
  

 

Abstract—Abduction is inference to the best explanation. 

While abduction has long been considered a promising 

framework for natural language processing (NLP), its 

computational complexity hinders its application to practical 

NLP problems. In this paper, we propose a method to 

predetermine the semantic relatedness between predicates and 

to use that information to boost the efficiency of first-order 

abductive reasoning. The proposed method uses the estimated 

semantic relatedness as follows: (i) to block inferences leading 

to explanations that are semantically irrelevant to the 

observations, and (ii) to cluster semantically relevant 

observations in order to split the task of abduction into a set of 

non-interdependent subproblems that can be solved in parallel. 

Our experiment with a large-scale knowledge base for a real-life 

NLP task reveals that the proposed method drastically reduces 

the size of the search space and significantly improves the 

computational efficiency of first-order abductive reasoning 

compared with the state-of-the-art system. 

 
Index Terms—Natural language processing, logical inference, 

abduction.  

 

I. INTRODUCTION 

Abduction is inference from a given set of observations to 

the best explanation about why those observed events 

happened. This mode of inference has long been applied to a 

range of AI tasks including text/story understanding and 

plan/intention recognition [1]-[6]. 

An epoch-making study in this line of research can be seen 

in a paper in Artificial Intelligence by Hobbs et al. [1]; they 

demonstrate that a wide range of subtasks in the 

understanding of natural language can be uniformly 

formulated as abductive reasoning. Let us take an example 

from their paper: John went to the bank. He got a loan. Given 

this text as input, it is assumed that the model of Hobbs et al. 

semantically parses it to obtain a logical form, which consists 

of a flat conjunctive set of observed literals, as shown at the 

bottom of Fig. 1. The model then uses a knowledge base (i.e., 

a collection of axioms representing linguistic and 

common-sense knowledge) to search for the best explanation 

for the given observations. As a by-product of this abductive 

reasoning, the model obtains an interpretation of the given 

text, which includes the coreference relation between John 
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and he, and the purpose-means relation between get a loan 

and went into the bank. 

This way of formulating intelligent inference has several 

distinct advantages. First, it provides a uniform framework 

for integrating subtasks of multiple levels of abstraction; in 

the above example, finding the best explanation jointly 

resolves the coreference relation, the discourse relation, and 

the word-sense ambiguity. Second, the declarative nature of 

abduction allows us to abstract away from the procedural 

process of inferences. When multiple levels of 

interdependent subtasks are involved, it is often crucially 

difficult to predetermine the optimal order in which to solve 

the problems. This difficulty can be avoided by using joint 

inference. In spite of these promising properties, however, 

the abduction-based approaches to text/story understanding 

and plan/intention recognition have never produced 

significant positive evidence that supports their effectiveness 

in real-life problems. 

 
Fig. 1. An example of discourse understanding with abductive reasoning. 

 

One strong reason for this failure has been lack of 

knowledge. As in  other approaches, the bottleneck for 

applying abduction to practical problem settings in the 1980s 

and 1990s was the acquisition of knowledge. However, this 

problem has now been at least partly resolved by recent 

remarkable advances in the automatic acquisition of 
linguistic and common-sense knowledge from large-scale 

text data and the Internet [7], [8]. As a result of these efforts, 

a number of Web-scale structured and formalized knowledge 

bases are publicly available [9]. 

Another big issue is the computational cost of abductive 

reasoning. Abduction on first-order logic (FOL) or similarly 

expressive languages is computationally expensive, and thus 

substantial improvements are necessary in order to make it 

practical for real-life problems. For this purpose, Inoue and 

Inui [10], [11] have recently proposed encoding abductive 

 

Boosting the Efficiency of First-Order Abductive 

Reasoning Using Pre-estimated Relatedness between 

Predicates 

Kazeto Yamamoto, Naoya Inoue, Kentaro Inui, Yuki Arase and Jun’ichi Tsujii 

International Journal of Machine Learning and Computing, Vol. 5, No. 2, April 2015

114DOI: 10.7763/IJMLC.2015.V5.493

john(x1)� go(e1,x1,x2)� bank(x2)� he(y1)� get(e2,y1,y2)�

issue(e2,u2,y2,y1)�

issue(e1,x2,u1,x1)�

financial_inst(x2)�

loan(y2)�

money(y2)�

Observation�

issue(e,x,y,z);
=>;go(e,z,x)�

financial_inst(x);
=>;bank(x)�

issue(e,x,y,z);
=>;get(e,z,y)�

loan(x);=>;
issue(e,y,x,z);�;
financial_inst(y)�

e1#=#e2#
x2#=#u2#
u1#=#y2#
x1#=#y1�

loan(y2)�

loan(x);=>;
money(x)�

Explanation�

Input:� John went to the bank. He got a loan.�

John and he!
are coreferent�

went to the bank !
is the purpose of !

got a loan!

bank refers to!
a financial bank�



  

inference on FOL into a problem of integer linear 

programming (ILP) and showed that their method 

significantly improves computational efficiency for a 

knowledge base containing hundreds of thousands of axioms 

representing both linguistic and common-sense knowledge. 

