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Abstract—In this paper, a new algorithm, skipping suffix 

algorithm based on a new encoded mode for genome sequence 

aimed at accelerating multiple genome sequence matching are 

proposed. By introducing binary coding, the efficiency of gene 

sequence alignment gets improved obviously. Besides, we 

decide the maximal bits to skip by constructing skipping tree. 

A contrastive evaluation of the computational efficiency of 

KMP algorithm, suffix array and skipping suffix algorithm 

shows that preprocess of skipping suffix algorithm is more 

than 12 times speedup than that of suffix array. Moreover, 

multiple genome sequence matching based on suffix array is 

more than 50 times speedup than that of KMP. In a word, 

skipping suffix algorithm strike balance between preprocess 

and search successfully which better help it fit into large-scale 

genetic data matching. 

 

Index Terms—Bioinformatics, skipping tree, bit 

manipulation, binary search. 

 

I. INTRODUCTION 

Thanks to Human Genome Project, DNA sequencing 

technology has developed at unprecedented speed within the 

latest decade. As more and more biological data are being 

created every day, there is a pressing need to extract useful 

information from a sea of biological data efficiently [1], 

which usually begins with identifying particular DNA 

sequence which encoding specific protein in order to 

determine the biological property of certain DNA sequence. 

Thus, it raises a significant problem, comparison of 

similarity between two DNA sequences.  

Traditionally, DNA sequences will be abstracted as a 

string which incorporates only a collection of four letters, A, 

G, C, T. Also there are many algorithms related to genome 

sequence matching problem [2], [3]. Meanwhile, the suffix 

tree [4], as a significant data structures in the field of string 

matching, has been used widely in gene sequence alignment. 

Although suffix tree has numerous advantages, like 

powerful indexing capability, taking hugeness of genes on a 

chromosome into consideration, even there is a new 

structure named suffix array [5] based on it, it still consumes 

intolerable time in constructing [6] the suffix tree while 

doing preprocess on reference sequences. 

Also, there are some methods which do some preprocess 

on query sequences like KMP Algorithm [8], Boyer and 

Moore Algorithm [9], and Sunday Algorithm [10]. 

Nowadays, there are many algorithms based on the same 

thought that they collect the information of query sequences 
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and then use it to determine how to move the window of 

query sequence under specific condition [11]. However, the 

strategies that they used to determine how to move the 

windows are still not effective enough. 

In addition, there are some new algorithms based on the 

thought of making a memo of matching condition to make 

the decision dynamically like bit-parallel algorithm [12].  

In this paper we put forward a solution to gene sequence 

alignment problem by applying a new coding scheme in 

gene sequence encoding which is used in Gang Liao’s paper 

[7]. In the new encoding, we do not compare two DNA 

sequences in the form of text string but in the form of binary 

string. In this way, we can introduce bit manipulation into 

comparison process which has higher efficiency compared 

with string comparison. At the same time, we can compress 

the size of data as well. 

Enlightened by suffix tree, we design a new algorithm to 

construct tree-type data structure, which is named skipping 

tree, to improve searching efficiency when process binary 

streams. 

Considering the hugeness of genes on a chromosome, we 

hope to find a method to avoid construct skipping tree based 

on those huge data. Since one of the major problems in 

bioinformatics is to find out the biological properties of 

certain DNA sequence by searching in the DNA or protein 

sequence database, we are considering construct skipping 

tree based on the pattern string in the DNA or protein 

sequence database. In this way, we can reduce the time 

consuming in preprocessing data of the whole chromosome. 

Besides, the pattern string in data-base is reusable. 

Since exact repeats usually form the core blocks of 

approximate repeats, the algorithm we designed will serve 

exact matching of DNA. 

 

II. A NEW ENCODED MODE 

In traditional method of gene sequence alignment, DNA 

sequences will be always abstracted as a string. Initially, for 

the four nucleic acid bases include adenine, guanine, 

thymine, and cytosine which make up DNA, define Σ = {A, 

C, G, T}. The collection Σ only incorporates four letters, A, 

G, C, T. In other words, only 4 different numbers are needed 

to encode gene sequence, which are just a small subset of 

text string. Thus, as shown in the Table I, we decide to 

propose a new encoding scheme, in which gene sequences 

will be represented as binary stream.  
 

