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Abstract—This paper describes a Hardware/Software 

Co-design approach for the Extended Kalman Filter (EKF) 

applied to the localization problem in mobile robotics. The EKF 

algorithm has been implemented and run on an Altera Cyclone 

IV FPGA with a Nios II embedded processor jointly with 

specific hardware modules, being adapted and applied to the 

mobile platform Pioneer 3AT (P3AT). In order to achieve this, 

we developed both the model of the mobile robot and its 

measurement systems previously to obtain the respective EKF 

equations. In the prediction step of the EKF algorithm, a system 

model based on concepts of dead-reckoning has been used and 

its implementation was achieved in software, using the Nios II 

processor. Conversely, in the estimation step of the EKF 

algorithm the respective equations have been implemented 

directly in hardware, producing an overall balanced 

implementation. 

 
Index Terms—Dead-reckoning, extended Kalman filter, 

FPGA, hardware/software co-design, Pioneer 3AT.  

 

I. INTRODUCTION 

There are several works describing the implementation of 

probabilistic algorithm in FPGAs such as described in [1]-[3]. 

Among them, the Kalman Filter (KF) is one of the most 

useful algorithms for estimating the state of a dynamic 

system [3]. A special case of KF is the Extended Kalman 

Filter, which application is oriented to nonlinear systems [4].  

This work presents a hardware/software co-design 

approach in FPGA of the Extended Kalman Filter Algorithm 

aiming at solving the Localization Problem in Mobile 

Robotics. The algorithm implementation was achieved 

considering the following approach: 1) a software 

implementation in the Nios II processor of the prediction 

stage (namely, 1
st 

and 2
nd 

EKF algorithm equations) and 2) a 

hardware implementation in Altera Cyclone IV FPGA of the 

estimation stage (namely 3
rd

, 4
th

 and 5
th 

EKF algorithm 

equations). For this case, it has been considered that the 

mobile robot is located within an environment with a known 

map and it moves using data processing on line. In this case, 

the mobile platform used in this project was the Pioneer 3-AT 

[5].  

In this context, the contributions of this paper include: 1) 

the implementation of a sequential EKF algorithm in FPGA 

based on an approach of hardware/software co-design for the 

stages of prediction and estimation, using floating-point 
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representation, and 2) the validation of the results in terms of 

hardware recourse consumption, performance and 

functionality in a real environment using the robot platform. 

 

II. THE EKF ALGORITHM 

The KF is based on a recursive method to estimate the state 

variable (xK) of a linear dynamic system with the process 

noise (wK) and measurement noise (vK) [6]. An extension of 

the Kalman Filter is the EKF algorithm (Extended Kalman 

Filter), which is used for nonlinear dynamical systems. The 

EKF tries to linearize the system around the current state. For 

this case, we will consider a nonlinear system represented by:  

 

 xK = f( xK-1 , uK-1 , wK-1) ,      zK = h(xK)+ vK,           

 

where f(.) is the nonlinear function of the process system, h(.) 

is the nonlinear function of the measurement system, xK-1  is 

the state vector, uK-1 is the input (or control) vector and zk  the 

output vector.  

For discrete time, the EKF prediction stage will be defined 

by (2) and (3). The EKF estimation stage is defined by (4), (5) 

and (6). A detailed description about the symbols and matrix 

dimensions used in this paper is presented in Table I.  

 
TABLE I: SYMBOL DESCRIPTION AND MATRIX DIMENSIONS FOR EKF 

Symbols Dimension Description 

X 3×1 State vector – Robot position 

u 2×1 Input vector – provided by the encoders  

e 2×1 Input error vector 

P 3×3 Robot position covariance 

A 3×3 Robot motion Jacobian 

W 3×2 Robot motion noise Jacobian 

Q 2×2 Covariance of permanent process noise 

G 3×2 KF Gain 

H 2×3 Measurement Jacobian 

R 2×2 
Covariance of permanent measurement 

noise 

Z 2×1 Sensor measurement – provided by LRF 

f(.) 3×1 Process Nonlinear Function 

h(.) 2×1 Measurement Nonlinear Function 

 

Prediction: 

                       XK 

 =  f(XK-1

+ 
, uK-1  , eK-1)                  

                   PK 


 =  A . PK-1
+
 .

