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Abstract—Direct application of reinforcement learning in 

robotics rises the issue of discontinuity of control signal. 

Consecutive actions are selected independently on random, 

which often makes them excessively far from one another. Such 

control is hardly ever appropriate in robots, it may even lead to 

their destruction. This paper considers a control policy in which 

consecutive actions are modified by autocorrelated noise. That 

policy generally solves the aforementioned problems and it is 

readily applicable in robots. In the experimental study it is 

applied to three robotic learning control tasks: Cart-Pole 

SwingUp, Half-Cheetah, and a walking humanoid. 

 
Index Terms—Machine learning, reinforcement learning, 

actorcritics, robotics. 

 

I. INTRODUCTION 

Reinforcement learning (RL) addresses the problem of an 

agent that optimizes its reactive policy in a poorly structured 

and initially unknown environment [1]. The primary 

application of RL is robotics where the agent becomes a 

robot’s controller and the robot itself with its surrounding 

becomes the agent’s environment. Reinforcement learning 

offers the prospect of efficient robot behaviour being learned 

rather than programmed by a human designer. 

A typical setting in which RL is applied in robotics is as 

follows. There are two levels of control. The lower level is 

based on servomotors in the robot’s joints. The servomotors 

are fed with desired joint positions and try to make the joints 

follow them. At the higher level, the controller determines 

desired servomotors’ positions based on the robot state. A 

learning (through reinforcement) component resides at the 

higher control level. Within typical scheme of the learning 

component operation, the desired servomotors’ positions are 

periodically selected on random, and consecutive selections 

are only stochastically dependent through the robot state. But 

that means that the consecutive desired servos’ positions are 

far from one another. This results in a characteristic jerking of 

the robot which is an unhealthy robot behaviour and may lead 

to its destruction. 

Applications of RL in robotics are surveyed in [2]. More 

general discussion on policy search in robotics is presented in 

[3]. The work [4] presents an RL algorithm that optimizes 

robotic primitives. This algorithm overcomes the problem of 

robot jerking during learning at the cost of giving up the 

framework of Markov Decision Process (MDP) [1]. In [5] a 

method is presented that enables optimization of robotic 
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primitives by means of RL algorithms based on MDP 

framework, but it does not alleviate the problem of robot 

jerking. The current paper is intended to fill this gap. 

In this paper, control policy is introduced that may undergo 

reinforcement learning and have the following properties: 

 It is applicable to robot control optimization. 

 It does not lead to robot jerking. 

 It can be optimized by any RL algorithm that is designed 

to optimize a classical stochastic control policy. 

The policy introduced here is based on a deterministic 

transformation of state combined with a random element in 

the form of a specific stochastic process, namely the moving 

average. 

The paper is organized as follows. In Section II the 

problem of our interest is defined. Section III presents the 

main contribution of this paper i.e., a stochastic control policy 

that prevents robot jerking while learning. In Section IV an 

analysis of this policy is presented. Section V contains an 

experimental study in which the policy is applied in two 

simulated and one real robotic learning control tasks. The last 

section concludes the paper. 

 

II.   PROBLEM FORMULATION 

We consider the standard RL setup [1]. A Markov Decision 

Process (MDP) defines a problem of an agent that observes its 

state, st, in discrete time t = 1, 2, 3,..., performs actions, at, 

receives rewards, rt, and moves to other states, st+1. A 

particular MDP is a tuple <S, A, Ps, r> where S and A are the 

state and action spaces, respectively; { Ps (·|s,a) : s ∈ S, a ∈A} 

is a set of state transition distributions; we write st+1 ~ 

Ps(·|st,at) and assume that each Ps is a density. Each state 

transition generates a reward, rt ∈R. Here we assume that each 

reward is depends deterministically on the current action and 

the next state, rt = r(at,st+1). The agent learns to assign actions 

to states so as to may expect in each state highest rewards in 

the future. 