TABLE I: THE ENCODED MODE TABLE FOR FOUR NUCLEIC ACID BASES 

A(adenine) 00 

T(thymine) 11 

C(cytosine) 10 

G(guanine) 01 
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We proposed such encoding scheme based on the 

following facts. 

 We can cut the storage cost.  

 We increase efficiency of comparison by bringing bit 

manipulation into comparison process. 

Due to the double helix of DNA, there exists some 

complementary matching relationship between different 

bases, for instance A is complementary base of T and C is 

complementary base of G. Hence, Gene sequences of equal 

relations can be divided into two cases. One is that two 

DNA sequences are the same. The other is that two DNA 

sequences are complementary. In traditional way, there is no 

way to manifest the complementary relation-ship between 

two DNA sequences. Therefore, it has no efficient way to 

determine the equal relationship between the 

complementary DNA sequences. However, using our 

encoding scheme, complementary DNA sequences of target 

gene sequence can be obtained easily by inverting target 

gene sequences bitwise. For example, A is encoded as 00, 

whose complement is 11 which is used to represent T. In the 

same way, it also works for the complementary base pairs C 

and G. 

 

III. BIT MANIPULATION IN GENE SEQUENCE ALIGNMENT  

Based on the new coding scheme above, DNA sequences 

are abstracted as binary streams, we need to introduce bit 

manipulation into comparison process. 

For convenience, we define the reference sequence as T 

and query sequence as P. n is indicated as the number of 

nucleic acid bases in reference sequence and m is denoted as 

the number of nucleic acid bases in query sequence. Thus, 

after use the coding scheme illustrated before, 

1 2 3 2nT t t t t  and 1 2 3 2mP p p p p , it  and ip  

represent a bit in reference sequence and query sequence 

respectively. For convenience, we assume that 

1 2( , ) i i i jT i j t t t t 
. 

Exclusive or is a logical operation that outputs true 

whenever both inputs differ (one is true, the other is 

false).Taking advantage of it, to determine whether two 

binary strings are equal, we xor reference sequence with 

query sequence. Only if the result is 0 can two binary strings 

are equal. For convenience, we express the exclusive or 

operation as function  

1 2 1 2( , ) ^E S S S S
. 

Besides, mask can help us to take out the data on the 

specific location.  

After introduce the basic bit manipulation, we will then 

describe the algorithm of gene sequence alignment. 

We regard the query sequence as a window. Searching the 

exact repeat of P  in T actually is the window sliding from 

left to right one bit at a time. 

There are 7 steps in gene sequence alignment. 

1. Put P  to the most left side of T  

2. Take out the data in T within the window scope, that is 

( , 2 1), 1,2,3 2 2 1T i i m i n m     , then compute 

bitwise exclusion-OR of P  and it. 

3. If the result is equal to 0.Then record the position of the 

first bit we took out, that is i . 

4. Else, we perform left shift of the bits twice in the 

reference sequence in order to slide the window. 

5. Repeat the steps 2-5 until the window is slide to the 

most right side of T  

6. Count all positions recorded. 

7. Finish. 

As show above, in this way we can replace the string 

manipulation functions with bit manipulation, which have 

higher execution efficiency. 

 

IV. TWO-STEP COMPARISON 

As illustrate above, a base is represented by two bits. 

Only if the first bit of each base in T matches the first bit of 

each base in P  can they possibly match each other. Hence, 

we divide the process of comparing into two steps in order 

to compare two bits of each base respectively. For 

convenience, we define the binary stream constituted by the 

first bit of each base in T  as 1T . Similarly, we define the 

binary stream constituted by the second bit of each base in 

T  as 2T . In the same way, we get 1P  and 2P .  

There are 9 steps in gene sequence alignment. 

1. Preprocess T  and   P . 

We separate two bits of each base in T  and P  

respectively in order to get  1T , 2T  and 1P , 2P . 

2. Put 1P  to the most left side of 1T  

3. Determine the exact repeat of 1P  contained in 1T . 

Then record the position of the first bit of the exact repeat of 

1P  (we defined it as pos). 