 
A

T 
 + W.QK-1

+
 . W 

T     


Estimation: 

GK = PK .
  

H
T
 (H . PK 


.
 
H

T   
+ R) 

1
                      

   XK 
+
 = XK

 
+ GK (ZK     h(XK 


) )                    

                        PK 
+ 

= PK
    GK . HPK

 

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In some variables, the superscript ‘’ means predicted 

value and the superscript ‘+’ means estimated value. The 

actual and previous time is denoted by the symbols K and K-1 

respectively. Moreover, A is the Jacobian matrix of f(.) in 

respect to X 
+ 

, W is the Jacobian matrix of f(.) in respect to 

the error vector e and H is the Jacobian matrix of h(.) in 

respect to X 
+
.  

From now on, the development of all EKF equations 

adapted to the system can be carried out considering that the 

mobile robot is a 4-wheel skid-steering one (SSMR). The 

steering of an SSMR is based on the differentially driving 

wheel pairs on each side (relative velocities of left and right 

side) of the mobile robot [7].  

A. Prediction Stage 

Since we are interested in the position x, y and the angular 

orientation 𝜃 of the robot, these variables are set as the state 

variables, namely: X= [𝑥 𝑦 𝜃]T 
. 

Based on the SSMR models proposed in [7], [8] and by 

using the Euler integration method one can obtain the 

discrete-time system model for (2), i.e. the 1
st
 EKF equation, 

which can be written as (7). 

   

1
st
 EKF Equation:  

 

                   XK+1 
-      

 =        f( XK
+ 

, uK  , eK) , 

[

𝑥𝐾+1
−

𝑦𝐾+1
−

𝜃𝐾+1
−

]

3𝑥1

=

[
 
 
 
 𝑥𝐾

+ + ∆𝑇. (
𝑉𝐿+ 𝑉𝑅

2
) . 𝑐𝑜𝑠 𝜃𝐾

+

𝑦𝐾
+ + ∆𝑇. (

𝑉𝐿+ 𝑉𝑅

2
) . 𝑠𝑖𝑛 𝜃𝐾

+

𝜃𝐾
+ + ∆𝑇. (

𝑉𝑅− 𝑉𝐿

𝐷
) ]

 
 
 
 

3×1



 

where ∆𝑇 is the sample time and u = [ 𝑉𝐿 , 𝑉𝑅] 
T 

is the input 

vector (provided by the encoders). The parameter D is the 

effective spacing between the wheels. The error associated to 

the linear tread speeds of 𝑉𝐿 and 𝑉𝑅 can be defined such as 

described in (8). 

 


𝑉𝐿 = 𝑉𝐿𝑐 + 𝑉𝐿𝑒    ,    𝑉𝑅 = 𝑉𝑅𝑐 + 𝑉𝑅𝑒  ,

𝑒 =  [𝑉𝐿𝑒,  𝑉𝑅𝑒]
𝑇 ,

 

 

where 𝑉𝐿𝑐 and 𝑉𝑅𝑐 are the correct linear speeds of the left and 

right wheels respectively and the error vector 𝑒 represents the 

uncertainties of the odometric model, assuming that it is a 

Gaussian noise with zero mean.   

To construct a model equation from (3), i.e. the 2
nd

 EKF 

equation, it is firstly described the Jacobian matrices 𝐴 and 

𝑊, whose respective representations are described by (9) and 

(10).    