However, the problem of computational cost has not yet been 

fully solved. The search space for the method of Inoue and 

Inui still grows exponentially with the size of the knowledge 

base. 

Given this background, in this paper, we explore two 

methods for improving the computational efficiency of 

first-order abductive inference. We first explore a method 

that uses an A
*
 search to reduce the size of the search space. 

We then explore a method for dividing a given problem into 

independent subproblems that can be solved in parallel. In 

our experiments, we show that our system is several tens 

times as efficient as the state-of-the-art abductive reasoner. 

This paper is organized as follows. We first give a brief 

review of related work. We then show our approach. 

Afterwards, we demonstrate the efficiency of our methods 

and compare them with the state-of-the-art system. Finally, 

we discuss areas of potential future work. 

 

II. BACKGROUND 

A. Abduction 

Abduction is inference to the best explanation. Formally, 

logical abduction is defined as follows: 

Given: Background knowledge B and observations O, 

where B is a set of Horn clauses on FOL and O is a 

conjunction of FOL literals. 

 Find: A hypothesis (explanation) H such that 𝐻 ∪ 𝐵 ⊨ 𝑂, 

𝐻 ∪ 𝐵 ⊭⊥, where H is a conjunction of first-order literals. 

Typically, there are several hypotheses H that explain O. 

We call these the candidate hypotheses, each literal in a 

candidate hypothesis is an elemental hypothesis, and each 

literal in possible candidate hypotheses is called a potential 

elemental hypothesis. A candidate hypothesis is a subset of 

the potential elemental hypotheses, and we can regard the 

potential elemental hypotheses as defining the search space 

of the solution. 

The goal of abduction is to find the best hypothesis �̂� 

among the candidate hypotheses by using a specific 

evaluation measure. We call �̂�  the solution hypothesis. 

Formally, the solution hypothesis is defined as follows: 

 

(1) 

 

where ℍ is a set of possible candidate hypotheses, and E is a 

function 𝐻 → ℝ  that evaluates the plausibility of each 

candidate hypothesis. Here, we assume that E(H) returns −∞ 

if 𝐻 ∪ 𝐵 ⊭⊥, and we call this the evaluation function.  In the 

literature, several kinds of evaluation functions have been 

proposed [1], [6], [11]-[13]. 

As noted, each candidate hypotheses can be regarded as a 

subset of the potential elemental hypotheses. Potential 

elemental hypotheses are generated by applying the 

following two operations to the observations and the 

potential elemental hypotheses being generated: 

 Backward chaining: Assuming an axiom 𝑝1(𝑥) ∧

𝑝2(𝑥) ∧ ⋯ ∧ 𝑝𝑛(𝑥) ⟹ 𝑞(𝑥) ∈ 𝐵 and a literal 𝑞(𝑎), this 

operation hypothesizes new literals {𝑝𝑖(𝑎)}𝑖=1
𝑛  and adds 

them to the potential elemental hypotheses. 

 Unification: This operation unifies two literals that have 

the same predicate and makes the assumption that each 

term of a literal is equal to the corresponding term of the 

other literal. For example, given 𝑂 = 𝑝(𝑥) ∧ 𝑝(𝑦) ∧ 𝑞(𝑦), 

a candidate hypothesis 𝐻 = (𝑥 = 𝑦) is created. 

For example, given the knowledge base shown in Table I, 

let us consider creating the potential elemental hypotheses for 

the observation 𝑂 = {𝑝2(𝑎) ∧ 𝑝6(𝑏, 𝑐) ∧ 𝑝7(𝑑)} . Applying 

backward chaining and unification to the potential elemental 

hypotheses as shown in Figure 2, we can obtain the potential 

elemental hypotheses 𝑃 = {𝑝1(𝑏)1 ∧ 𝑝1(𝑏)2 ∧ 𝑝2(𝑏) ∧
𝑝3(𝑏) ∧ 𝑝4(𝑢2, 𝑢1) ∧ 𝑝5(𝑢1) ∧ 𝑝8(𝑐) ∧ 𝑝9(𝑐) ∧ (𝑎 = 𝑑)}. In 

Fig. 2, a solid arrow indicates backward chaining, a dotted 

line indicates unification, and the terms in the gray boxes 

represent the IDs of the axioms used for the corresponding 

backward chaining. 

