition.
[11] N. Inoue and K. Inui, “Large-scale cost-based abduction in full-fledged

first-order predicate logic with cutting plane inference,” in Proc. the

13th European Conference on Logics in Artificial Intelligence,
September 2012, pp. 281-293.

[12] E. Charniak and R. P. Goldman, “A probabilistic model of plan

recognition,” in Proc. AAAI-91, 1991, pp. 160-165.
[13] S. Raghavan and R. J. Mooney, “Bayesian abductive logic programs,”

in Proc. STARAI-2010, 2010, pp. 82-87.

[14] J. Blythe, J. R. Hobbs, P. Domingos, R. J. Kate, and R. J. Mooney,
“Implementing Weighted Abduction in Markov Logic,” in Proc. IWCS,

2011, pp. 55-64.
[15] M. Richardson and P. Domingos, “Markov Logic Networks,” Machine

Learning, pp. 107-136, 2006.

[16] V. Jojic, S. Gould and D. Koller, “Accelerated Dual Decomposition for
MAP Inference,” in Proc. the 25th International Conference on

Machine Learning, 2010, pp. 503-510.

[17] J. E. Gonzalez, Y. Low, C. E. Guestrin and D. O’Hallaron, “Distributed
parallel inference on large factor graphs,” in Proc. the 25th Conference

on Uncertainty in Artificial Intelligence, 2009.

[18] F. Niu, C. Zhang, C. Re ́ and J. W. Shavlik, “Scaling Inference for
Markov Logic via dual decomposition,” in Proc. the IEEE

International Conference on Data Mining, 2012, pp. 1032-1037.

[19] J. Urbani, S. Kotoulas, E. Oren, and F. Van Harmelen, “Scalable
distributed reasoning using mapreduce,” in Proc. the 8th International

Semantic Web Conference, 2009, pp. 634-649. Springer.

[20] C. Fellbaum, WordNet: An Electronic Lexical Database, MIT Press,
1998.

[21] J. Ruppenhofer, M. Ellsworth, M. Petruck, C. Johnson, and J.

Scheffczyk, 2010, “FrameNet II: Extended theory and practice,”
Technical report, Berkeley, USA.

Kazeto Yamamoto received the B.E degree of

engineering from Tohoku University, in 2011 and the

M.S. degree in information science from Tohoku
University in 2013. He is currently a Ph.D. student in

Tohoku University. His research interests include

natural language processing, logical inference and
machine learning.

Naoya Inoue received his M.S. degree of engineering
from Nara Institute of Science and Technology in

2010 and his Ph.D. degree in information science from

Tohoku University in 2013. He is currently a post-doc
researcher at Tohoku University and works as a

researcher for DENSO Research Laboratories. His

research interests are in inference-based discourse
processing and language grounding problems.

Kentaro Inui received his doctorate degree of

engineering from Tokyo Institute of Technology in
1995. He has experience as an assistant professor at

Tokyo Institute of Technology and an associate

professor at Kyushu Institute of Technology and Nara
Institute of Science and Technology, he has been a

professor of Graduate School of Information Sciences

at Tohoku University since 2010. His research
interests include natural language understanding and

knowledge processing. He currently serves as the IPSJ director and ANLP

director.

Yuki Arase received her B.E., M.I.S., and Ph.D. of
information science in 2006, 2007, and 2010

respectively from Osaka University, Japan. She joined

Microsoft Research in Beijing as an associate
researcher in April 2010. In her Ph.D study, she has

studied HCI on mobile devices, especially how to

present a large web page on a small screen. She also
worked on web data mining. In Microsoft Research,

she has started working on English/Japanese natural

language processing. Currently, she is an associate professor at the graduate

school of information science, Osaka University. Her current research

interests include English paraphrase detection, Japanese-English statistical

machine translation, and Web data mining.

Jun’ichi Tsujii received his B.E, M.E. and Ph.D.

degrees in electrical engineering from Kyoto
University, Japan, in 1971, 1973, and 1978,

respectively. He was an assistant professor and

associate professor at Kyoto University before taking
up the position of professor of computational

linguistics at the University of Manchester’s Institute

for Science and Technology (UMIST) in 1988. Since
1995, he has been a professor of Department of

Computer Science, the University of Tokyo. He is also a professor of text

mining at the University of Manchester (part-time) and Research Director of
the UK National Centre for Text Mining (NaCTeM) since 2004. He was the

president of the Association for Computational Linguistics (ACL) in 2006

and has been a permanent member of the International Committee on
Computational Linguistics (ICCL) since 1992.

Author’s formal
photo

Author’s formal

photo

Author’s formal

photo

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

120