𝐴𝐾+1 =
𝜕𝑓

𝜕𝑋𝐾
+ = [

1 0 −∆𝑇. (𝛼
𝑉𝐿+ 𝑉𝑅

2
) . 𝑠𝑖𝑛 𝜃𝐾

+

0 1  ∆𝑇. (𝛼
𝑉𝐿+ 𝑉𝑅

2
) . 𝑐𝑜𝑠 𝜃𝐾

+

0 0 1

]

3×3



𝑊𝐾+1 =
𝜕𝑓

𝜕𝑒𝐾
=

[
 
 
 
 (𝛼

∆𝑇

2
) . 𝑐𝑜𝑠 𝜃𝐾

+ (𝛼
∆𝑇

2
) . 𝑐𝑜𝑠 𝜃𝐾

+

(𝛼
∆𝑇

2
) . 𝑠𝑖𝑛 𝜃𝐾

+ (𝛼
∆𝑇

2
) . 𝑠𝑖𝑛 𝜃𝐾

+

−
∆𝑇

𝐷

∆𝑇

𝐷 ]
 
 
 
 

3×2

(10)

Then, the 2
nd

 EKF equation can be described as in (11): 

 2
nd

 EKF Equation:  

PK+1 
-
 =  𝐴𝐾+1 . PK

+ 
. 𝐴𝐾+1

 T 
 +  𝑊𝐾+1 . QK

+ 
 . 𝑊𝐾+1

T
,

  P= [

𝜎𝑥
2 𝜎𝑥𝑦 𝜎𝑥𝜃

𝜎𝑦𝑥 𝜎𝑦
2 𝜎𝑦𝜃 

𝜎𝜃𝑥 𝜎𝜃𝑦 𝜎𝜃
2

]

3𝑥3

Q[
𝜎𝑉𝐿

2 0

0 𝜎𝑉𝑅
2 ]

2𝑥2

     (11)

 

where P is the error covariance matrix of the robot pose and Q 

represents the covariance matrix of the permanent noise 

process. 

B. Estimation Stage 

To design the Estimation EKF Stage, it is assumed that the 

mobile robot is located within a known environment, which 

has a particular shape (e.g., a wall) showed in the Fig. 1. The 

symbol representation is shown in the Table II. Then, two 

arrays can be defined as in (12). 

 

Z [
𝑢𝑖

𝑣𝑖
]
2𝑥1

R [
𝜎𝑢𝑖

2 0

0 𝜎𝑣𝑖
2 ]

2𝑥2

          (12)

 

where Z is the measurement vector, whose parameters 𝑢𝑖 and 

𝑣𝑖  are used as inputs at this stage to update the mobile state. 

Besides, R represents the measurement covariance matrix of 

the parameters (𝑢𝑖 𝑣𝑖). It is important to mention that R has 

two states: (a) when the robot is standstill the entries of the R 

matrix are minor compared to the entries of the Q matrix, and 

(b) when the robot is in motion the relationship is reversed, 

since the accuracy of the LRF sensor is reduced when the 

robot is moving. 

During each measurement, the O-object global position 

(coordinates l in X and m in Y) is input to the EKF algorithm. 

By using analytic geometry the parameters (l,m) can be found 

and described such as in (13). 

 

𝑙𝐾 =
𝑎−(𝑥𝑠𝑖𝑠𝑖𝑛𝜃𝐾+𝑦𝑠𝑖𝑐𝑜𝑠𝜃𝐾)+(𝑥𝑠𝑖𝑐𝑜𝑠𝜃𝐾−𝑦𝑠𝑖𝑠𝑖𝑛𝜃𝐾).𝑡𝑎𝑛 (𝜃𝐾+𝛽𝑖)

𝑡𝑎𝑛(𝜃𝐾+𝛽𝑖)+1


 

𝑚𝐾 = 𝑎 − 𝑙𝐾 
 

where 𝑎 is related to the point (𝑎, 0) in the Global Coordinate 

System (GCS), corresponding to the intersection of the 

environment line with the Xg-axis. 

The other array necessary for this stage is h(.), and it can be 

obtained from a coordinate transform of the feature O from 

GCS to the Sensor Si Coordinate System (SiCS), yielding 

(14). 