 
TABLE I: A KNOWLEDGE BASE FOR AN EXAMPLE 

ID Axiom ID Axiom 

a1 𝑝1(𝑥) ⇒ 𝑝2(𝑥) a5 𝑝2(𝑥) ⇒ 𝑝7(𝑥) 

a2 𝑝1(𝑥) ⇒ 𝑝3(𝑥) a6 𝑝5(𝑦) ⇒ 𝑝7(𝑥) 

a3 𝑝4(𝑥, 𝑦) ⇒ 𝑝5(𝑦) a7 𝑝8(𝑦) ⇒ 𝑝6(𝑥, 𝑦) 

a4 𝑝3(𝑥) ⇒ 𝑝6(𝑥, 𝑦) a8 𝑝9(𝑥) ⇒ 𝑝8(𝑥) 

 

 
Fig. 2. An example of potential elemental hypotheses. 

 

B. Previous Work for Efficient Abduction 

Abductive inference is an NP-hard problem, and so the 

computational cost increases exponentially with increases in 

the knowledge base; this is a big problem. The studies that 

have addressed this issue can be classified roughly into two 

groups. 

The first includes those methods that emulate abduction by 

using a framework for deduction [6], [13], [14]. For example, 

Singla and Domingos (2011) proposed a method that 

emulates abduction on Markov logic networks (MLNs) [15]. 

However, although these methods can make use of efficient 

algorithms for the target framework, they are not very 

efficient [14]. The reason of this is that the grounding, i.e., the 

process that converts the knowledge base or observations in 

the first-order logic into propositional logic, causes the 

knowledge base to increase explosively. 

The second includes those methods that formulate 

abduction as the problem of finding the best subset of the 

potential elemental hypotheses, and then uses another 

optimization algorithm to search the subset of potential 

�̂� = arg max
𝐻∈ℍ

𝐸(𝐻) 
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elemental hypotheses that corresponds to the solution 

hypothesis. For example, Inoue and Inui proposed a method 

to formulate abductive reasoning as a problem of integer 

linear programming (ILP) without grounding [10], [11]. With 

this method, a drastic improvement was achieved by the 

efficiency of the lifted inference and by using an efficient 

optimization algorithm in an external ILP solver. Inoue and 

Inui (2012) reported that this approach is much faster than the 

MLN-based framework discussed above [11], which had 

been the state of the art before being replaced by this method. 

 

III. EFFICIENT ABDUCTION WITH RELATEDNESS BETWEEN 

PREDICATES 

A. Basic Strategy 

We begin by discussing the optimality of the solution 

obtained by the abduction. In abductive reasoning, because 

the search space of the solution can increase without limit, 

obtaining the global optimal solution by abductive reasoning 

is expensive. Therefore, in practice, it is the local, not the 

global, optimal solution that is sought; that is, we seek the 

best hypothesis within some limited search space and regard 

it as the best explanation. In the work of Inoue and Inui [10], 

[11], a parameter depthmax was defined to be a natural number, 

and the potential elemental hypotheses consist of those 

elemental hypotheses that can be hypothesized through less 

than depthmax backward chainings. A larger depthmax 

indicates a higher probability that the solution is a global 

optimum and a correspondingly higher computational cost. 

The optimality of the solution and its computational cost both 

depend on the size of the search space of the solution. In this 

paper, we aim to reduce the size of the search space (i.e., the 

number of potential elemental hypotheses) while maintaining 

the optimality of the solution. 

In abduction, the evaluation functions are generally 

defined so that the better a hypothesis is considered to be, the 

greater the probability of the assumptions included in the 

hypothesis and the more observations it explains. For 

example, given the knowledge base shown in Table I and an 

observation 𝑂 = {𝑝6(𝑎, 𝑏) ∧ 𝑝7(𝑐)}, let us consider the three 

hypotheses shown in Fig. 3. Here, the hypothesis (b) is less 

optimal than hypothesis (a), because (b) includes more 

hypothesized literals than (a) but explains the same number 

of observations. On the other hand, since hypothesis (c) 

explains as many observations as (a) with fewer literals, (c) is 

considered to be better than (a). More formally, the 

evaluation functions E generally have the following 

properties: 

1) Given a candidate hypothesis H and an operation of 

backward chaining c, 𝐸(𝐻) ≥ 𝐸(𝐻 ∩ 𝑐) is satisfied. 

