

Abstract—We propose a system with multiple mobile agents,

which will have a shared intelligence. Such architecture will

enable the entire system to become ‘smarter’ as each individual

agent has new experiences and learns about new things.

Whenever each node learns something new, it makes its peers

learn, thus greatly accelerating the rate of learning of the

entire system. The color, shape and size of an image are

extracted. An attempt is made to identify the object in the

image using its local intelligence. Next, it tries to learn about

the object from its peers. If none of its peers know about the

object, it simply learns about the object from the user, and

updates its own knowledgebase. When a similar object is

encountered at a later stage, the system is able to recognize the

object based on its own knowledge, or from its peers’

knowledge – similar to how humans learn.

Index Terms—Artificial intelligence, recognition, learning,

distributed systems, Android, image processing.

I. INTRODUCTION

Cognitive learning in humans is a powerful mechanism

that provides the means of knowledge, and goes well

beyond simple imitation. It is defined as the acquisition of

knowledge and skill by mental or cognitive processes - the

procedures we have for manipulating information 'in our

heads'. Cognitive processes include creating mental

representations of physical objects and events, and other

forms of information processing.

Artificial Intelligence (AI) is the area of computer science

focusing on creating machines that can engage in behaviors

that humans consider intelligent. The ability to create

intelligent machines has intrigued humans since ancient

times, and today with the advent of the computer and 50

years of research into AI programming techniques, the

dream of smart machines is becoming a reality. Researchers

are creating systems which can understand speech, beat the

best human chess player, and countless other feats never

before possible.

An intelligent system simulates a certain form of human

reasoning, knowledge, and expertise for a given task,

whereas distributed artificial intelligence systems were

conceived as a group of intelligent entities, called agents,

that interacted by cooperation, by coexistence or by

competition. Agents with distinct interests or knowledge can

benefit by engaging in negotiation whenever their activities

potentially affect each other. Through negotiation, agents

make joint decisions, involving allocation of resources,

adoption of policies, or any issue of mutual concern.

Manuscript received July 24, 2014; revised October 29, 2014.

The authors are with Department of Computer Science and Engineering,
Vidyalankar Institute of Technology, University of Mumbai, India (e-mail:

omkarpimple1991@gmail.com, ume7715@gmail.com,

nehagavankar1992@gmail.com).

Multiple related issues are typically negotiated at once, with

each negotiation issue involving multiple agents [1].

Implementing cognitive learning using distributed

artificial intelligence would employ the power of multiple

agents in a distributed system to accelerate their learning

process rapidly. [2] Such a system would not only be useful

in a learning environment, but it could also be used in

various applications like networked biometric scanners,

security surveillance systems and other similar problem

recognition systems.

II. SCOPE OF THE PROJECT

The scope of the project will be limited to the visual

aspects of objects to be recognized and identified. The

system will detect and identify objects based on visual

attributes such as color, size and shape.

 The distance from the sensor to the object will be

approximately the same for each object, in order to

avoid ambiguity in the context of the attribute of size.

 The system will be able to detect an object only in a

neutral/plain environment. For demonstration

purposes, the object will be placed against a plain

black background.

 The system will be designed to detect a single object

at a time. Support for multiple object detection - if

feasible - will be added later on.

 The network connectivity range of the system will be

that of a typical Bluetooth network i.e. up to 10 meters.

Any agent which is moved beyond that range will be

disconnected from the network.

III. PROPOSED SYSTEM

The platform for the system will be an Android device.

Each agent will be installed on an Android device, which

will use the in-built camera as an input sensor, and

Bluetooth functionality for setting up a network to interact

with other agents in its vicinity. Since an Android device is

ubiquitous and portable, it is a perfect candidate for a host

which will contain an agent.

As shown in Fig. 1, the project proposes to create a

system with multiple agents which are a part of a distributed

artificial intelligence. The system will be trained to identify

a set of objects based on visual aspects attributes, like color,

shape and size. In other words, the system will be given a

rudimentary intelligence about a set of objects. The agents

will be connected via a wireless network, like Bluetooth.

