


Abstract—In this paper, a new algorithm, skipping suffix

algorithm based on a new encoded mode for genome sequence

aimed at accelerating multiple genome sequence matching are

proposed. By introducing binary coding, the efficiency of gene

sequence alignment gets improved obviously. Besides, we

decide the maximal bits to skip by constructing skipping tree.

A contrastive evaluation of the computational efficiency of

KMP algorithm, suffix array and skipping suffix algorithm

shows that preprocess of skipping suffix algorithm is more

than 12 times speedup than that of suffix array. Moreover,

multiple genome sequence matching based on suffix array is

more than 50 times speedup than that of KMP. In a word,

skipping suffix algorithm strike balance between preprocess

and search successfully which better help it fit into large-scale

genetic data matching.

Index Terms—Bioinformatics, skipping tree, bit

manipulation, binary search.

I. INTRODUCTION

Thanks to Human Genome Project, DNA sequencing

technology has developed at unprecedented speed within the

latest decade. As more and more biological data are being

created every day, there is a pressing need to extract useful

information from a sea of biological data efficiently [1],

which usually begins with identifying particular DNA

sequence which encoding specific protein in order to

determine the biological property of certain DNA sequence.

Thus, it raises a significant problem, comparison of

similarity between two DNA sequences.

Traditionally, DNA sequences will be abstracted as a

string which incorporates only a collection of four letters, A,

G, C, T. Also there are many algorithms related to genome

sequence matching problem [2], [3]. Meanwhile, the suffix

tree [4], as a significant data structures in the field of string

matching, has been used widely in gene sequence alignment.

Although suffix tree has numerous advantages, like

powerful indexing capability, taking hugeness of genes on a

chromosome into consideration, even there is a new

structure named suffix array [5] based on it, it still consumes

intolerable time in constructing [6] the suffix tree while

doing preprocess on reference sequences.

Also, there are some methods which do some preprocess

on query sequences like KMP Algorithm [8], Boyer and

Moore Algorithm [9], and Sunday Algorithm [10].

Nowadays, there are many algorithms based on the same

thought that they collect the information of query sequences

Manuscript received July 19, 2014; revised October 29, 2014.
The authors are with School of Software Engineering, Sichuan

University, 610225 Chengdu, China (e-mail: xzhflying@163.com,

viviancheng1993@gmail.com, dingyidy163@163.com,
imtianziqiang@gmail.com).

and then use it to determine how to move the window of

query sequence under specific condition [11]. However, the

strategies that they used to determine how to move the

windows are still not effective enough.

In addition, there are some new algorithms based on the

thought of making a memo of matching condition to make

the decision dynamically like bit-parallel algorithm [12].

In this paper we put forward a solution to gene sequence

alignment problem by applying a new coding scheme in

gene sequence encoding which is used in Gang Liao’s paper

[7]. In the new encoding, we do not compare two DNA

sequences in the form of text string but in the form of binary

string. In this way, we can introduce bit manipulation into

comparison process which has higher efficiency compared

with string comparison. At the same time, we can compress

the size of data as well.

Enlightened by suffix tree, we design a new algorithm to

construct tree-type data structure, which is named skipping

tree, to improve searching efficiency when process binary

streams.

Considering the hugeness of genes on a chromosome, we

hope to find a method to avoid construct skipping tree based

on those huge data. Since one of the major problems in

bioinformatics is to find out the biological properties of

certain DNA sequence by searching in the DNA or protein

sequence database, we are considering construct skipping

tree based on the pattern string in the DNA or protein

sequence database. In this way, we can reduce the time

consuming in preprocessing data of the whole chromosome.

Besides, the pattern string in data-base is reusable.

Since exact repeats usually form the core blocks of

approximate repeats, the algorithm we designed will serve

exact matching of DNA.

II. A NEW ENCODED MODE

In traditional method of gene sequence alignment, DNA

sequences will be always abstracted as a string. Initially, for

the four nucleic acid bases include adenine, guanine,

thymine, and cytosine which make up DNA, define Σ = {A,

C, G, T}. The collection Σ only incorporates four letters, A,

G, C, T. In other words, only 4 different numbers are needed

to encode gene sequence, which are just a small subset of

text string. Thus, as shown in the Table I, we decide to

propose a new encoding scheme, in which gene sequences

will be represented as binary stream.