2) A candidate hypothesis H and an operation of unification 

u that satisfy 𝐸(𝐻) ≤ 𝐸(𝐻 ∩ 𝑢) can exist. 

Supposing that the evaluation function that we employ has 

these properties, then we can reduce the number of potential 

elemental hypotheses by canceling the backward chainings 

that do not result in unification. 

B. Heuristic Pre-estimation of the Distance between the 

Literals 

In order to estimate whether the backward chaining will 

result in unification, it is necessary to know which literals can 

be hypothesized from each observation and the plausibility of 

each literal. Here, we define the function hed(p,q), which 

provides the semantic relatedness between a literal p and a 

literal q. We call the return value of hed(p,q) the heuristically 

estimated distance (H.E.D.) between p and q. 

 

 
Fig. 3. An example of the basic strategy. 

 

The necessary conditions of hed(p,q) and H.E.D. are as 

follows. First, they must express the semantic relatedness 

between p and q. In other words, the more easily the 

relevance between two literals can be inferred, the higher the 

H.E.D. between them. Second, hed(p,q) must be admissible 

for use in an A
*
 search, so that it can be employed as a 

heuristic for the cost, as in Section III.C. Third, the 

computational cost for obtaining a return value from hed(p,q) 

should be as small as possible. For the third condition, we 

pre-estimate all of the H.E.D.s and store them in a database. 

Thus, the function hed(p,q) only has to load values from 

memory. Since the size of the database of H.E.D.s increases 

as the definition of hed(p,q) becomes more complex, we have 

to consider the balance between efficiency and the 

expressiveness of the H.E.D.s. 

Therefore, we define this function as the heuristic distance 

between the predicates of the literals with the abstraction of 

the conjunctions of the antecedents of each of the axioms. 

Formally, hed(p,q) is defined as follows: 

 

(2) 

 

 

(3) 

 

 

where AH is the set of axioms that are used in H, 𝜌(𝐿) is the 

function that returns the literal corresponding to the predicate 

of the first-order literal L (e.g., 𝜌(𝑗𝑜ℎ𝑛(𝑥)) = 𝑗𝑜ℎ𝑛), and 

𝛿(𝐴)  is the distance function, which returns the heuristic 

distance between the antecedents of the axiom A and the 

conclusions of A. For example, given the knowledge base in 

Table I and the distance function 𝛿(𝐴) = 1, the value of 

ℎ𝑒𝑑(𝑝7(𝑥), 𝑝1(𝑥)) is 𝛿(𝑎5) + 𝛿(𝑎1) = 2. 

In this paper, we define the distance function as 𝛿(𝐴) = 1, 

for simplicity. In practice, it is necessary to select a proper 

distance function because the precision of the H.E.D.s 

depends on the definition of the distance function. For 

example, in cost-based abduction [11], the distance function 

better conforms to the evaluation function when using the 

cost assigned to each axiom for 𝛿(𝐴). 

Since the H.E.D.s depend only on the knowledge base, we 

ℎ𝑒𝑑(𝑝, 𝑞) = min
𝐻∈{𝐻|𝐻∪𝐵∗⊨{𝜌(𝑝)∧𝜌(𝑞)}}

∑ 𝛿(𝑎)

𝑎∈𝐴𝐻

 

𝐵∗ = ⋃ [⋃ 𝜌(𝑝𝑖) ⇒ 𝜌(𝑞)

𝑛

𝑖=1

]

𝑝1∧…∧𝑝𝑛⇒𝑞∈𝐵
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can estimate these in advance. The computational cost of the 

estimation is Ο(𝑁𝑝𝑟𝑒𝑑
2 ) , where 𝑁𝑝𝑟𝑒𝑑  is the number of 

different predicates in the knowledge base. 

C. Potential Elemental Hypotheses Creation with A
*
 

Search 

In this section, we propose an algorithm that efficiently 

creates the potential elemental hypotheses. We apply an A* 

search to generate the potential elemental hypotheses and 

then trim without loss any that are included in the solution 

hypothesis. Although we employ the same evaluation 

function as used by weighted abduction, our method can be 

applied to other frameworks which have the properties 

discussed in Section III.A. 