Any agent can leave the network at any point in time, and

can return to the network again later.

An object will be detected by the system using its visual

sensor i.e. its in-built camera. The agent will try to identify

the detected object based on its knowledgebase. If an object

Omkar Pimple, Umesh Saravane, and Neha Gavankar

Cognitive Learning Using Distributed Artificial Intelligence

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

7DOI: 10.7763/IJMLC.2015.V5.474

cannot be identified by an agent, the agent will

communicate with its neighboring agents and check whether

they can identify the object. If none of the agents in the

entire system can identify the object, the system will try to

learn about the object from the user. It will add the new

knowledge about the object in its knowledgebase. Now that

it has knowledge about the object, the system has

'experienced' the object, and should be able to identify the

object in the future.

If an agent which is outside the network learns about new

objects, upon re-entering the network, the knowledge of the

entire system will be updated. Thus, even if an agent has

never learned about an object, it will still be able to identify

it if the object has ever been encountered by any other agent

in the system before.

Fig. 1. Proposed system.

The algorithm is as follows:

1) START

2) Acquire the image of the object using the Android

camera.

3) Perform image processing and attribute extraction.

a) Perform isolation of the object from its background.

b) Extract the most dominant color.

c) Estimate the size of the object.

d) Estimate the shape of the object.

4) Attempt to find a match in its own knowledgebase. If a

match is found, identify the object and display its name,

and STOP. Else, proceed.

5) Get a list of all peers in Bluetooth network.

6) Attempt to learn about the object from an unvisited peer.

If knowledge about the object is found, learn about the

object, display the object name, and STOP. Else,

proceed.

7) Mark the peer visited. Check if all peers have been

visited. If yes, go to 7. Else, go to step 5.

8) Learn about the object from the user.

9) STOP

IV. IMPLEMENTATION

The first step in the development of our application was

to utilize the Android camera hardware inside the

application. There are two ways to do it. One way is to use

the built in Android camera application which is provided

with all Android phones by default. The second way is to

develop a custom camera app, which could be used to use

the camera in a programmable manner. Since our

application involved the use of a camera only for image

acquisition, we did not need a custom camera application.

Hence we utilized the built in Android camera for capturing

the image.

A. Image Isolation

After capturing an image of the object, the first operation

to be performed is object isolation from its background.

Isolation in its easiest form would be object segmentation.

But segmentation also segments the object itself into

multiple sub-segments, which is not desirable. Hence, we

decided to work with thresholding the object from its

background, provided that the grey levels of the object and

the background are in contrast. The isolation algorithm

pushes all background pixels to the Hex value ‘BLACK’,

and leaves non-background pixels as they are originally.

The algorithm first analyzes a sample of the background

to determine the range of the background grey levels. We

implemented this by analyzing the pixels in the first five

rows, last five rows, first five columns, and last five

columns of the image as background pixels of the image,

since these pixels are never going to be a part of the object.

The next step would be to set all 'similar' pixels to the lowest

grey level - 000000. Doing so keeps the object pixels as they

were originally, and blackens the entire background.

Though this method works fairly well in the case of a

black background, it performs poorly in case of a light

background, due to presence of salt and pepper noise in the

background. Hence, to eliminate salt and pepper noise, we

implemented a median filter in a separate class, and used it

as a part of post processing after performing thresholding.

Also, we performed edge detection using Sobel operator, so

that we can clearly define the boundaries of the object which

will be used for further processing and analysis.

Fig. 2. Image before isolation. Fig. 3. Image after isolation.

Fig. 2 and Fig. 3 show the screenshots of the application

showing the image before and after performing object

isolation respectively.

B. Attribute Extraction

The AI uses a part of the image processing module to

identify the color, size and shape of the object isolated in the

image.