Here we consider robotic applications of the above general 

framework. Therefore, both spaces of interest are 

multidimensional continuous: S = Rns   and A = Rna. Also, it is 

assumed that st 

 

reflects the state of a certain continuous-time 

system at discrete time instants. Let τ∈ R denote continuous 

time. The dynamics of that system could be described by an 

equation of the form  

 

 
    ,

ds
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d


  


 ,                           (1) 

where f is unknown, δ > 0 denotes time discretization, st = 
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s(τ0 + tδ), and a(τ) = at  for τ ∈ [τ0 + tδ,τ0 + (t + 1)δ). 

The subject of our interest is a stochastic control policy that 

produces actions. The following properties of this policy are 

required: 

1) It is possible to optimize this policy by any RL algorithm 

designed for stochastic control policy optimization. 

2) Fine time discretization does not prevent the learning 

algorithm from efficient operation nor it results in robot 

jerking. However, fine time discretization may require 

adjustment of some parameters of the learning algorithm 

and the policy. 

 

III. POLICY DEFINITION 

A. Generic Definition 

Let the actions by produced by the following function  

at = h(st,ξt,θ)                                    (2) 

where st  is the state, ξt ∈ Rnξ is a random element, and θ ∈ Rn is 

a parameter (e.g., neural weights). Typically a policy that 

produces actions is defined as a probability distribution 

parameterized by the state and a vector, θ, whose 

optimization is an objective of learning. But technically, 

actions are always computed on the basis of a certain function, 

h, and a finite-dimensional random element, ξt. With the 

additional assumptions that ξt have the same distribution for 

various t, and ξt is stochastically independent from ξt+i for i    
0, eq. (2) is a typical representation of a stochastic control 

policy in reinforcement learning. 

In this paper the following set or requirements is imposed 

on (2): 

1) ξt has the same (stationary) distribution for each t. 

2) ξt is stochastically independent from ξt+i for |i|≥ M, where 

M > 0 is a certain constant. 

3) E∥ξt − ξt−i∥2 < E∥ξt − ξt−i−1∥2 for 0 ≤ i < M. 

4) h is continuous with respect to all its arguments. 

The first two conditions are required for the policy to be 

applicable in known reinforcement learning algorithms, e.g., 

in actor-critics [6], [7]. The latter two make consecutive 

control actions close to one another. Strict “continuity” of the 

control signal is not possible in continuous time. However, if 

h is continuous and ξt is on average close to ξt+1, consecutive 

actions are close to each other as well. 

B. Specific Definition 

A specific design of a policy based on the above 

requirements may be the following. Let 

at = h(st,ξt,θ) = g(st;θ) + ξt,                           (3) 

where g is a certain approximator parametrized by θ with 

input st, and ξt  is defined as follows. Let 

ξt ∼ N(0, Iσ2/M)                                    (4) 

be random vectors stochastically independent for different t, 
M > 0 be constant, and 

                     
          (5)

 

A stochastic process defined in (5) is known as the moving 

average. Let us now verify the conditions from the previous 

section. 

1) Each ξt is a sum of normal random vectors, therefore each 

ξt has the same (stationary) distribution N(0,σ2I). 

2) ξt and ξt+i are, for |i| > M, computed from different ζ-s, 

thus they are stochastically independent. 

3) For 0 ≤ i < M we have 

 

(6) 

 

(7) 

 

(8) 

and therefore 

    (9) 

4) If g is continuous with respect to its arguments, then h is 

continuous too. 

The distribution of action defined according to (3) is 

normal with mean g(st;θ) and covariance matrix Iσ2. 

 

IV. ANALYSIS 

In this section we investigate the following question: how 

to parametrize control policy to assure constant level of 

randomness in state trajectory for any given time 

discretization, δ. In this order, power of noise is defined 

below, it is derived for ξt defined in the previous section, and 

it is proven that the randomness in state trajectory is 

proportional to that power. 

A. Power of ξ 

Let  

     (10) 

We define the power of ξ  

(11)

 

In the case of the moving-average (5), its power has the 

value 

 

 

(12) 

 

 

(13) 

 

(14) 
 

(15) 

B. Constant Randomness in State Trajectory 

A learning controller requires randomness in its actions. Its 

states trajectories need to be diversified, in order to find out 

which actions are good and which are inferior. But the level of 
ξt =

M−1∑
j=0

ζt−j .