Now, our goal is to efficiently hypothesize the literals that 

can be combined. Since we cannot know exactly which 

axiom we should use in order to hypothesize those literals, we 

search for them by using the H.E.D.s, as follows. 

First, set positive values for distmax and depthmax, which are 

hyperparameters that control the size of the search space and 

initialize the open set to be an empty set. We denote the 

distance of the path from a literal p to a literal q as d(p,q) and 

the estimated distance between p and q as d
*
(p,q). We use the 

distance function hed(p,q) as the heuristic function that 

provides d
*
(p,q). In each step, the following operations are 

performed: 

1) Select the target literal �̂�, which is expected to result in 

the least expensive unification with the literals in the open 

set. 

2) Pop �̂�  off the open set. Enumerate the axioms whose 

descendant equals �̂� , and perform backward chaining 

with each of the axioms with the condition that at least 

one pair of a literal 𝑝𝑖  in the antecedents of the axiom and 

a literal o in the observations satisfies the following 

conditions: (i) 𝑝𝑖  is considered to be reachable by o (i.e., 

ℎ𝑒𝑑(𝑝𝑖 , 𝑜) ≤ 𝑑𝑖𝑠𝑡max ); (ii) there is no possibility of 

unification between one of the descendants of 𝑝𝑖  and one 

of the antecedents of o. 

3) If a literal in X and one in the potential elemental 

hypotheses are unifiable, insert the elemental hypotheses 

of equality between the terms resulting from the 

unification. 

The search is over when the open set is empty. 

For example, given the knowledge base shown in Table I 

and an observation 𝑂 = {𝑝2(𝑎) ∧ 𝑝6(𝑏, 𝑐) ∧ 𝑝7(𝑑)}, the first 

step of the search is performed as shown in Fig. 4; the edges 

drawn with a solid line represent backward chaining, and 

those drawn with a dotted line are unifications. The numbers 

in the balloons connected to the nodes in the open set indicate 

the estimated distance. In the initial step, since the shortest 

path is expected to be the one between 𝑝7(𝑑) and 𝑝2(𝑎), the 

literals 𝑝2(𝑑) and 𝑝5(𝑢1) are inserted into the open set as the 

results of backward chainings. 

The procedure is shown in Algorithm 1, X is the open set 

for the search. Each element 𝑥 ∈ 𝑋  is a candidate for the 

search and has three possible designations: x.s is the start 

node, x.c is the current node, and x.g is the goal node. The 

function isExplanationOf(x,y) is the binary function that 

indicates which the literal x explains the literal y (i.e., if x is 

an antecedent of y), and the function depth(p) returns the 

number of backward chainings that are needed to hypothesize 

the literal p from the observations. 

 

Algorithm 1: A* search-based potential elemental hypothesis 

creation 

Input: 𝐵, 𝑂 = {𝑜1 ∧ 𝑜2 ∧ … ∧ 𝑜𝑛}, 𝑑𝑖𝑠𝑡max, 𝑑𝑒𝑝𝑡ℎmax 
𝑋 ← ∅ 

𝑃 ← ∅ 

for 𝑖 = 1 to n do 

for 𝑗 = 1 to 𝑖 − 1 do 

𝑈 ← 𝑔𝑒𝑡𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑜𝑖 , 𝑜𝑗) 

𝑃 ← 𝑃 ∪ 𝑈 

if ℎ𝑒𝑑(𝑜𝑖 , 𝑜𝑗) > 0 then 

𝑋 ← 𝑋 ∪ 𝑥, 𝑥. 𝑐 = 𝑜𝑖 ∧ 𝑥. 𝑠 = 𝑜𝑖 ∧ 𝑥. 𝑔 = 𝑜𝑗 

𝑋 ← 𝑋 ∪ 𝑥, 𝑥. 𝑐 = 𝑜𝑗 ∧ 𝑥. 𝑠 = 𝑜𝑗 ∧ 𝑥. 𝑔 = 𝑜𝑖 

end if 

end for 

end for 

while 𝑋 ≠ ∅ do 

�̂� ← arg min
𝑥∈𝑋

{𝑑(𝑥. 𝑠, 𝑥. 𝑐) + ℎ𝑒𝑑(𝑥. 𝑐, 𝑥. 𝑔)} 

for all 𝑎 = {𝑝1 ∧ … ∧ 𝑝𝑛 ⇒ 𝑞} in B do 

𝑅 ← 𝑑𝑜𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝐶ℎ𝑎𝑖𝑛𝑖𝑛𝑔(�̂�. 𝑐, 𝑎) 