4. Slide the window to pos of 2T , check if there is an 

exact repeat of 2P  in 2T  

5. If there exist an exact repeat of 2P  in  2T , record the 

position pos. 

6. Else, slide the window to pos+1 of  1T . 

7. Repeat the steps 3-5 until he window is slide to the 

most right side of 1T  

8. Count all positions recorded. 

9. Finish. 

Now, we will analyze how it effects on improving 

matching efficiency by probability and statistics method. 

Only if we can find a sub-string in 1T  which can match 

with 1P , then we will get to the next step to check whether 

2T  can match with 2P  at the same position. For 

convenience, we assume that the length of T is 2n , and the 

length of P is 2m . Thus, the length of 1T  and 2T  is n , 

and the length of 1P  and 2P  is m . In each comparison, 

we can define the probability of the success match between 

1T  and 1P  as ( 1 1)P T P . For every bit within the scope 

of window, we assign a label 1iT  for it, 

1,2,i m .Similarly, we assign a label 1iP  for every 

bits of 1P , 1,2,i m . We define the success match 

between 1iT  and 1iP  as event iA . Event iA  are 

independent with each other. We assume that the pro-

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

79

http://en.wikipedia.org/wiki/Logical_connective


bability of occurrence of each nucleic acid base is the same. 

The probability of occurrence of event 
iA  is 0.5. Based on 

mutually independent event probability multi-plication 

formula, we get 
1 2

1
( ) ( )

2

m

mP A A A  . 

Hence, we can get ( 1 1)P T P  

1
( 1 1) ( )

2

mP T P 
 

From the statistical data, the number of nucleic acid bases 

in query sequence is between 1000 and 10000.Here we use 

the average 5000 as the value of m . 

Each time, when window slide, the probability of success 

match between 1P  and 1T  is 
50001

( )
2

, approximately 

15067.080 10 . 

In other word, the chance for the second comparison is 

quite low. There is no need to make second comparison 

every time. In this way, we will nearly double operational 

efficiency. 

 

V. SKIPPING TREE 

Two-step comparison method only separates comparison 

into two steps. Still, we need to search exact repeat of query 

sequence in reference sequence bit by bit. In order to 

determine the maximal bits to skip within the scope of a 

window, skipping tree is used for searching query sequence 

1P in 1T . Given a query binary sequence 

1 2 31 mP p p p p . For 1,2,i m , every 1(1, )P i  is 

a prefix of 1P . We shall label the suffixes according to the 

location of the starting character, that is, 1 (1, )iP P i . As 

illustrate in chapter 3, the comparison between query 

sequence and reference sequence can be thought as window 

sliding. We may put 1P  to the left side of 1T  and slide 

1P  from left to right one bit at a time. However, the 

message a comparison can convey is not only whether the 

sequences are equal. 

If we can take advantage the characteristics of the internal 

arrangement of 1P , we can determine the maxi-mal bits to 

skip within the scope of a window. In order to achieve this 

goal, we construct a series of sequences based on the query 

binary sequence 1P  at first. Let 1 010011P  , 6m  . 

For convenience, we call it the preprocessing for 

construction of skipping tree. 

1 Create an two-dimensional array at the size of 

( 1) ( 1)m m    in order to store sequences from 

11mP  to 11P , as show in the Fig. 1. For convenience, we 

call it array 11P . 

 
Fig. 1. The string derived from P1 = 010011 by right shift operator. 

2 We xor 1iP  with 1P  then we get its corresponding 

result array, as show in the Fig. 2. For convenience, we call 

it array R in which iR  is corresponding result of 

( 1, 1 )iE P P
. 

 
Fig. 2. Result R for P1 = 010011.  

 

The pseudo code for creating array R is depicted in Alg. 1. 

Algorithm 1：Create the result matrix 

1  for  i = 1; i < SIZE_OF_PATTERN ; i++ 

2      Temp_P1 = P1; 
3      P1=P1<<1; 

4      Result_Matrix [i]= (Temp_P1 ) ^ (P1); 
5  end for 

The preprocessing for construction of skipping tree help 

us to record the characteristics of the internal arrangement of 

1P . To avoid search the pattern sequence bit by bit in target 

sequence, we will construct skipping tree based on the array 

above to decide the maximal bits to skip within the scope of 

a window. 