TABLE I: THE ENCODED MODE TABLE FOR FOUR NUCLEIC ACID BASES

A(adenine) 00

T(thymine) 11

C(cytosine) 10

G(guanine) 01

A Multiple Genome Sequence Matching Based on

Skipping Tree

Zihuan Xu, Kewei Cheng, Yi Ding, Ziqiang Tian, and Hui Zhao

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

78DOI: 10.7763/IJMLC.2015.V5.487

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

We proposed such encoding scheme based on the

following facts.

 We can cut the storage cost.

 We increase efficiency of comparison by bringing bit

manipulation into comparison process.

Due to the double helix of DNA, there exists some

complementary matching relationship between different

bases, for instance A is complementary base of T and C is

complementary base of G. Hence, Gene sequences of equal

relations can be divided into two cases. One is that two

DNA sequences are the same. The other is that two DNA

sequences are complementary. In traditional way, there is no

way to manifest the complementary relation-ship between

two DNA sequences. Therefore, it has no efficient way to

determine the equal relationship between the

complementary DNA sequences. However, using our

encoding scheme, complementary DNA sequences of target

gene sequence can be obtained easily by inverting target

gene sequences bitwise. For example, A is encoded as 00,

whose complement is 11 which is used to represent T. In the

same way, it also works for the complementary base pairs C

and G.

III. BIT MANIPULATION IN GENE SEQUENCE ALIGNMENT

Based on the new coding scheme above, DNA sequences

are abstracted as binary streams, we need to introduce bit

manipulation into comparison process.

For convenience, we define the reference sequence as T

and query sequence as P. n is indicated as the number of

nucleic acid bases in reference sequence and m is denoted as

the number of nucleic acid bases in query sequence. Thus,

after use the coding scheme illustrated before,

1 2 3 2nT t t t t and 1 2 3 2mP p p p p , it and ip

represent a bit in reference sequence and query sequence

respectively. For convenience, we assume that

1 2(,) i i i jT i j t t t t 
.

Exclusive or is a logical operation that outputs true

whenever both inputs differ (one is true, the other is

false).Taking advantage of it, to determine whether two

binary strings are equal, we xor reference sequence with

query sequence. Only if the result is 0 can two binary strings

are equal. For convenience, we express the exclusive or

operation as function

1 2 1 2(,) ^E S S S S
.

Besides, mask can help us to take out the data on the

specific location.

After introduce the basic bit manipulation, we will then

describe the algorithm of gene sequence alignment.

We regard the query sequence as a window. Searching the

exact repeat of P in T actually is the window sliding from

left to right one bit at a time.

There are 7 steps in gene sequence alignment.

1. Put P to the most left side of T

2. Take out the data in T within the window scope, that is

(, 2 1), 1,2,3 2 2 1T i i m i n m     , then compute

bitwise exclusion-OR of P and it.

3. If the result is equal to 0.Then record the position of the

first bit we took out, that is i .

4. Else, we perform left shift of the bits twice in the

reference sequence in order to slide the window.

5. Repeat the steps 2-5 until the window is slide to the

most right side of T

6. Count all positions recorded.

7. Finish.

As show above, in this way we can replace the string

manipulation functions with bit manipulation, which have

higher execution efficiency.

IV. TWO-STEP COMPARISON

As illustrate above, a base is represented by two bits.

Only if the first bit of each base in T matches the first bit of

each base in P can they possibly match each other. Hence,

we divide the process of comparing into two steps in order

to compare two bits of each base respectively. For

convenience, we define the binary stream constituted by the

first bit of each base in T as 1T . Similarly, we define the

binary stream constituted by the second bit of each base in

T as 2T . In the same way, we get 1P and 2P .

There are 9 steps in gene sequence alignment.

1. Preprocess T and P .

We separate two bits of each base in T and P

respectively in order to get 1T , 2T and 1P , 2P .

2. Put 1P to the most left side of 1T

3. Determine the exact repeat of 1P contained in 1T .

Then record the position of the first bit of the exact repeat of

1P (we defined it as pos).

4. Slide the window to pos of 2T , check if there is an

exact repeat of 2P in 2T

5. If there exist an exact repeat of 2P in 2T , record the

position pos.

6. Else, slide the window to pos+1 of 1T .

7. Repeat the steps 3-5 until he window is slide to the

most right side of 1T

8. Count all positions recorded.

9. Finish.

Now, we will analyze how it effects on improving

matching efficiency by probability and statistics method.