𝑃 ← 𝑃 ∪ 𝑅 

for all r in R do 

for all x in {𝑥|𝑥 ∈ 𝑋 ∧ 𝑥. 𝑐 = �̂�. 𝑐} do 

if 𝑑(𝑥. 𝑠, 𝑥. 𝑐) + ℎ𝑒𝑑(𝑥. 𝑐, 𝑥. 𝑔) + 𝛿(𝑎) ≤ 𝑑𝑖𝑠𝑡max ∧
𝑑𝑒𝑝𝑡ℎ(𝑥. 𝑐) < 𝑑𝑒𝑝𝑡ℎmax then 

𝑋 ← 𝑋 ∪ {𝑦|𝑦. 𝑠 = 𝑥. 𝑠 ∧ 𝑦. 𝑐 = 𝑟 ∧ 

𝑦. 𝑔 = 𝑥. 𝑔 ∧ 𝑑(𝑦. 𝑠, 𝑦. 𝑐) = 𝑑(𝑥. 𝑠, 𝑥. 𝑐) + 𝛿(𝑎)} 

end if 

end for 

for all p in 𝑃 ∖ 𝑟 do 

𝑈 ← 𝑔𝑒𝑡𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑟, 𝑝) 

𝑃 ← 𝑃 ∪ 𝑈 

if 𝑈 ≠ ∅ then 

𝑋 ← 𝑋 ∖ {𝑥|𝑥. 𝑐 = 𝑟 ∧ 𝑖𝑠𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑝, 𝑥. 𝑔)} 

𝑋 ← 𝑋 ∖ {𝑥|𝑥. 𝑐 = 𝑝 ∧ 𝑖𝑠𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑟, 𝑥. 𝑔)} 

end if 

end for 

end for 

end for 

𝑋 ← 𝑋 ∖ {𝑥|𝑥. 𝑐 = �̂�. 𝑐} 

end while 

return P 

 

Algorithm 2: doBackwardChaining(l,a) 

Input: 𝑙, 𝑎 = {𝑝1 ∧ 𝑝2 ∧ … ∧ 𝑝𝑛 ⟹ 𝑞} 

𝑃 ← ∅ 

if ∃𝜃, 𝑙𝜃 = 𝑞 then 

for 𝜈 ∈ 𝑛𝑜𝑡𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑑𝑉𝑎𝑟𝑠({𝑝1, … 𝑝𝑛}, 𝜃) do 

𝜃 ← 𝜃 ∪ {𝜈 𝑢𝑖⁄ }; 𝑖 ← 𝑖 + 1 

end for 

𝑃 ← 𝑃 ∪ {𝑝1, 𝑝2, … , 𝑝𝑛}𝜃 

end if 

return P 

 

Algorithm 3: getEqualityAssumption(p1,p2) 

Input: 𝑝1, 𝑝2 

𝑃 ← ∅ 

if ∃𝜃, 𝑝1𝜃 = 𝑝2 then 

for all 𝑥 ∕ 𝑦 in 𝜃 do 

𝜃 ← 𝑃 ∪ {𝑥 = 𝑦} 

end for 

end if 

return P 
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Fig. 4. An example of the creation of potential elemental hypotheses based 

on an A* search. 

 

Next, we summarize the advantages of this algorithm. First, 

since this algorithm does not add literals that cannot be 

included in the solution hypothesis to the potential elemental 

hypotheses, it can reduce the size of the search space. We 

believe that this may lead to a more efficient optimization.  

Second, this algorithm prevents redundant unifications. 

For example, given the knowledge base shown in Table I and 

the observation 𝑂 = {𝑝7(𝑎) ∧ 𝑝7(𝑏)}, let us consider how to 

generate the potential elemental hypotheses P. In Inoue and 

Inui’s algorithm [10], [11], the potential elemental 

hypotheses generated are 𝑃 = {𝑝2(𝑎) ∧ 𝑝2(𝑏) ∧ 𝑝1(𝑎) ∧
𝑝1(𝑏)}. However, according to Section III.A, the evaluation 

of the candidate hypothesis 𝐻 = (𝑎 = 𝑏) must be better than 

the evaluation of 𝐻 = {𝑝2(𝑎) ∧ 𝑝2(𝑏) ∧ (𝑎 = 𝑏)}  or 

𝐻 = {𝑝1(𝑎) ∧ 𝑝1(𝑏) ∧ 𝑝2(𝑎) ∧ 𝑝2(𝑏) ∧ (𝑎 = 𝑏)} . We have 

no need to consider backward chainings from observations in 

this case. Our algorithm can deal with such a heuristic. 