A skipping tree of 1P , which is in the length of m,  is a 

tree with the following properties:  

1) Each tree edge is labeled 0 or 1.  

2) Each internal node has at most two children.  

2) Each leaf node has stored the maximal bits to skip or 

NULL.  

3) For 1 i m  , each iR  has its corresponding labeled 

path from root to a leaf or an internal node.  

The skipping tree can be constructed from 1P  in 
2( )O m linear time. 

 
Fig. 3. The skipping tree for query sequence P1 = 010011. 

 

As illustrates in Fig. 3, after get the array R, there are 2 

steps to construct skipping tree. 

1) From 1R  to 1mR  , for iR , form a path from root to a 

node with the maximal bits to skip recorded inside, that is 

m i . 

2) For iR , traversal data from the back forward until the 

first bit of the sequence and insert the nodes to form a path 

from root to a node with the maximal bits to skip recorded 

inside. For convenience, we assume that 1 2i iR a a a , 

ia represents a bit in iR . 
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The rules for inserting node are as follows: 

Start from the root, check if there is a edge of root labeled 

ia .If there is not, add an edge labeled ia  to the root and 

add a new node to the edge. 

Repeat the same process until 2a . 

Follow the current node, add an edge labeled 1a  to the 

node and add a new node with the maximal bits to skip, 

m i , recorded inside to the edge. 

Initialize both of its children as NULL. 

The pseudo code for Skipping tree construction is 

depicted in Alg. 2. 

 
Algorithm 2: Build the skipping tree based on result matrix 

1  for  i = SIZE_OF_PATTERN - 1; i > 0; i-- 
2      for  j = SIZE_OF_PATTERN - 1; j >= i; j-- 

3          if  Result_Matrix[i][j] == 0  Then 
4              if  root->L_Leaf == NULL  Then 

5                  root->L_Leaf = new Node(); 

6              end if 
7              root = root->L_Leaf; 

8          else 
9              if  root->R_Leaf == NULL  Then 

10                  root->R_Leaf = new Node(); 

11              end if 
12              root = root->R_Leaf; 

13          end if 
14       end for 

15       root->jump = i; 

16   end for 
 

 

After the skipping tree is constructed, we discuss how to 

use it for searching query sequence 1P . 

In each comparison, the algorithm steps are as follows: 

1) We xor the 1T  within the window scope with 1P , we 

define the result sequence as S , 1 2 mS s s s , is  

represents a bit in sequence S .  

2) Traversal from ms  forward. Begin from the root, 

search the edge with the same label as is  until a NULL 

node. 

3) The maximal bits to skip is recorded in the parent node 

of the NULL node. 

The pseudo code for searching skipping tree is depicted in 

Alg. 3. 

 
Algorithm 3: Search the max jump number based on the 

skipping tree 

1  int temp_jump = SIZE_OF_PATTERN ; 
2  for  i = SIZE_OF_PATTERN - 1; i >= 0; i-- 

3      if (result[i] == 0) 
4          if  root.L_Leaf == NULL Then 

5              return temp_jump; 

6          end if 
7          root = root.L_Leaf; 

8          if  root.jump > 0 Then 
9              temp_jump = root.jump; 

10          end if 

11      else 
12          if  root.R_Leaf == NULL Then 

13              return temp_jump; 
14          end if 

15          root = root.R_Leaf; 

16          if  root.jump > 0 Then 
17              temp_jump = root.jump; 

18          end if 
19      end if 

20   end for 

To illustrate the mathematical principle of skipping tree, 

we will use boolean expressions. 

In boolean algebra, 1iP  can be expressed as 1P i , 

thus iR  can be expressed as ( 1^ ( 1 ))P P i .When we 

search the query sequence 1P  in reference sequence 1T  by 

the method of skipping tree, the search process can be 

abstracted as ( 1^ 1) ^ ( 1^ ( 1 ))P T P P i . 