Only if we can find a sub-string in 1T which can match

with 1P , then we will get to the next step to check whether

2T can match with 2P at the same position. For

convenience, we assume that the length of T is 2n , and the

length of P is 2m . Thus, the length of 1T and 2T is n ,

and the length of 1P and 2P is m . In each comparison,

we can define the probability of the success match between

1T and 1P as (1 1)P T P . For every bit within the scope

of window, we assign a label 1iT for it,

1,2,i m .Similarly, we assign a label 1iP for every

bits of 1P , 1,2,i m . We define the success match

between 1iT and 1iP as event iA . Event iA are

independent with each other. We assume that the pro-

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

79

http://en.wikipedia.org/wiki/Logical_connective

bability of occurrence of each nucleic acid base is the same.

The probability of occurrence of event
iA is 0.5. Based on

mutually independent event probability multi-plication

formula, we get
1 2

1
() ()

2

m

mP A A A  .

Hence, we can get (1 1)P T P

1
(1 1) ()

2

mP T P 

From the statistical data, the number of nucleic acid bases

in query sequence is between 1000 and 10000.Here we use

the average 5000 as the value of m .

Each time, when window slide, the probability of success

match between 1P and 1T is
50001

()
2

, approximately

15067.080 10 .

In other word, the chance for the second comparison is

quite low. There is no need to make second comparison

every time. In this way, we will nearly double operational

efficiency.

V. SKIPPING TREE

Two-step comparison method only separates comparison

into two steps. Still, we need to search exact repeat of query

sequence in reference sequence bit by bit. In order to

determine the maximal bits to skip within the scope of a

window, skipping tree is used for searching query sequence

1P in 1T . Given a query binary sequence

1 2 31 mP p p p p . For 1,2,i m , every 1(1,)P i is

a prefix of 1P . We shall label the suffixes according to the

location of the starting character, that is, 1 (1,)iP P i . As

illustrate in chapter 3, the comparison between query

sequence and reference sequence can be thought as window

sliding. We may put 1P to the left side of 1T and slide

1P from left to right one bit at a time. However, the

message a comparison can convey is not only whether the

sequences are equal.

If we can take advantage the characteristics of the internal

arrangement of 1P , we can determine the maxi-mal bits to

skip within the scope of a window. In order to achieve this

goal, we construct a series of sequences based on the query

binary sequence 1P at first. Let 1 010011P  , 6m  .

For convenience, we call it the preprocessing for

construction of skipping tree.

1 Create an two-dimensional array at the size of

(1) (1)m m   in order to store sequences from

11mP  to 11P , as show in the Fig. 1. For convenience, we

call it array 11P .

Fig. 1. The string derived from P1 = 010011 by right shift operator.

2 We xor 1iP with 1P then we get its corresponding

result array, as show in the Fig. 2. For convenience, we call

it array R in which iR is corresponding result of

(1, 1)iE P P
.

Fig. 2. Result R for P1 = 010011.

The pseudo code for creating array R is depicted in Alg. 1.

Algorithm 1：Create the result matrix

1 for i = 1; i < SIZE_OF_PATTERN ; i++

2 Temp_P1 = P1;
3 P1=P1<<1;

4 Result_Matrix [i]= (Temp_P1) ^ (P1);
5 end for

The preprocessing for construction of skipping tree help

us to record the characteristics of the internal arrangement of

1P . To avoid search the pattern sequence bit by bit in target

sequence, we will construct skipping tree based on the array

above to decide the maximal bits to skip within the scope of

a window.

A skipping tree of 1P , which is in the length of m, is a

tree with the following properties:

1) Each tree edge is labeled 0 or 1.

2) Each internal node has at most two children.

2) Each leaf node has stored the maximal bits to skip or

NULL.

3) For 1 i m  , each iR has its corresponding labeled

path from root to a leaf or an internal node.

The skipping tree can be constructed from 1P in
2()O m linear time.

Fig. 3. The skipping tree for query sequence P1 = 010011.

As illustrates in Fig. 3, after get the array R, there are 2

steps to construct skipping tree.

1) From 1R to 1mR  , for iR , form a path from root to a

node with the maximal bits to skip recorded inside, that is

m i .

2) For iR , traversal data from the back forward until the

first bit of the sequence and insert the nodes to form a path

from root to a node with the maximal bits to skip recorded

inside. For convenience, we assume that 1 2i iR a a a ,

ia represents a bit in iR .