 

Measurement model: 

 

          ℎ(𝑋𝐾
−) = { [

𝑐𝑜𝑠 𝜃𝐾
− 𝑠𝑖𝑛 𝜃𝐾

−

−𝑠𝑖𝑛 𝜃𝐾
− 𝑐𝑜𝑠 𝜃𝐾

−] . [(
𝑙𝐾
𝑚𝐾

) − (
𝑥𝐾

−

𝑦𝐾
−)] } − [

𝑥𝑠𝑖

𝑦𝑠𝑖
]        

or  

   ℎ(𝑋𝐾
−) = [

(𝑙𝐾 − 𝑥𝐾
−) 𝑐𝑜𝑠 𝜃𝐾

− + (𝑚𝐾 − 𝑦𝐾
−) 𝑠𝑖𝑛 𝜃𝐾

− − 𝑥𝑠𝑖

(𝑚𝐾 − 𝑦𝐾
−) 𝑐𝑜𝑠 𝜃𝐾

− − (𝑙𝐾 − 𝑥𝐾
−) 𝑠𝑖𝑛 𝜃𝐾

− − 𝑦𝑠𝑖
]
2𝑥1

 

 

From (14), the Jacobian matrix H can be calculated as in 

(15).    

 

  H=[
−𝑐𝑜𝑠𝜃𝐾

− −𝑠𝑖𝑛 𝜃𝐾
− −(𝑙𝐾 − 𝑥𝐾

−) 𝑠𝑖𝑛 𝜃𝐾
− + (𝑚𝐾 − 𝑦𝐾

−) 𝑐𝑜𝑠 𝜃𝐾
−

𝑠𝑖𝑛 𝜃𝐾
− −𝑐𝑜𝑠𝜃𝐾

− −(𝑙𝐾 − 𝑥𝐾
−) 𝑐𝑜𝑠 𝜃𝐾

− − (𝑚𝐾 − 𝑦𝐾
−) 𝑠𝑖𝑛 𝜃𝐾

−]
2𝑥3

(
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TABLE II: DESCRIPTION OF THE ROBOT POSITION SYMBOLS 

Symbols Description 

(Xg, Yg) Global Coordinate System – GCS 

(x, y) Robot Position into GCS 

Ө Robot Orientation into GCS 

(Xs,Ys) Robot Coordinate System – RCS 

(Xsi,Ysi) Sensor i Position into RCS 

(U,V) Sensor Si Coordinate System – SiCS 

γi Distance between O-object (detected) and sensor Si 

βi Angle of measurement 

(ui,vi) O-object Position into SiCS 

(l,m) O-object Position into GCS 

 

Xg

Yg

R

Ys

V

Xs

U

O(l,m)

ui

vi

l

m

ysi

βi
γi

Ө

x

y

Si

a

a

(W
all)

Environm
ent line

45ᵒ

0

xsi

 
Fig. 1. Mobile robot positioned on a specific environment. 

 

So, all the matrices needed to implement (4), (5) and (6) of 

the EKF estimation stage have been described from (7) to (15) 

 

III. FPGA IMPLEMENTATION 

This section presents the integration of the two EKF Stages 

through a Hardware/Software Co-design in the FPGA. The 

algorithm implementation was accomplished considering the 

following approach: 1) a software implementation in the Nios 

II processor (written in C language) for the EKF Prediction 

Stage and 2) a hardware implementation [2] in the Altera 

Cyclone IV FPGA (written in VHDL code) for the EKF 

Estimation Stage. Fig. 2 shows the general diagram of the 

project architecture that has been developed. 

A
v
al

o
n
 B

u
s

Hardware Architecture 

(Estimation Stage)

3
th

 EKF 

equation

5
th

 EKF 

equation

4
th

 EKF 

equation

FPGA Design

NIOS II Soft-Processor

(Prediction Stage)

1
st 

EKF 

equation

2
nd

 EKF 

equation

 

Fig. 2. Diagram of the general architecture. 

 

A. Software Implementation 

The EKF Prediction Stage requires matrices operations 

such as sum and multiplication. Algorithms (1) and (2) are 

shown with their pseudo-codes used at this stage of the 

project.   