( 1^ 1) ^ ( 1^ ( 1 ))P T P P i is equal to 1^ ( 1 )T P i . 

In other word, the search process can be described in 

mathematical formula 1^ ( 1 )T P i . It is exactly the 

same as process of window sliding illustrated above. 

 

VI. SKIPPING TREE 

We can see from the above chapters, the algorithm 

efficiency can be improved in three aspects, bit 

manipulation, two-step comparison and skipping tree. 

Bit manipulation is very simple, but its running time can 

be improved. All data in computer memory is stored in a 

binary form. Bit manipulation, is essentially directly 

manipulate integer in memory operations in the form of 

binary stream. At the same time, every bit of binary stream 

won’t affect each other. Due to bit manipulation directly 

manipulate memory data, the processing speed is very fast. 

When it comes to two-step comparison, as analyze in 

chapter, it will greatly reduce the need for second match 

because in the actual situation, the chance of successful 

match in first comparison is quite low. In macro level, we 

only need to deal with half of the amount of original data, 

which will double the operational efficiency. 

We now consider the expected time complexity of 

constructing and searching skipping tree. We assume that 

the length of the reference sequence T  is 2n  and the 

length of the query sequence P  is 2m , Different from 

other algorithm which construct tree based on reference 

sequence, we construct skipping tree based on the query 

sequence. The skipping tree can be constructed from 1P  in 
2( )O m  linear time. Space that is required to store this 

skipping tree structure is ( 1)*( 1)m m  .In the actual 

situation, the data size of reference sequence is much larger 

than the data size of query sequence. Thus, we greatly 

reduce the time of skipping tree construction. Meanwhile, 

we greatly reduce the amount of space that is required to 

store this skipping tree structure. 

From chapter 5, we know that the depth of the tree 

(including the root node) is equal to the length of the query 

sequence m . For convenience, we use variable d  to 

represent the search depth, d m .The sum of search depth 

and the maximal bits to skip is 1m . In worst cases, that is 

when the data in current window is exactly same as 1mR  , 

the maximal bits to skip is one bit , but we need to traverse 

the whole tree in O(m) linear time. In best cases, that is 

there is no suffix of the data in current window equal to any 

suffix of R array, the maximal bits to skip is m bit and 

search stop at the first layer of the tree.  
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For convenience, we emphasize some obvious properties 

of the skipping tree. 

There is one, and only one node with maximal bits to skip 

recorded inside in each layer. 

There is one, and only one path from root to each node. 

To calculate the average search depth d , we need to 

know the conditions for the end of the search. 

We label the path from root to the node in layer i  with 

maximal bits to skip recorded inside ipath . 

Search stop at layer i  of the tree, i m  only if 

1) It can go through the
ipath . 

2) It can’t go through 1 2, , ,i i mpath path path 
. 

If i m , since it is the last layer of the skipping tree, 

there is no layer below it. Search stop only if 

1) It can go through the mpath . 

Since the sum of search depth and the maximal bits to 

skip is 1m , for better generality, we deduce the ave-rage 

search depth d by the average maximal bits to skip. 

We assume that random variable X represent the ma-

ximal bits to skip,  1,2,X m  analyze before, we 

discuss the distribution of random variable X  res-pectively 

when 1X   and X x , 1x   the probability of 

going through the ipath  is 

11
( )
2

i

. 

Since there is only one path from root to the node in layer 

i  with maximal bits to skip recorded inside, we can easily 

deduce that the probability of going through the ipath  is 

11
( )
2

i

. 

Thus, the probability of not going through the ipath  is 

11
1 ( )

2

i
. 

Therefore, 

11
( 1) ( )

2

mP X  
 

Similarly, when X x , 1x    

1

1

1 1
( ) (1 )

2 2

x

m x m i
i

P X x


 


  
 

Hence, we get the formula for distribution of random 

variable X 

1

1

1

1
, 1

2

1 1
(1 ), 1

2 2

( )

m

x

m x m i
i

x

x

P X x





 




 




  



 

Based on the random variable mathematical expectation  

formula, we get 

1

1
2 1

1 1
. (1 )

2 2 2

jm

m m j m i
j i

j
EX



  
 

 
   

 
 

 

We use EX  to estimate the average maximal bits to skip. 