1) Identifying color

A pixel is represented by its red, green and blue (RGB)

values - 8 bit each - in a 24 bit integer format. Working with

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

8

crisp logic, we would end up with 2
24

 different values for

colors, and as many different definitions. Instead, we

decided upon a set of frequently used generic colors viz.

Red, Orange, Yellow, Green, Blue, Violet, Pink, White and

Gray. We used the Hue Saturation Value (HSV) for

representing colors. Further, we declared ranges for each of

the above colors on the HSV wheel representation. In

essence, we fuzzified the entire range of 2
24

 colors to a set of

9 generic colors, based on their hue and saturation.

After defining our set of 9 colors labels, our algorithm

analyzed each pixel of the object, and found out which color

label each pixel corresponded to by using a distance

generator function. The color label in whose range the value

of the pixel lied is the color of the pixel. Each pixel of the

object is analyzed and the number of pixels corresponding to

each color label is calculated.

The next step in the algorithm is to find the most

dominant color of the object. This simply translated to

finding the color label with the most number of pixels

corresponding to it. The most dominant color is the 'Color'

attribute of the object.

2) Identifying size

By itself, 'Size' is a highly variable attribute. The size of

an object could be large if the perspective is close to the

object, or it could be tiny if the perspective is further away

from the object. Also, since the system uses only a single

camera, there is no way of knowing the absolute dimensions

of the object.

Keeping in mind all the above issues, we decided to

define 'Size' as the number of pixels the object covers in the

image. Further, we decided to fuzzify the attribute into 4

different labels - 'Tiny', 'Small', 'Medium', and 'Large'. The

system assumes that the image will be taken from

approximately the same distance each time. Taking this

assumption into consideration allows us to consider 'Size' as

a valid constant attribute of an object.

3) Identifying shape

Identifying the shape of an object was by far the most

challenging task to implement. There were no existing

libraries for shape recognition in Android. There were a few

libraries for real time smile detection, but those were of little

use to us in this project. The only other alternative was to

develop our own logic for recognizing the shape of the

object.

Initially, we tried to detect lines by trying to implement

Hough Transform [3]. After line detection, we would look

for angles between the lines. If there are 4 angles detected,

and each angle is close to 90
o
 , then the shape detected could

be a rectangle. There would be other similar rules for

recognizing other shape. Not only was Hough Transform

difficult to implement, but it would also bring up further

challenges like angle detection and vertex detection.

Due to the above challenges, we decided to look for

another implementation logic for shape detection [4]. The

logic we were developing had to have a good time

complexity to ensure that it wouldn't take a long time to

execute on the Android platform which has limited

processing power and resources.

Our shape recognition logic finally was implemented

using the concepts of basic geometry which we had learned

back in school. Firstly, we implemented a function which

would give us the rectangular borders of the object by

considering its topmost, bottommost, leftmost and rightmost

limits.

The second step was to calculate the area enclosed by the

borders. The third step was to check the relation between the

area of the object ('Size') and the area enclosed by the

borders. The resulting logic could classify the shape of an

object into 3 categories:

 Rectangle

 Circle

 Triangle

The classification 'Rectangle' could be further refined into

'Rectangle' and 'Square' by taking into account the ratio of

the height and width of the area enclosed by the border.

One more classification could be defined when the height

of the area enclosed by the border is too large as compared

to its width, or vice versa. Such a shape could be labeled as

'Oblong'. Finally, when none of the labels can be applied, a

default label is used - 'Random'.

Thus, the final labels for the 'Shape' attribute are -

 Rectangle

 Square

 Oblong

 Circle

 Triangle

 Random

Thus, the image processing module isolates the object

from its background, extracts the attributes i.e. 'Color',

'Shape', and 'Size'. Fig. 4 shows a screenshot of the

application displaying the extracted attributes of the isolated

object (which is shown in Fig. 3). The labels are 'Red',

'Small', and 'Circular' for the attributes color, size and shape

respectively.

Fig. 4. Extracted Attributes.