Algorithm 1: Code for algorithm of matrix multiplication  

                     Matrix C = Matrix A × Matrix B 

1:  for (i = 0; i < #RowA; i++) do 

2:        for(j = 0; j < #ColumnB; j++)  do 

3:               for(k = 0; k < #ColumnA; k++) do 
4:                      C[i][j] = C[i][j]+A[i][k] * B[k][j]; 

5:               end for 

6:        end for 
7:  end for 

 

Algorithm 2: Code for algorithm of matrix addition  
                   Matrix C = Matrix A + Matrix B 

1:  for(i = 0; i <  #RowA; i++) do 

2:        for(j = 0; j < #ColumnB; j++) do 
3:               C[i][j] = A[i][j] +B[i][j];  

4:        end for 

5:  end for 

 

where #Row is the number of matrix rows and #Column is the 

number of matrix columns. 

B. Hardware Implementation 

At the EKF estimation stage, matrices operations such as 

multiplication, addition and inversion are used. To implement 

those operations, a Finite State Machine (FSM) [2] was 

designed based on floating-point arithmetic operators [9]. The 

FSM structure is shown in Fig. 3, composed by six states, 

namely: waiting, mult1, mult2, multadd, add and div1. Fig. 4 

shows the data path [2] for implementing the estimation stage 

architecture. The EMB unit is composed of the arrays 

elements PK
R, Z, h(.) and XK


; the XMB unit is 

composed of the arrays elements G, XK 


and PK
 
, and the IMB 

unit is composed of temporary arrays elements O. 

WAITING

MULT1

MULT2

MULTADD

ADD

DIV1

START

 

Fig. 3. FSM used in the architecture to perform the EKF estimation stage. 

Entrance 

Matrices 

Bank 

(EMB)

Intermediate 

Matrices 

Bank 

(IMB-1)

x

waiting mult1 mult2 multadd add div1

Element 

Selector

x

Element 

Selector

x

Element 

Selector

Element 

Selector

+ 
or

 -

/

Element 

Selector

Register

Exit 

Matrices 

Bank 

(XMB)

Intermediate 

Matrices 

Bank 

(IMB-2)

+ 
or

 -

 

Fig. 4. Data path used for implementing the EKF estimation stage. 

In the implementation of this EKF stage was necessary to 

divide in eleven steps as shown in (16) to (26).  

1𝑡ℎ: 𝑂3𝑥2
1 = 𝑃𝐾

−. 𝐻𝑇          

2𝑡ℎ: 𝑂2𝑥2
2 = 𝐻 . 𝑂3𝑥2

1    
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3𝑡ℎ: 𝑂2𝑥2
3 = 𝑂2𝑥2

2 + 𝑅𝐾        

4𝑡ℎ: 𝑂2𝑥2
4 = 𝑖𝑛𝑣(𝑂2𝑥2

3 )       

5𝑡ℎ: 𝑮𝑲 = 𝑂3𝑥2
1  .  𝑂2𝑥2

4          

6𝑡ℎ: 𝑂2𝑥1
5 = 𝑍𝐾 − ℎ(𝑋𝐾

−)         

7𝑡ℎ: 𝑂3𝑥1
6 = 𝐺𝐾 .  𝑂2𝑥1

5          

8𝑡ℎ: 𝑿𝑲
+ = 𝑋𝐾

− + 𝑂3𝑥1
6        

9𝑡ℎ: 𝑂3𝑥3
7 =  𝐺𝐾 .  𝐻         

10𝑡ℎ: 𝑂3𝑥3
8 = 𝑂3𝑥3

7  .  𝑃𝐾
−          

11ℎ:  𝑷𝑲
+ = 𝑃𝐾

− − 𝑂3𝑥3
8   ,       

where the 3
rd

 EKF equation (4) is divided in five steps such as 

in (16) to (20). So, (21) to (23) are the corresponding steps to 

compute the 4
th

 EKF equation (5). Finally, the 5
th

 EKF 

equation (6) is referred to (24), (25) and (26). 

It can be seen that (16), which is the first step to compute 

the 3
rd

 EKF equation, is a matrix multiplication (𝑃𝐾
−. 𝐻𝑇). The 

result of the multiplication is a new matrix 𝑂1  with 

dimension 3×2, whose first entry is described by (27). 