Thus, the average search depth is ( 1)m EX  . 

As show in Fig. 4, it describes function curve with 

changes of m in mathematical expectation of random 

variable X. m range from 1000 to 10000, and the step size is 

400.We can easily see from the Fig. 4 that changes of m in 

mathematical expectation of random variable X is nearly 

linear growth process. From the points in the Fig. 4, we 

know that the average search depth is between 2 and 3. Thus, 

the average search depth is quite low. In each comparison, 

window is almost skipping the whole window length. 

 

Fig. 4. Tendency of EX. 

 

VII. RESULT 

The skipping tree algorithm was evaluated in a computer 

composed of an Intel Core i5 3210M quad-core processor, 

running at 2.5GHz, with 6GB DRAM. 

We extracted DNA sequence from GEN BANK database 

to do the contrast experiment to evaluate the performance of 

skipping tree algorithm, KMP and suffix array. The 

reference sequence are extracted from the chromosomes of 

animal Monodelphis domestica, Equus caballus isolate 

Twilight breed thoroughbred, Sus scrofa breed mixed and 

Theobroma cacao cultivar Matina. We used difference sizes 

of reference sequence in our experiment, ranging from 1M 

to 32M. All the query sequences we used are extracted from 

the chromosomes of corresponding animal which provides 

the reference sequence for them. Several sizes of query 

sequences were used in the experimental test, ranging from 

8 to 4096 nucleotides long. 

Most methods of gene sequence alignment can’t strike 

balance between preprocess and search. That is one of the 

reason why those algorithm can’t achieve better 

performance overall. KMP and suffix array is classical 

example. KPM represents the algorithm which has fast 

preprocess but intolerable search efficiency, while suffix 

array represents the algorithm which has excellent search 

efficiency but intolerable preprocess time. Thus, we choose 

these two algorithms to make a contrastive evaluation with 

. Since

. As
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skipping tree algorithm to illustrate how skipping tree strike 

balance between preprocess and search. 

Table II and Table III give the specific data of the 

contrastive experiments. We draw Fig. 5-Fig. 11 based on 

these two tables. 

In the case of different length of reference sequence and 

difference length of query sequence, we test the KMP 

algorithm. As shown in the Fig. 5, the total processing time 

increases obviously with the increase of the length of 

reference sequence. Specially, in the case of the same length 

of reference sequence, with the increase of query sequence, 

the total processing time drops down. 

 
 

Fig. 5. The benchmark test of overall performance of KMP. 

 

Similarly, we test the suffix tree. As shown in the Fig. 6, 

the total processing time increases sharply with the increase 

of the length of reference sequence. However, the length of 

query doesn’t affect the total processing time a lot. 

Here, we simply calculate total processing time by adding 

the preprocess time and search time up. Besides, in the case 

of the same size of reference sequence, with the increase of  

the size of query sequence, performance of  skipping tree 

drop down in the preprocess stage but go up in the searching 

stage. 

 

 
Fig. 6. The benchmark test of overall performance of suffix array. 

 

As shown in the Fig. 7, the total processing time hardly 

increases both with the increase of the length of reference 

sequence and query sequence. We can conclude that the 

total processing time of skipping tree is the shortest. 

Specially, skipping tree has close performance as KMP in 

preprocess stage and as suffix array in the searching stage 

when the size of query sequence is same.  

 
Fig. 7. The benchmark test of overall performance of skipping tree. 

 

 

TABLE II: A CONTRASTIVE EVALUATION OF PREPROCESS TIEM OF KMP, SUFFIX ARRAY AND SKIPPING TREE ALGORITHM  

The same size of query sequence(4096 nucleotides) The same size of reference sequence(16777216 nucleotides) 