C. The Knowledgebase and AI

Android has an inbuilt library for constructing a relational

table called SQLite. We used SQLite to create the plinth for

our knowledgebase representation.

1) Constructing the knowledgebase

Since we would be referring to the knowledgebase

frequently at various places in the application, we created a

separate class for the knowledgebase, whose instance could

be created as an when needed. As with all other relational

database-based systems, an SQLite database needs to be

opened before use and closed after use, to prevent loss of

integrity. Hence, apart from the usual functions of 'read',

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

9

'update' and 'delete', we also had to define open and close

functions as public member functions.

In addition to the database related variables, we also

created a Database Helper class, which would be used to

manage the knowledgebase by ensuring timely closing of

the database before the calling activity would be destroyed.

Failing to do so would make the application crash due to

multiple instances of the same database being open at the

same time, which would result in system instability.

2) Using the knowledgebase for identification

The knowledgebase contains information about

previously encountered objects by the system. When a

similar object is encountered in the future, the AI analyzes

the knowledgebase to look for any information about the

object at hand. It checks the knowledgebase by first creating

an instance of the knowledgebase class, and opening the

SQLite based database using which the knowledgebase has

been constructed.

The first step it does is use the image processing module

to extract the color, size and shape of the current object.

After doing so, it looks for information of such an object in

its own knowledgebase. If there is an entry where all three

attributes match, the system identifies the object. In this case,

there is a perfect match between the extracted attributes and

the attributes stored in the knowledgebase for the object.

In the event that a perfect match is not found, it looks for

'similar' objects in its knowledgebase which could be

potential candidates for identification success. It checks

similarity by looking for any entries which have the same

shape label, as any entries having different shape labels have

a very low probability of being a correct match.

If the shape and color match, but the size does not match,

there is a good chance that the object is a faraway or up-

close version of an already existing entry. But since such an

identification can never be at a hundred percent accuracy, it

is always going be a prediction rather than a valid

identification. But at the same time, it would not be a good

idea to completely discard the possibility of a match,

however small that possibility might be. Since there is a

chance of this prediction being wrong, the system also offers

to make a new entry in the knowledgebase about the object.

In the event that there is no match - complete or partial -

with any knowledgebase entry, the system offers to learn

about the object from the user. It provides the user with the

extracted attributes, a text box to enter the name of the

object, and a button to make the system learn about the

object by updating the system's knowledgebase with

information about the current object, as shown in Fig. 4.

D. Peer-to-Peer Communication

The system engages in peer learning when it encounters

an object which it cannot recognize based on the

information present in its own knowledgebase. The term

'peer' means another Android device which has the same

application installed on it. The peer-to-peer network was

implemented using Bluetooth using a custom protocol, as

existing protocols such as Mobile Peer to Peer Protocol [5]

existed only in simulations.

When a device is unable to recognize an object, it initiates

a Bluetooth connection with its peers, and sends a query

with the attributes extracted from the current object image.

The peer then tries to recognize the object based on the

information present in its own knowledgebase. If it is unable

to recognize the object, it sends back a negative signal back

to the device who initiated the communication.

The source device attempts to query all its peers to find

information about the current object. If any of the peer has

information about the object, it makes the source device

learn about the object i.e. it updates its knowledgebase.

Thus, if even one peer has information about an object

which none of its peers know about, the entire system

virtually has knowledge about that object, as any peer

requiring knowledge about that object can learn from its

peers transparently, whenever required.

1) Bluetooth listener

All peers have a Bluetooth Listener listening continuously

for incoming Bluetooth communication requests. We

implemented this Bluetooth Listener in the form of an

Android service which runs in the background. The service

runs until the application is running, and keeps listening for

incoming communication requests.

Once a communication request is detected, it unbundles

the information provided in the Bluetooth packet. This

information contains the source address, the attributes

extracted from the image, and timing and synchronization

data. The knowledgebase is then checked to find a possible

match. If such a match is found, it sends a message back to

the sender containing information about the name of the

matched object and its attributes. The sender then makes an

entry into its own knowledgebase, and thus learns about the

object from its peer.

