
  

Employing the Exponentiated Magnitude Spectrogram in the 
Deep Learning-Based Mask Estimation for Speech 

Enhancement 

 
Abstract—The objective of speech enhancement (SE) is to 

alleviate various types of distortion (noise, channel effect, 
reverberation, etc.) in received speech signals to improve the 
corresponding perceptual quality and intelligibility. SE 
techniques are essential in speech signal-related online 
education and learning applications and devices. 

Thanks to the rapid development of deep neural network 
(DNN) techniques, various SE methods based on DNN have 
been proposed. They usually outperform the conventional 
statistics-based SE methods in non-stationary environments. 
These DNN-based SE methods can be further divided into 
mapping-based and masking-based. In particular, 
masking-based methods have attracted more attention in recent 
years.  

This study focuses on improving a well-known 
masking-based method: the ideal ratio mask (IRM). We 
propose to revise the spectrogram for the input utterances in 
the learning of the IRM network to improve its speech 
enhancement performance. For each utterance, the magnitude 
spectrogram is raised to a particular power (exponentiated) 
first and then used to create various speech features, including 
Mel-frequency cepstral coefficients (MFCC) and 
gammatone-frequency features (GF). We feed these features to 
the deep network for IRM estimation. The exponentiation 
operation for the magnitude spectrogram is believed to 
highlight the speech portion of an utterance. Thus the 
exponentiated spectrogram probably benefits the following 
speech feature representation employed to learn the deep 
neural network for IRM.  

We conduct a series of evaluation experiments on a subset of 
the TIMIT database. The utterances in the training and test sets 
are corrupted by factory noise at a signal-to-noise ratio (SNR) 
of -2 dB. We use the Perceptual Evaluation of Speech Quality 
(PESQ) and Short-Time Objective Intelligibility (STOI) as the 
speech enhancement metrics. 

The preliminary results reveal that, compared with the IRM 
from the original spectrogram, the new IRM created with the 
exponentiated spectrogram provides the test utterances with 
superior perceptual quality and intelligibility scores. 

 
Index Terms—Speech enhancement, exponentiated 

spectrogram, ideal ratio mask  
 

I. INTRODUCTION 

People use mobile devices like smartphones and tablets for 
various activities, including communication, online 
interactive learning, and education. In particular, 
voice/speech-wise applications, such as sound recording, 
music playing, and speech recognition, are crucial in these 

mobile devices. There is no doubt that the quality or 
readability of received acoustic signals is in high demand. 
However, various sources of distortion deteriorate speech 
signals during transmission, thus sabotaging the capability of 
the functions mentioned above and their applications. These 
distortion sources include additive noise, channel distortion, 
and reverberation. Various speech enhancement (SE) 
techniques have been developed in recent decades to solve or 
alleviate the distortion issues. Most of the novel SE methods 
exploit a deep neural network (DNN) to learn the relationship 
between the clean noise-free speech and their distorted 
counterparts. Compared with the conventional SE methods 
primarily based on statistical modeling of speech or noise, the 
DNN-based SE methods behave superior, especially in 
non-stationary noise scenarios.  

According to [1], the DNN-based SE methods can be 
roughly divided into two categories according to their 
training objectives: mapping and masking. The 
mapping-wise SE methods directly pursue a mapping 
function from the input distorted signal to the perfectly 
noise-free signal or its various representation, such as a 
time-domain signal waveform, a time-frequency diagram 
(spectrogram), or a cochleagram. Comparatively, the 
masking-wise SE methods search for a multiplicative mask to 
perform point-to-point multiplication with the original input 
signal or feature representation. The resulting product can 
approach its clean noise-free state. The mapping-wise 
methods possess a bigger hypothesis space for the mapping 
solution, while the masking-wise methods restrict its 
hypothesis space to be simply multiplicative masking. In 
recent years, masking-wise SE methods have attracted more 
attention and gained diversity and development. The training 
target of these masking-wise methods include ideal binary 
mask (IBM) [2, 3], ideal ratio Mask (ideal ratio mask, IRM) 
[3], spectral intensity mask (spectral magnitude mask, SMM) 
[1], complex ideal ratio mask (complex ideal ratio mask, 
cIRM) [4], phase sensitive mask (phase-sensitive mask, PSM) 
[5], etc.   

This study attempts to revise the process to learn a 
well-known target for masking-wise methods: the ideal ratio 
mask (IRM). Unlike a lot of other algorithms that focus on 
updating the DMM structure employed in IRM to learn a 
more effective and generalizable mask for speech 
enhancement, we propose to deal with the very front-end 
module in IRM by revising the input utterances in their 
spectrogram.  We exponentiate the magnitude spectrogram 
with a power value larger than 1 with the purpose of 
enlarging the discrepancy between speech and noise portions 
in the utterance to enlarge it signal-to-noise ratio (SNR). 
Preliminary experiments conducted on a subset of TIMIT 
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database with the script provided in [6] show that the 
presented method can promote the SE performance of the 
resulting IRM network. 