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

80

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

The rules for inserting node are as follows:

Start from the root, check if there is a edge of root labeled

ia .If there is not, add an edge labeled ia to the root and

add a new node to the edge.

Repeat the same process until 2a .

Follow the current node, add an edge labeled 1a to the

node and add a new node with the maximal bits to skip,

m i , recorded inside to the edge.

Initialize both of its children as NULL.

The pseudo code for Skipping tree construction is

depicted in Alg. 2.

Algorithm 2: Build the skipping tree based on result matrix

1 for i = SIZE_OF_PATTERN - 1; i > 0; i--
2 for j = SIZE_OF_PATTERN - 1; j >= i; j--

3 if Result_Matrix[i][j] == 0 Then
4 if root->L_Leaf == NULL Then

5 root->L_Leaf = new Node();

6 end if
7 root = root->L_Leaf;

8 else
9 if root->R_Leaf == NULL Then

10 root->R_Leaf = new Node();

11 end if
12 root = root->R_Leaf;

13 end if
14 end for

15 root->jump = i;

16 end for

After the skipping tree is constructed, we discuss how to

use it for searching query sequence 1P .

In each comparison, the algorithm steps are as follows:

1) We xor the 1T within the window scope with 1P , we

define the result sequence as S , 1 2 mS s s s , is

represents a bit in sequence S .

2) Traversal from ms forward. Begin from the root,

search the edge with the same label as is until a NULL

node.

3) The maximal bits to skip is recorded in the parent node

of the NULL node.

The pseudo code for searching skipping tree is depicted in

Alg. 3.

Algorithm 3: Search the max jump number based on the

skipping tree

1 int temp_jump = SIZE_OF_PATTERN ;
2 for i = SIZE_OF_PATTERN - 1; i >= 0; i--

3 if (result[i] == 0)
4 if root.L_Leaf == NULL Then

5 return temp_jump;

6 end if
7 root = root.L_Leaf;

8 if root.jump > 0 Then
9 temp_jump = root.jump;

10 end if

11 else
12 if root.R_Leaf == NULL Then

13 return temp_jump;
14 end if

15 root = root.R_Leaf;

16 if root.jump > 0 Then
17 temp_jump = root.jump;

18 end if
19 end if

20 end for

To illustrate the mathematical principle of skipping tree,

we will use boolean expressions.

In boolean algebra, 1iP can be expressed as 1P i ,

thus iR can be expressed as (1^ (1))P P i .When we

search the query sequence 1P in reference sequence 1T by

the method of skipping tree, the search process can be

abstracted as (1^ 1) ^ (1^ (1))P T P P i .

(1^ 1) ^ (1^ (1))P T P P i is equal to 1^ (1)T P i .

In other word, the search process can be described in

mathematical formula 1^ (1)T P i . It is exactly the

same as process of window sliding illustrated above.

VI. SKIPPING TREE

We can see from the above chapters, the algorithm

efficiency can be improved in three aspects, bit

manipulation, two-step comparison and skipping tree.

Bit manipulation is very simple, but its running time can

be improved. All data in computer memory is stored in a

binary form. Bit manipulation, is essentially directly

manipulate integer in memory operations in the form of

binary stream. At the same time, every bit of binary stream

won’t affect each other. Due to bit manipulation directly

manipulate memory data, the processing speed is very fast.

When it comes to two-step comparison, as analyze in

chapter, it will greatly reduce the need for second match

because in the actual situation, the chance of successful

match in first comparison is quite low. In macro level, we

only need to deal with half of the amount of original data,

which will double the operational efficiency.

We now consider the expected time complexity of

constructing and searching skipping tree. We assume that

the length of the reference sequence T is 2n and the

length of the query sequence P is 2m , Different from

other algorithm which construct tree based on reference

sequence, we construct skipping tree based on the query

sequence. The skipping tree can be constructed from 1P in
2()O m linear time. Space that is required to store this

skipping tree structure is (1)*(1)m m  .In the actual

situation, the data size of reference sequence is much larger

than the data size of query sequence. Thus, we greatly

reduce the time of skipping tree construction. Meanwhile,

we greatly reduce the amount of space that is required to

store this skipping tree structure.

From chapter 5, we know that the depth of the tree

(including the root node) is equal to the length of the query

sequence m . For convenience, we use variable d to

represent the search depth, d m .The sum of search depth

and the maximal bits to skip is 1m . In worst cases, that is

when the data in current window is exactly same as 1mR  ,

the maximal bits to skip is one bit , but we need to traverse

the whole tree in O(m) linear time. In best cases, that is

there is no suffix of the data in current window equal to any

suffix of R array, the maximal bits to skip is m bit and

search stop at the first layer of the tree.