2) Bluetooth query

When a device is unable to recognize an object, it initiates

a Bluetooth connection with its peers, and sends a query

with the attributes extracted from the current object image.

Apart from the attribute information, the packet also

contains the destination address and timing and

synchronization information.

The contacted peer then tries to recognize the object

based on the information present in its own knowledgebase.

If it is unable to recognize the object, it sends back a

negative signal back to the device who initiated the

communication.

The source device attempts to query all its peers to find

information about the current object. If any of the peer has

information about the object, it makes the source device

learn about the object i.e. it updates its knowledgebase.

Thus, if even one peer has information about an object

which none of its peers know about, the entire system

virtually has knowledge about that object, as any peer

requiring knowledge about that object can learn from its

peers transparently, whenever required.

V. FUTURE SCOPE OF THE PROJECT

AI, and the field of machine learning in particular, is a

very vast field. It’s an exciting area with continuous

research. Our project is just a modest entry-level effort in

this direction. Hence, there are some things which we wish

to take further. Some of the important ones are as follows:

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

10

 Using a cloud based system for the distributed AI will

ensure that the system is not limited by any network

range, and can connect with its peers from any

location at any time.

 Implementing the system on on multiple platforms so

that cross platform learning is also possible. This

would enlarge the target range of the system so that it

can be deployed on multiple platforms.

 The current shape detection algorithm uses a simple

relation between the area of the object and the area

bounded by the borders of the object. Though this

works fairly accurately in ideal and close-to-ideal

conditions, it behaves erratically in uneven lighting

scenarios.

 Include more attributes, such as the absolute

dimensions of the object, like length, breadth and

radius. This would require multiple viewpoints to

eliminate inaccuracies like parallax errors.

ACKNOWLEDGMENT

We are highly indebted to our project guide Prof. Avinash

Shrivas from Vidyalankar Institute of Technology for his

guidance, inspiration, constructive suggestion and

encouragement that helped us throughout the evolution of

this project. He has taken innumerable efforts to go through

the project and make necessary corrections as and when

needed.

REFERENCES

[1] H. Goyal and S. Yadav, "Multi-agent distributed artificial
intelligence," International Journal of Soft Computing and

Engineering (IJSCE), vol. 1, June 2011.

[2] A. Correia, "Distributed artificial intelligence," Departmento de

Engenharia Informatica, Instituto Superior de Engenharia do Porto.

[3] R.Duda and P. Hart, "Use of the hough transform to detect lines and

curves in pictures," Communications of the ACM, vol. 15, no. 1, pp.
11-15, January 1972.

[4] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object

recognition using shape context,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 24, no. 4, pp. 509-522, April

2002.

[5] A. Diaz, P. M. L. Panizo, and A. M. Recio, “A survey on mobile peer-
to-peer technology,” in Proc. XV Conference on Concurrency and

Distributed Systems (JCSD’07), 2007, pp. 59-68.

Omkar Pimple completed his graduation in

computer science and engineering from Vidyalankar
Institute of Technology (affiliated to Mumbai

University) in 2013.

He is currently working as a software

development engineer at Mumbai Based Startup
Gray Routes Innovative Distribution, which is

engaged in the business of providing mobile-based

solutions for the FMCG industry. His current
interests include AI, machine learning and mobile development.

Umesh Saravane completed his graduation in

computer science and engineering from Vidyalankar

Institute of Technology (affiliated to Mumbai
University) in 2013.

He is working as an Android development

engineer at Gray Routes Innovative Distribution,
Mumbai, which is engaged in the business of

providing mobile-based solutions for the FMCG

industry. His current interests include AI and
algorithms.

Neha Gavankar completed her graduation in

computer science and engineering from Vidyalankar

Institute of Technology (affiliated to Mumbai
University) in 2013. She is currently working at

Network Intelligence (I) Pvt Ltd. Her current
interests include information security and IT security

protocols.

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

11