Third, this algorithm adds elemental hypotheses to the 

potential ones in the order of their probability of being 

included in the solution. Therefore, if the generation of 

potential elemental hypotheses is interrupted due to a time 

out, etc., a better suboptimal solution is provided. This 

property is expected to be much more useful in practice. 

D. Parallelization 

In the domain of the efficiency of other frameworks for 

inference, some researchers have adopted the approach of 

parallelizing the inference by splitting the input into 

independent subproblems [16]-[19]. We explore a similar 

method to parallelize abductive inference by using H.E.D.s, 

which were proposed in the previous section. 

First, we consider the condition that two subproblems oi 

and oj are independent. This condition is defined by the 

particular evaluation function that is used. For instance, in 

weighted abduction, the conditions can be defined as follows: 

1) There is no elemental hypothesis that explains both the 

literals 𝑝 ∈ 𝑜𝑖  and 𝑞 ∈ 𝑜𝑗  (i.e. 

min{(𝑝,𝑞)|𝑝∈𝑜𝑖∧𝑞∈𝑜𝑗} ℎ𝑒𝑑(𝑝, 𝑞) = ∞). 

2) Equalities between any two terms cannot be hypothesized 

from oi and oj together. In other words, oi and oj can share 

no more than one logical variable. 

Given observations O, the inference is parallelized via the 

following process: 

1) Split the observations O into independent subproblems 

{o1, o2, ..., on}. 

2) Compute in parallel the solution hypothesis for each 

subproblem. 

3) Merge the solution hypotheses of the subproblems, and 

then output the solution hypothesis of O. 

As mentioned, the computational cost of abduction grows 

exponentially with the number of observations. Therefore, 

dividing the observations into subproblems not only reaps the 

benefits of parallel computing, but it is also expected to 

reduce the total computational cost. 

 

IV. EXPERIMENTS 

A. Dataset 

We used the same dataset as the one used by Inoue and Inui 

[11]; it consists of sets of observations and a knowledge base. 

The observation sets were created by converting the 

development dataset of RTE-2
1

, the task of Textual 

Entailment Recognition, with the Boxer semantic parser
2
; it 

consists of 777 observation sets. The average number of 

literals in each observation set was 29.6. 

The knowledge base consists of 289,655 axioms that were 

extracted from WordNet [20], and 7,558 that were extracted 

from FrameNet [21]. The number of different predicates in 

this knowledge base is 269,725. 

B. Dataset 

For this dataset, we compared the solving times when 

using our models and when using that of Inoue and Inui 

(2012), which is currently the state of the art. We will denote 

their model as Baseline and ours as A
*
-single and A

*
-parallel. 

A
*
-based will be used to refer to both of A

*
-single and 

A
*
-parallel. We also compared the computational costs for 

pre-estimating the H.E.D.s with various distmax. 

In the experiment, the parameter depthmax was 3, and the 

parameter distmax of A
*
-based was 6. We employed weighted 

abduction [1] as the evaluation function. We defined the 

distance function 𝛿(𝑎) = 1 for simplicity, and so that the 

search space on A
*
-based was equal to that of Baseline. 

For our experiments, we used 8-Core Opteron 6174 (2.2 

GHz) 128 GB RAM machines. We used a Gurobi optimizer
3
, 

which is a broadly used efficient ILP solver. It is a 

commercial product but is freely available with an academic 

license. For Baseline and A
*
-single, we ran the whole system 

on one 8-Core machine, where Gurobi worked in the parallel 

mode. For A
*
-parallel, we automatically dispatched the 

generated parallel subproblems into 4 sets of 8-Core 

machines.  

C. Results 

The results of the first experiment are shown in Table II. 

Here, we excluded from the results those problems for which 

 
1 http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/ 
2 http://svn.ask.it.usyd.edu.au/trac/candc 
3 http://www.gurobi.com/ 
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the whole abductive reasoning took more than 120 seconds in 

at least one the settings of Baseline, A
*
-single and A

*
-parallel; 

as a result, 707 problems remained out of the original 777 

problems. The row # of literals shows the average number of 

literals in the potential elemental hypotheses, the row # of 

chains shows the average number of backward chainings in 

the potential elemental hypotheses, and the row # of 

unifications shows the average number of unifications in the 

potential elemental hypotheses. 
 