E∥ξt − ξt−i∥2 = E

∥∥∥∥∥∥
M−1∑
j=0

ζt−j − ζt−i−j

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥
i−1∑
j=0

ζt−j −
i−1∑
j=0

ζt−M−j

∥∥∥∥∥∥
2

= 2iσ2/M,

E∥ξt−ξt−i∥2 < E∥ξt−ξt−i−1∥2 = 2(i+1)σ2/M.

Pξ = lim
T→∞

1

T
E

 τ0+T∫
τ0

ξ(τ)dτ

τ0+T∫
τ0

ξ(τ)Tdτ

 .

Pξ = lim
t→∞

1

tδ
E

t−1∑
i=0

δξi

t−1∑
i=0

δξT

i

)

= lim
t→∞

1

tδ
E

t−1∑
i=0

δMζi

t−1∑
i=0

δMζT

i

)
=

1

tδ
δ2M2tIσ2/M

= Iσ2δM.






ξ(τ) = ξt for t : τ0 + tδ ≤ τ < τ0 + (t+ 1)δ.

as
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randomness should be selected reasonably. We stabilize 

randomness in state trajectory, such that for any given time 

discretization, δ, we are able adjust parameters of ξt (5), to 

keep the conditional variance  

                                           V (s(τ + ∆)|s(τ))                               (16) 

constant for constant ∆. From (1) we have  

       

(17)

 

Let us denote 

g0 = g(s(τ);θ)                                 (18) 

and consider small ∆ such that for τ’
 

∈ [τ,τ + ∆) we have 

              

(19) 

(20) 

Then we have  

(21) 

(22) 

Therefore, from (17) we have 

 (23) 

For given τ and s(τ), the integral is the only random 

element above. Therefore 

   (24) 

             (25) 

         (26) 

         (27) 

It is seen that conditional variance of state is proportional to 

the power of ξt. 

C. Conclusions and Illustration 

The results above lead to the following conclusions. 

1) Conditional variance of state is proportional to the 

power of ξt. Therefore, in order to keep this variance constant 

when manipulating time discretization, we need to adjust 

other coefficients in (15) accordingly.   

2) The policy (3) with ξt (5) and M = 1 is a traditional 

control policy applied in RL: actions are only stochastically 

dependent through the state. The drawback of such a policy is 

clearly visible in (15). Variance of noise, σ2, required to 

stabilize the power of ξ is inversely proportional to time 

discretization, δ. Therefore, if δ is very small, then σ2 needs to 

be very large. But that makes such a policy not feasible as it 

requires large changes in control signal to be performed at 

large frequency.  

Fig. 1 presents ξt (5) with different parameters but the same 

power. Top part of Fig. 1 presents noise typically applied in a 

control policy in reinforcement learning; it leads to 

“discontinuity” of control signal (its literal “continuity” is not 

possible in discrete time). The middle part presents 

autocorrelated ξt which has the same power but leads to more 

continuous control signal. 

 
Fig. 1. The figures above demonstrates runs of ξt with various parameters, 

but the same power, Pξ =0.02. 

 

V.   EXPERIMENTAL STUDY 

In this study reinforcement learning is applied to optimize 

control policy in two simulated robotic learning control tasks 

and one real robotic learning control task. The simulated tasks 

are Cart-Pole Swing-Up [8] and Half-Cheetah [9], and the 

real one is humanoid walking [5]. The learning algorithms 

applied are actor-critics. The control policy applied is one 

introduced in Sec. III. The main question investigated 

concerns feasibility of the proposed policy: Is it possible to 

obtain similar (or better) learning performance with finer time 

discretization and smaller time-to-time differences in control 

signal? 

 

 

Fig. 2. Learning control problems. 