The rest of the paper is organized as follows: Section II 
introduces the background and the procedures of the newly 
presented method. The experimental setup is given in Section 
III, and Section IV covers the experimental results and the 
corresponding analyses. Finally, a brief concluding remark is 
provided n Section V. 

 

II. PRESENTED METHOD 

In this study, we focus on improving the ideal ratio mask 
(IRM) method, which generally pursues the approximate 
mask values for the spectrogram or cochleagram 
corresponding to an arbitrary input utterance, and one of the 
multiple choices of the desired mask is from the concept of 
Wiener filtering: 

𝑀ሺ𝑚, 𝑓ሻ ൌ
|𝑆ሺ𝑚, 𝑓ሻ|ଶ

|𝑆ሺ𝑚, 𝑓ሻ|ଶ  |𝐷ሺ𝑚, 𝑓ሻ|ଶ (1) 

  
where |𝑆ሺ𝑚, 𝑓ሻ|ଶ  and |𝐷ሺ𝑚, 𝑓ሻ|ଶ  represent the energy of 
clean speech and noise with respect to the time-frequency 
unit (T-F unit) of the spectrogram or cochleagram at frame 𝑚 
and frequency 𝑓 respectively. As for preparing the artificial 
noisy data in the training set, both clean speech and noise 
components are pre-known, and thus we can accurately 
obtain the mask values described in Eq. (1) and use them as 
the desired output for the IRM network to be trained. 
Furthermore, the input utterances for the learning and 
inferencing of the IRM network are often converted to speech 
feature representations, such as mel-frequency cepstral 
coefficients (MFCC), gammatone features (GF) and relative 
spectral-perceptual linear predictive features (RASTA-PLP), 
which serve as an excellent encoding to the subsequent mask 
estimation network.   

In this work, we propose pre-processing the input 
utterances in their spectrogram before feeding them into the 
IRM network for training and testing. We extract the 
magnitude part of the spectrogram for each utterance, raise it 
to a particular power, integrate it with the initial phase part, 
and convert it back to the time-domain utterance. The idea 
behind this method is to emphasize the relatively high-energy 
portions of the utterance in order to highlight the 
clean-speech component. The resulting utterances are 
supposed to possess a higher signal-to-noise ratio (SNR) and 
thus behave better in the IRM estimation. 

We describe the steps of this new method in the following: 

Step 1: create the spectrogram 
For each time-domain utterance 𝑥ሾ𝑛ሿ in the training and 

test sets, we employ the short-time Fourier transform (STFT) 
to create its spectrogram ሼ𝑋ሾ𝑚, 𝑘ሿ,0  𝑚  𝐿 െ 1,0   𝑘 
 𝐾 –  1ሽ, where 𝑚 and 𝑘 are the indices of frame and acoustic 
frequency, and 𝐿 and 𝐾 are the total numbers of frames and 
acoustic frequency points, respectively.  

Step 2: exponentiate the magnitude spectrogram 
The spectrogram 𝑋ሾ𝑚, 𝑘ሿ is complex-valued and can be 

presented in polar form 𝑋ሾ𝑚, 𝑘ሿ ൌ 𝐴ሾ𝑚, 𝑘ሿ expሺ𝑗𝜙ሾ𝑚, 𝑘ሿሻ, 
where 𝐴ሾ𝑚, 𝑘ሿ  and 𝜙ሾ𝑚, 𝑘ሿ  are the magnitude and phase 

components, respectively. We extract its magnitude part 
𝐴ሾ𝑚, 𝑘ሿ and raise it to a power larger than 1. Therefore, the 
new spectrogram can be formulated by  
 

𝑋෨ሾ𝑚, 𝑘ሿ ൌ ሺ𝐴ሾ𝑚, 𝑘ሿሻ expሺ𝑗𝜙ሾ𝑚, 𝑘ሿሻ, (2) 
 

where 𝑟 is the pre-set power value, and 𝑟  1. 

Step 3: create the new time-domain utterance 
We apply the inverse STFT on the new spectrogram 

𝑋෨ሾ𝑚, 𝑘ሿ  in Eq. (2) to obtain the updated version of the 
time-domain utterance 𝑥ሾ𝑛ሿ. 

Step 4: Training and testing the IRM network 
The updated utterances 𝑥ሾ𝑛ሿ in either of the training and 

test sets are converted to speech features (MFCC, GF, 
RASTA-PLP, etc.) and used to learn or evaluate the IRM 
network as the usual IRM preparation procedures.  
 