𝑂11
1 = 𝑝11

−  .  𝐻11
𝑇 + 𝑝12

−  .  𝐻21
𝑇 + 𝑝13

+  .  𝐻31
𝑇   

In the case of (27), the FSM was designed to perform the 

three multiplications and the two additions, producing a FSM 

structure composed by five states: waiting, mult1, mult2, 

multadd and add. 

The calculation of the Jacobian matrix H and the nonlinear 

function h(.) is performed previously in the Nios II processor 

and then their results are addressed to the hardware 

architecture. 

 

IV. RESULTS 

After the implementation of the EKF algorithm in the 

Altera DE2-115 board [10] we proceeded to perform some 

tests using the Pioneer 3-AT mobile platform (see Fig. 5). One 

of tests consisted in that the robot had to follow the path 

shown in the Fig. 6. 

 
Fig. 5. Pioneer 3-AT with FPGA and LRF sensor. 
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Fig. 6. Robot trajectory for the test. 

For the test, the environment map was designed to have the 

parameter 𝑎 =117cm and with initial values as 

𝑋0
+= [2𝑐𝑚, 0.1𝑐𝑚, 0°]T

. The test results are shown in Table 

III, where it is shown a comparison between the actual robot 

position (𝑥, 𝑦, 𝜃 ) and the estimated one, using the EKF 

algorithm developed in this paper. In Fig. 6, the instants 1 

until 6 are shown along the robot path. As an example, the 

robot performs a straight motion between the instants 1-2, 3-4 

and 5-6. In the instants 2-3 and 4-5 the robot turns +47.5 º and 

+61.7 º respectively, both angles with respect to the Xg-axis. 

During this test, the LRF sensor was located on the Xs- axis, 

i.e. the LRF laser beam was oriented to the robot front 

(𝑥𝑠𝑖=17cm, 𝑦𝑠𝑖=0 and βi=0). 

 
TABLE III: RESULTS OF THE TEST 

Instant 
Real robot position 

Estimated robot position 

using EKF 

x (cm) y (cm) Ө (ᵒ) x (cm) y (cm) Ө (ᵒ) 

1 0 0 0 -0.05 0.1 -0.001 

2 27.36 0 0 24.821 0.092 0.27 

3 27.36 0 47.5 24.17 -1.36 49.14 

4 38.38 11.88 47.5 34.75 10.92 49.24 

5 38.38 11.88 61.7 35.01 11.52 63.81 

6 46.47 27.7 61.7 44.18 30.13 63.64 

 

Regarding the hardware synthesis tasks, the respective 

results are shown in Table IV, which is related to the 

consumption of hardware resources of the EP4CE115F29C7 

FPGA device (Cyclone IV E), where it can be observed the 

little use of FPGA resources. 

 
TABLE IV: HARDWARE SYNTHESIS RESULTS 

Architecture 
Total Logic 
Elements 

(LEs) 

DSPs 
Clk 

(Mhz) 

Power 

(mW) 

EKF       
Estimation Stage 

22089 (19%) 175 (33%) 49,08 201,13 

 

V. CONCLUSIONS 

A Hardware/Software Co-design of the EKF algorithm 

applied to the Mobile Robotics Localization Problem was 

presented in this paper. The resulting system runs on an Altera 

Cyclone IV FPGA with a Nios II processor, adapted to the 

mobile platform Pioneer 3AT. The test results showed an 

appropriate performance of the FPGA implementation, 

consuming few resources and estimating the position and 

orientation of the robot along the path. However, it was 

observed that the algorithm (especially EKF Prediction Stage) 

was affected in long periods of use due to the error 

propagation generated by the odometric model. Moreover, it 

was presented the hardware and power consumptions 

resources for the project implementation.  

As future works will be included a group of various LRF 

laser beams, each one with different βi angle to improve the 

Estimation Stage. Besides, a hardware architecture in FPGA 

for the Prediction Stage will be developed.  
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