A. Adjusting Parameters to Changing Time Discretization 

If an actor-critic algorithm with the policy introduced here 

is successfully applied to a certain task, it can also be applied 

to this task with different time discretization. However, that 

requires adjustment of several parameters. Suppose time 

discretization δ is changed to δ′ < δ. New parameters will be 

denoted below with primes: 

 A weight of a reward received in a specific time in the 

a) Half-Cheetah 

 
   

  
  

  
  

  
   

 

 

  

        

 

      
 

  

         

Swing-Up Cart-Pole b) 
 
  

  
     

 
      

  

  

 

 

  

 

c) Bioloid Walking 

s(τ +∆) = s(τ) +

τ+∆∫
τ

f(s(τ ′), a(τ ′))dτ ′.

f(s(τ ′), a(τ ′)) ∼= f(s(τ), a(τ ′))

g(s(τ ′); θ) ∼= g0.

f(s(τ ′), a(τ ′)) ∼= f(s(τ), g0 + ξ(τ ′))

∼= f(s(τ), g0) +
∂f(s(τ), g0)

∂g0
ξ(τ ′).

s(τ+∆) ∼= s(τ)+∆f(s(τ), g0)+
∂f(s(τ), g0)

∂g0

τ+∆∫
τ

ξ(τ ′)dτ ′.

V (s(τ +∆)|s(τ)) ∼=
∂f(s(τ), g0)

∂g0

τ+∆∫
τ

ξ(τ ′)dτ ′×

×
τ+∆∫
τ

ξ(τ ′)Tdτ ′
∂f(s(τ), g0)

∂gT
0

∼=
∂f(s(τ), g0)

∂g0
∆Pξ

∂f(s(τ), g0)

∂gT
0

∼= Pξ∆
∂f(s(τ), g0)

∂g0

∂f(s(τ), g0)

∂gT
0

.
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future should remain the same. But that reward will be 

received after more discrete time steps. The discount 

factor should be modified accordingly: 

γ′   1 − (1 − γ)δ′/δ.                           (28) 

By the same token, the λ parameter should be adjusted as 

λ′   1 − (1 − λ)δ′/δ.                           (29) 

 The sum of discounted rewards expected at each state 

should remain the same. Therefore all rewards except 

those received at the end of an episode (succeeded of 

failed) should be multiplied by the factor 

  δ′/δ.                                          (30) 

 The actor and the critic updates are performed more 

often but they use the same stream of information. The 

step sizes for the actor, βθ, and the critic, βυ should thus 

be smaller, they should be multiplied by the factor 

δ′/δ.                                            (31) 

 In order to keep the power of noise (15) at the same level, 

we need to apply 

M′ = Mδ/δ′.                                   (32) 

(Otherwise we could increase σ2
 

accordingly, but that could 

destroy the robot.) 

B. Half-Cheetah  

goal of its control is to make it run as fast as possible. With 

time discretization δ = 0.02sec., 31 state variables, 6 control 

variables, and complex dynamics, Half-Cheetah represents a 

difficult system for efficient control. 

We perform two experiments with Half-Cheetah. In both 

cases we use the same learning algorithm: Classic 

Actor-Critic with Experience Replay as in [8]. In the first case, 

we use the typical control policy based on a neural network 

and independently sampled normal noise. This policy rises 

the issue of control signal discontinuity. In the second case, 

the policy is applied discussed in Sec. III which overcomes 

the problem of control signal discontinuity. 

The parameters of both experiments are listed as following: 

param. δ σ M γ λ βθ βυ 

in [8] 0.02 5 1 0.99 0.9 10−5 10−5 

here 0.02 3 3 0.99 0.9 10−5 10−5 

The resulting learning curves are presented in Fig. 3.a. It is 

seen, that in the novel policy does not deteriorate learning 

efficiency nor ultimate performance. In fact, bot the learning 

efficiency and the ultimate performance are better when the 

new policy is applied. 

C. Cart-Pole Swing-Up 

Cart-Pole Swing-Up task [10] is a pendulum attached 

objective of control is to swing the pendulum and stabilize it 

upwards, by pushing the car. 

The learning control algorithm applied here is the classic 

actor-critic [6]. Details of its implementation are taken from 

[8]. An action is independently selected every δ = 0.1sec. 

from the normal distribution with standard deviation equal to 

2. 

We also perform an experiment in which time 

discretization is δ = 0.01sec., which is more typical for 

robotic applications. We apply the control policy from Sec. 