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

81

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://dict.cn/%5B%E8%AE%A1%5D%20traverse%20tree
http://dict.cn/%5B%E8%AE%A1%5D%20traverse%20tree
javascript:void(0);

For convenience, we emphasize some obvious properties

of the skipping tree.

There is one, and only one node with maximal bits to skip

recorded inside in each layer.

There is one, and only one path from root to each node.

To calculate the average search depth d , we need to

know the conditions for the end of the search.

We label the path from root to the node in layer i with

maximal bits to skip recorded inside ipath .

Search stop at layer i of the tree, i m only if

1) It can go through the
ipath .

2) It can’t go through 1 2, , ,i i mpath path path 
.

If i m , since it is the last layer of the skipping tree,

there is no layer below it. Search stop only if

1) It can go through the mpath .

Since the sum of search depth and the maximal bits to

skip is 1m , for better generality, we deduce the ave-rage

search depth d by the average maximal bits to skip.

We assume that random variable X represent the ma-

ximal bits to skip,  1,2,X m analyze before, we

discuss the distribution of random variable X res-pectively

when 1X  and X x , 1x  the probability of

going through the ipath is

11
()
2

i

.

Since there is only one path from root to the node in layer

i with maximal bits to skip recorded inside, we can easily

deduce that the probability of going through the ipath is

11
()
2

i

.

Thus, the probability of not going through the ipath is

11
1 ()

2

i
.

Therefore,

11
(1) ()

2

mP X  

Similarly, when X x , 1x 

1

1

1 1
() (1)

2 2

x

m x m i
i

P X x


 


  

Hence, we get the formula for distribution of random

variable X

1

1

1

1
, 1

2

1 1
(1), 1

2 2

()

m

x

m x m i
i

x

x

P X x





 




 




  




Based on the random variable mathematical expectation

formula, we get

1

1
2 1

1 1
. (1)

2 2 2

jm

m m j m i
j i

j
EX



  
 

 
   

 
 

We use EX to estimate the average maximal bits to skip.

Thus, the average search depth is (1)m EX  .

As show in Fig. 4, it describes function curve with

changes of m in mathematical expectation of random

variable X. m range from 1000 to 10000, and the step size is

400.We can easily see from the Fig. 4 that changes of m in

mathematical expectation of random variable X is nearly

linear growth process. From the points in the Fig. 4, we

know that the average search depth is between 2 and 3. Thus,

the average search depth is quite low. In each comparison,

window is almost skipping the whole window length.

Fig. 4. Tendency of EX.

VII. RESULT

The skipping tree algorithm was evaluated in a computer

composed of an Intel Core i5 3210M quad-core processor,

running at 2.5GHz, with 6GB DRAM.

We extracted DNA sequence from GEN BANK database

to do the contrast experiment to evaluate the performance of

skipping tree algorithm, KMP and suffix array. The

reference sequence are extracted from the chromosomes of

animal Monodelphis domestica, Equus caballus isolate

Twilight breed thoroughbred, Sus scrofa breed mixed and

Theobroma cacao cultivar Matina. We used difference sizes

of reference sequence in our experiment, ranging from 1M

to 32M. All the query sequences we used are extracted from

the chromosomes of corresponding animal which provides

the reference sequence for them. Several sizes of query

sequences were used in the experimental test, ranging from

8 to 4096 nucleotides long.

Most methods of gene sequence alignment can’t strike

balance between preprocess and search. That is one of the

reason why those algorithm can’t achieve better

performance overall. KMP and suffix array is classical

example. KPM represents the algorithm which has fast

preprocess but intolerable search efficiency, while suffix

array represents the algorithm which has excellent search

efficiency but intolerable preprocess time. Thus, we choose

these two algorithms to make a contrastive evaluation with

. Since

. As

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

82

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

skipping tree algorithm to illustrate how skipping tree strike

balance between preprocess and search.

Table II and Table III give the specific data of the

contrastive experiments. We draw Fig. 5-Fig. 11 based on

these two tables.

In the case of different length of reference sequence and

difference length of query sequence, we test the KMP

algorithm. As shown in the Fig. 5, the total processing time

increases obviously with the increase of the length of

reference sequence. Specially, in the case of the same length

of reference sequence, with the increase of query sequence,

the total processing time drops down.