Reference 

Sequences/nucleotide 

Skipping 

Tree 

KMP Suffix 

Array 

Query 

Sequences/nucleotide 

Skipping 

Tree 

KMP Suffix 

Array 

1048576 (1M) 4.165 0.003 1.669 8 0 0 50.709 

2097152 (2M) 4.001 0.003 5.22 32 0 0 50.534 

4194304 (4M) 4.447 0.002 11.012 128 0.005 0 49.666 

8388608 (8M) 4.442 0.002 24.023 512 0.065 0 49.398 

16777216 (16M) 4.236 0.002 50.022 1024 0.278 0 49.374 

33554432 (32M) 4.166 0.003 110.668 2048 1.176 0.001 49.528 

4096 4.236 0.002 50.022 

 
TABLE III: A CONTRASTIVE EVALUATION OF SEARCHING TIEM OF KMP, SUFFIX ARRAY AND SKIPPING SUFFIX ALGORITHM  

The same size of query sequence(4096 nucleotides) The same size of reference sequence(16777216 nucleotides) 

Reference 

Sequences/nucleotide 

Skipping 

Tree 

KMP Suffix 

Array 

Query 

Sequences/nucleotide 

Skipping 

Tree 

KMP Suffix 

Array 

1048576 (1M) 0.007 0.607 0 8 1.58 12.012 0.001 

2097152 (2M) 0.013 1.15 0.001 32 0.321 9.027 0.001 

4194304 (4M) 0.025 2.436 0 128 0.153 9.113 0.001 

8388608 (8M) 0.049 4.362 0 512 0.107 9.084 0 

16777216 (16M) 0.101 9.41 0 1024 0.122 8.75 0 

33554432 (32M) 0.197 20.895 0 2048 0.095 9.442 0 

4096 0.101 9.41 0 
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Fig. 8. Contrastive evaluation of preprocess time of KMP, suffix array and 

skipping tree algorithm in the case of the 4096 nucleotides long query 

sequence. 

 
Fig. 9. Contrastive evaluation of searching time of KMP, suffix array and 

skipping tree algorithm in the case of the 4096 nucleotides long query 

sequence. 

 
Fig. 10. Contrastive evaluation of preprocess time of KMP, suffix array and 
skipping tree algorithm in the case of the 16MB large reference sequence. 

 
Fig. 11. Contrastive evaluation of searching time of KMP, suffix array and 
skipping tree algorithm in the case of the 16MB large reference sequence. 

We compare the preprocess time of KMP, suffix array, 

skipping tree in the case of different reference sequence size 

when the query sequence is 4096 nucleotides long. The 

result is illustrated in Fig. 8. Because skipping tree is built 

based on query sequence, there is scarcely any influence 

when the size of reference changes. We can see from the Fig. 

8 that it has close efficiency with KMP.  

In Fig. 9, the searching performance of these three 

algorithms with the increase of reference sequence is 

portrayed. Though with the increase of reference sequence 

skipping tree cannot perform as better as suffix tree do, the 

result is still satisfactory. 

As illustrate in Fig. 10, in the condition of the same size 

of reference sequence, with the increase of query sequence, 

the preprocess time of skipping tree increase sharply since 

the scale of the skipping tree depend on the length of query 

sequence. However, the longer query sequence is, the faster 

searching time will be, because in probability, the longer 

query sequence is, the lower search depth will be. Thus, 

skipping tree performs better in searching stage if size of 

query sequence increases. The more details are observed in 

Fig. 11. 
 

VIII. CONCLUSION  

This paper proposed a new algorithm skipping tree to 

gene sequence alignment problem by applying a new 

encoded mode for DNA sequence and a new data structure, 

skipping tree, which are extra applicable for accelerating 

DNA sequence matching. We compare the computation 

efficiency of our algorithm, skipping tree,  

KMP and suffix array both in preprocess stage and 

multiple genome sequence matching stage. 

These observation reveal that skipping tree algorithm far 

more efficient than suffix array in the preprocess stage, 

which can be constructed from reference sequence in 
2( )O m

 linear time. Besides, it is also better than KMP in 

multiple genome sequence matching. When the length of the 

reference sequence is between 1000 and 10000, the average 

search depth is between 2 and 3.Thus, it strikes the balance 

between preprocess time and multiple genome sequence 

matching time successfully. According to the results, there 

are convincing reasons to believe that multiple genome 

sequence matching based on skipping tree is an efficient 

approach to high performance bio-informatics applications. 
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