III with coefficients selected according to Section V-A. The 

parameters of both experiments are listed as following: 

 
param. δ σ M γ λ βθ βυ 

in [8] 0.1 2 1 0.95 0.5 0.003 0.003 

here 0.01 2 10 0.995 0.95 0.0003 0.0003 

 

The resulting learning curves are presented in Fig. 3.b. It is 

seen, that in the original setting the learning is about twice 

faster. However, the ultimate performance obtained is the 

same. 

 

Fig. 3. Learning curves i.e., average rewards vs. episode number. Each curve 

averages 10 runs. 

D. Bioloid Walking 
 

objective is to make this robot walk as fast as possible without 

falling and spinning about the vertical axis. A robot controller 

may learn to do so with the use of an actor-critic algorithm, as 

presented in [5]. Within the setting applied in [5] control 

signal discontinuity creates significant difficulties. The robot 

is jerking, its servomotors often get overloaded. 

We perform an experiment in which we apply the policy 

introduced in Section III in Bioloid that is learning to walk 

fast. The parameters of both experiments are listed as the 

following. 

param. δ σ M γ λ 

in [5] 0.03 10 1 0.99 0.9 

here 0.03 7 3 0.99 0.9 

 
1Bioloid Premium manufactured by Robotis: http://www.robotis.com 
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Half-Cheetah [8] is a planar model of cat (Fig. 2a). The 

freely to a car that moves on a straight track (Fig. 2b). The 

Biolid
1
is a small humanoid robot (Fig. 2c). The control 



  

Step-sizes are absent from the table above because the 

algorithm applied calculates them autonomously. 

seen, that with the new control policy the learning is equally 

efficient as in the original setting. Moreover, the course of 

experiment is much healthier for the robot. It is not jerking 

and its servomotors remain cool all the time.
2
   

E. Discussion 

The field of reinforcement learning offers the prospect of 

robots that learn instead of being programmed. Most 

algorithms developed in this field learn to make the best 

selection of the control action for each state the controlled 

system may enter. In order to learn, at each state the algorithm 

selects a control action on random thereby collecting 

experience that allows to tell which actions are good and 

which are not. However, these actions need to make 

difference, that is they need to assure appropriate level of 

randomness in state trajectory. The finer time discretization, 

the less significant each particular action is, and the more 

noise it should contain. That leads to excessively 

discontinuous control signal, inappropriate for robotic 

applications. 

A remedy to the aforementioned problem is a control 

policy with autocorrelated noise. It assures both continuity of 

control signal and appropriate randomness in state trajectory. 

In this experimental study it was verified whether such a 

policy can be optimized with the use of known RL algorithms. 

Experiments with Half-Cheetah and Bioloid Walking 

revealed that such a policy may be applied without 

deterioration of learning efficiency or ultimate performance. 

Experiments with Cart-Pole Swing-Up and tenfold decrease 

of time discretization yielded ambiguous result. The ultimate 

control performance was as good as for traditional policy, but 

the speed of learning was smaller. It is easy to interpret that 

result. With coarse time distretization and independently 

selected control actions, it is straightforward to verify quality 

of each action and adjust policy to make this action more (or 

less) probable. With finer time discretization and the policy 

presented in Sec. III each action starts an experiment that is 

continued in further actions in which random elements are 

present autocorrelated with the first one. But this 

autocorrelation decreases with time passing. Some 

information is lost and thus slower learning. But this price 

may be worth paying in those robotic applications where fine 

time discretization has no alternative. 

 

VI. CONCLUSIONS 

In this paper the problem of continuity of control signal is 

analyzed, which arises when reinforcement learning is applied 

in robotics. It is demonstrated why this problem is so difficult 

to handle within the traditional reinforcement learning 

paradigm in which consecutive control actions are 

stochastically dependent only thorough the state. A control 

policy is introduced that is based on autocorrelated noise. It 

alleviates the problem of control signal discontinuity, and it 

 
2 The resulting control policy may be seen at: 

https://www.youtube.com/watch?v=O2rx4Bdwn24 

may be optimized by known RL algorithms. In the 

experimental study that policy was applied to two simulated 

and one real robotic learning control problems. The policy 

was successfully optimized through reinforcement learning. 
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The resulting learning curves are presented in Fig. 3c. It is 