Fig. 5. The benchmark test of overall performance of KMP.

Similarly, we test the suffix tree. As shown in the Fig. 6,

the total processing time increases sharply with the increase

of the length of reference sequence. However, the length of

query doesn’t affect the total processing time a lot.

Here, we simply calculate total processing time by adding

the preprocess time and search time up. Besides, in the case

of the same size of reference sequence, with the increase of

the size of query sequence, performance of skipping tree

drop down in the preprocess stage but go up in the searching

stage.

Fig. 6. The benchmark test of overall performance of suffix array.

As shown in the Fig. 7, the total processing time hardly

increases both with the increase of the length of reference

sequence and query sequence. We can conclude that the

total processing time of skipping tree is the shortest.

Specially, skipping tree has close performance as KMP in

preprocess stage and as suffix array in the searching stage

when the size of query sequence is same.

Fig. 7. The benchmark test of overall performance of skipping tree.

TABLE II: A CONTRASTIVE EVALUATION OF PREPROCESS TIEM OF KMP, SUFFIX ARRAY AND SKIPPING TREE ALGORITHM

The same size of query sequence(4096 nucleotides) The same size of reference sequence(16777216 nucleotides)

Reference

Sequences/nucleotide

Skipping

Tree

KMP Suffix

Array

Query

Sequences/nucleotide

Skipping

Tree

KMP Suffix

Array

1048576 (1M) 4.165 0.003 1.669 8 0 0 50.709

2097152 (2M) 4.001 0.003 5.22 32 0 0 50.534

4194304 (4M) 4.447 0.002 11.012 128 0.005 0 49.666

8388608 (8M) 4.442 0.002 24.023 512 0.065 0 49.398

16777216 (16M) 4.236 0.002 50.022 1024 0.278 0 49.374

33554432 (32M) 4.166 0.003 110.668 2048 1.176 0.001 49.528

4096 4.236 0.002 50.022

TABLE III: A CONTRASTIVE EVALUATION OF SEARCHING TIEM OF KMP, SUFFIX ARRAY AND SKIPPING SUFFIX ALGORITHM

The same size of query sequence(4096 nucleotides) The same size of reference sequence(16777216 nucleotides)

Reference

Sequences/nucleotide

Skipping

Tree

KMP Suffix

Array

Query

Sequences/nucleotide

Skipping

Tree

KMP Suffix

Array

1048576 (1M) 0.007 0.607 0 8 1.58 12.012 0.001

2097152 (2M) 0.013 1.15 0.001 32 0.321 9.027 0.001

4194304 (4M) 0.025 2.436 0 128 0.153 9.113 0.001

8388608 (8M) 0.049 4.362 0 512 0.107 9.084 0

16777216 (16M) 0.101 9.41 0 1024 0.122 8.75 0

33554432 (32M) 0.197 20.895 0 2048 0.095 9.442 0

4096 0.101 9.41 0

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

83

Fig. 8. Contrastive evaluation of preprocess time of KMP, suffix array and

skipping tree algorithm in the case of the 4096 nucleotides long query

sequence.

Fig. 9. Contrastive evaluation of searching time of KMP, suffix array and

skipping tree algorithm in the case of the 4096 nucleotides long query

sequence.

Fig. 10. Contrastive evaluation of preprocess time of KMP, suffix array and
skipping tree algorithm in the case of the 16MB large reference sequence.

Fig. 11. Contrastive evaluation of searching time of KMP, suffix array and
skipping tree algorithm in the case of the 16MB large reference sequence.

We compare the preprocess time of KMP, suffix array,

skipping tree in the case of different reference sequence size

when the query sequence is 4096 nucleotides long. The

result is illustrated in Fig. 8. Because skipping tree is built

based on query sequence, there is scarcely any influence

when the size of reference changes. We can see from the Fig.

8 that it has close efficiency with KMP.

In Fig. 9, the searching performance of these three

algorithms with the increase of reference sequence is

portrayed. Though with the increase of reference sequence

skipping tree cannot perform as better as suffix tree do, the

result is still satisfactory.

As illustrate in Fig. 10, in the condition of the same size

of reference sequence, with the increase of query sequence,

the preprocess time of skipping tree increase sharply since

the scale of the skipping tree depend on the length of query

sequence. However, the longer query sequence is, the faster

searching time will be, because in probability, the longer

query sequence is, the lower search depth will be. Thus,

skipping tree performs better in searching stage if size of

query sequence increases. The more details are observed in

Fig. 11.