TABLE II: THE RESULT OF THE COMPARISON BETWEEN OUR METHOD AND 

THE BASELINE 

 Baseline A*-single A*-parallel 

# of literals 1120 349 349 

# of chains 1027 302 302 

# of unifications 460 166 166 

Time (P-Gen) 0.14 0.13 0.22 

Time (Conv) 0.21 0.07 0.07 

Time (Solve) 5.93 1.46 0.82 

Time (All) 6.29 1.67 1.13 

# of timeout 70 33 29 

 
TABLE III: THE COMPUTATIONAL COST OF PRE-ESTIMATING THE H.E.D.S 

 Time File Size 

𝑑𝑖𝑠𝑡𝑚𝑎𝑥 = 4 106 0.8GB 

𝑑𝑖𝑠𝑡𝑚𝑎𝑥 = 6 1514 5.8GB 

𝑑𝑖𝑠𝑡𝑚𝑎𝑥 = 8 7841 28GB 

 

 
Fig. 5. The comparison between the single thread system and the parallel 

thread system. 

 

Time (P-Gen) shows the average time (seconds) required 

to generate the elemental hypotheses, Time (Conv) shows 

the average time (seconds) required to convert the elemental 

hypotheses into an ILP problem, Time (Solve) shows the 

average time (seconds) required to optimize the ILP problem, 

and # of timeout shows the number of problems that timed 

out. 

From Table II, it can be observed that the number of the 

generated potential elemental hypotheses is significantly 

smaller in the proposed A
*
 search-based settings than the 

baseline, and as a result, the time for reasoning was 

considerably reduced as indicated in Time (All). 

The gain of the efficiency in A
*
-single and A

*
-parallel is 

explored more closely in Fig. 5. Here, the problems are 

divided into three bins according to the time consumed by the 

Baseline system. For each bin, the figure shows the gain of 

the time efficiency of A
*
-single and A

*
-parallel compared 

with Baseline (i.e. the Baseline’s inference time (i.e. Time 

(All)) divided by our systems’ inference time).  

From this figure, it can be onserved that both A
*
-single and 

A
*
-parallel work drastically efficiently compared with the 

baseline particularly for complex problems. The gain of 

efficiency by A
*
-single compared with A

*
-parallel is not as 

impressive as expected in the present experimental setting. 

A
*
-parallel tended to improve the time efficiency compared 

with A
*
-single at least for complex problems. Obviously, 

however it is arguable in the present setting that the 

parallelization is worthwhile at the cost of the additional 

computational resources. We need to further explore the 

potential of this direction of research.  

The costs for pre-estimating the H.E.D.s are compared in 

Table III. We see that the computational cost and the size of 

the database increase sharply as distmax increases. However, 

in practice, it is sufficient if distmax is in the range of 4 to 8, 

and so it is unlikely that this cost can be a bottleneck. 

 

V. CONCLUSION 

While abduction has long been considered to be a 

promising framework for making explicit the implicit 

information in sentences, its computational complexity has 

hindered the application of abduction to practical NLP 

problems. In this paper, we proposed a method that makes a 

significant improvement over the method of Inoue and Inui 

(2012), which provided the current state-of-the-art system. 

Specifically, our method is designed to generates as a small 

number of potential elemental hypotheses as possible by 

discarding literals which have no chance to constitute the 

solution (i.e. optimal) hypothesis in an A
*
 search-based 

fashion. We then conducted an experiment with a 

considerably large-scale knowledge base for a real-life NLP 

task. The results shows that the proposed method drastically 

reduces the size of the search space and significantly 

improves the computational efficiency of first-order 

abductive reasoning compared with the state-of-the-art 

system. The gain tended to be more drastic particularly in 

complex problems. We also explored a method for 

parallelizing a given problem by seeking independent 

subproblems. Our experiment shows that the parallelization 

tended to improve the time efficiency compared with 

A
*
-single at least for complex problems. However, the results 

also revealed the necessity of further exploration for this 

direction of research. 

In our future work, since our methods have a strong 

dependence on the precision of the pre-estimates, we will 

refine the definition of the H.E.D.s. We note that currently 

the estimation is imprecise when a predicate does not have a 

concrete meaning and tends to occur with other literals in 

axioms; for example, this happens with the literals for 

functional verbs. This problem occurs because an axiom 

𝑝1 ∧ 𝑝2 ⟹ 𝑞 in the knowledge base is split into the axioms 

𝑝1 ⟹ 𝑞 and 𝑝2 ⟹ 𝑞 during the pre-estimation. Therefore, it 

is important to determine how to enrich the functionality of 

the pre-estimation without causing the computational cost to 

explode. 
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