VIII. CONCLUSION

This paper proposed a new algorithm skipping tree to

gene sequence alignment problem by applying a new

encoded mode for DNA sequence and a new data structure,

skipping tree, which are extra applicable for accelerating

DNA sequence matching. We compare the computation

efficiency of our algorithm, skipping tree,

KMP and suffix array both in preprocess stage and

multiple genome sequence matching stage.

These observation reveal that skipping tree algorithm far

more efficient than suffix array in the preprocess stage,

which can be constructed from reference sequence in
2()O m

 linear time. Besides, it is also better than KMP in

multiple genome sequence matching. When the length of the

reference sequence is between 1000 and 10000, the average

search depth is between 2 and 3.Thus, it strikes the balance

between preprocess time and multiple genome sequence

matching time successfully. According to the results, there

are convincing reasons to believe that multiple genome

sequence matching based on skipping tree is an efficient

approach to high performance bio-informatics applications.

AUTHORS’ CONTRIBUTION

Kewei Cheng and Zihuan Xu contributed equally to this

paper.

ACKNOWLEDGMENT

This work was completely supported and funded by

Sichuan University College. All authors read and approved

the final manuscript.

REFERENCES

[1] J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nature
Biotechnology, vol. 26, pp. 1135-1145, Oct. 2008.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, 3rd ed., The MIT Press, 2009.

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

84

[3] A. H. F. Laender and A. L. Oliveira, “Lecture notes in computer

science,” in Proc. 9th International Symposium on String Processing

and Information Retrieval Conf., Lisbon, 2002, pp. 31-43.

[4] E. M. McCreight, “A space-economical suffix tree construction

algorithm,” Journal of the ACM, vol. 23, pp. 262-272, April 1976.
[5] U. Manber and G. Myers, “Suffix arrays: A new method for online

string searches,” SIAM Journal on Computing, vol. 22, pp. 935-948,

1993.
[6] R. Grossi and J. S. Vitter, “Compressed suffix arrays and suffix trees

with applications to text indexing and string matching,” SIAM Journal
on Computing, vol. 35, pp. 378-407, 2005.

[7] G. Liao, Q. Sun, L. Ma, S. Ding, and W. Xie, “Ultra-fast multiple

genome sequence matching using GPU,” arXiv Preprint arXiv:
1303.3692, 2013.

[8] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, “Fast pattern matching
in strings,” SIAM Journal on Computing, vol. 6, pp. 323-350, 1977.

[9] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”

Communications of the ACM, vol. 20, pp. 762-772, October 1977.
[10] D. M. Sunday, “A very fast substring search algorithm,”

Communications of the ACM, vol. 33, pp. 132-142, 1990.
[11] K. Nałęcz-Charkiewicz and R. Nowak, “Algorithm to search for

genomic rearrangements,” in Proc. SPIE 8903, Photonics

Applications in Astronomy, Communications, Industry, and High-
Energy Physics Experiments 2013, Wilga, 2013.

[12] K. H. Chen, G. S. Huang, and R. C. T. Lee, “Bit-parallel algorithms
for exact circular string matching,” The Computer Journal, vol. 57, pp.

731-743, August 2014.

Zihuan Xu is currently an undergraduate in the
School of Software Engineering, Sichuan

University, China.
His research concerns bioinformatics and high

performance computing. And now he focuses on

multiple genome sequence matching and
proteomics. He is also interested in parallel

programming.

Kewei Cheng is currently an undergraduate in the

School of Software Engineering, Sichuan

University, China.

She is engaged in bioinformatics and data

mining research. More specifically, her research
concerns multiple genome sequence matching and

proteomics.

Yi Ding is currently an undergraduate student in

the School of Software Engineering, Sichuan
University, China.

Her research concerns bioinformatics and high
performance computing. Meanwhile, she is

interested in parallel computing and parallel

architecture.

Ziqiang Tian is currently an undergraduate
student in the school of Software Engineering,

Sichuan University, China.
He is engaged in algorithms and big data.

Hui Zhao is currently a Faculty member of the

School of Software Engineering, Sichuan
University, China. He got his BS, MS, and PhD

degrees from Sichuan University.

His research fields include information security,
artificial intelligence, and machine learning.

Author’s formal
photo

Author’s formal

photo

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

85