Some of the characteristics of the presented method 
include the following: 

1. The main component of this method is Step 2, which 
updates the magnitude part of the input spectrogram, 
hoping to highlight the clean-signal portion in an 
utterance. The updated spectrogram is converted back 
to the time-domain utterance as in Step 3. As such, the 
presented method can be exploited as a pre-processing 
procedure of all of the other speech enhancement 
techniques, exhibiting its flexibility. 

2. The presented method focuses on enhancing the 
magnitude part while leaving the phase part 
unchanged. One underlying reason is that correcting 
the phase part is a more challenging task and the phase 
estimation has an ambiguity/discontinuity issue. We 
will improve this part by either enhancing the real and 
imaginary parts individually or processing the 
real-valued spectrogram created by discrete cosine 
transform (DCT). 

 

III. EXPERIMENTAL SETUP 

Referring to the MATLAB toolbox for the speech 
separation task provided in [6], we use a subset of the TIMIT 
database to evaluate the presented method in learning an IRM 
speech enhancement network. The training set contains 100 
utterances evenly produced by 10 speakers, and the test set 
includes 60 utterances from 6 speakers different from those 
for the training set. The utterances in the training and test sets 
are corrupted with factory noise at −2 dB signal-to-noise ratio 
(SNR). Following the procedures stated in Section III, each 
time-domain utterance is transformed to the STFT-wise 
spectrogram, the magnitude part being raised to a power 𝑟, 
and converted back to the time domain via inverse STFT.  

As for the STFT procedure, the frame size is 20 ms and the 
hop size is 10 ms, and the hamming window function is used. 

The updated utterances in the training set are converted to 
speech feature representations to train the IRM network as 
described in [6]. Two speech representations are selected: 
Mel-frequency cepstral coefficients (MFCC) and gammatone 
features (GF). The learned IRM network comprises densely 
connected layers, with 4 hidden layers, each having 1024 
neurons. The five adjacent frames are concatenated into a 
long vector to be the IRM network’s input unit. The learning 
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objective is to obtain the mask of the cochleagram of speech, 

each frame having 64 dimensions (channels). To evaluate the 

performance, we use the metrics of perceptual evaluation of 

speech quality (PESQ) [7] and Short-Time Objective 

Intelligibility (STOI) [8] as objective indicators of speech 

quality and intelligibility, respectively. The PESQ score is 

between -0.5 and 4.5, and the STOI score is between 0 and 1, 

with higher scores representing better speech 

quality/intelligibility.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

First, Table I reports the PESQ and STOI scores from the 

unprocessed baseline, the oracle IRM, and the learned IRM 

using different speech features. From this table, we have the 

following findings:

1. Noise causes a severe degradation in the quality and 

intelligibility of speech signals. The respective STOI 

and PESQ are 0.725 and 1.433, respectively, while 

their upper bounds are 1.0 and 4.5.

2. The oracle IRM, which employs the prior knowledge 

of clean speech and noise in noisy utterances of the 

test set, significantly improves the two metric indices. 

The respective scores are the upper bound of all the 

IRM networks discussed later.

3. Compared with the unprocessed baseline, the IRM 

learned from different feature representations 

achieves higher PESQ and STOI scores, indicating 

that the IRM network can be learned well to fulfill a 

speech enhancement task.

4. MFCC alone behaves better than GF alone for PESQ, 

while the situation is converse for STOI. When added 

with delta features, only GF benefits PESQ, while the 

STOI scores worsen for both MFCC and GF.

TABLE I: THE PESQ AND STOI SCORES OBTAINED FROM VARIOUS 

SITUATIONS: UNPROCESSED BASELINE, ORACLE IRM, LEARNED IRM

USING DIFFERENT SPEECH FEATURE SETS

STOI PESQ

unprocessed 0.625 1.433

oracle IRM 0.906 2.737

Learned 

IRM

MFCC 0.722 1.937

GF 0.728 1.903

MFCC 

+ Delta MFCC
0.718 1.932

GF 

+ Delta GF
0.723 1.927

Next, Tables II and III list the STOI and PESQ scores for 

the IRM with the new exponentiated spectrogram at different 

exponent values for MFCC and GF features. We have had 

several discussions about the results shown in these two 

tables:

1. Using the presented methods with the exponent 𝑟 > 1
always provides higher STOI and PESQ scores than 

the original IRM when MFCC features are used. As 

for the case of GF features, the improvements in 

PESQ and STOI are similar, except for the situations 

of 𝑟 = 2 and 𝑟 = 2.5 , where STOI is lightly 

decreased.

2. Setting 𝑟 = 2 in the presented method gives optimal 

PESQ and STOI scores in almost all cases. Further 

increasing 𝑟 to 2.5 causes PESQ degradation 

compared with the case 𝑟 = 2 . The probable 

explanation is that setting 𝑟 = 2.5 over-amplifies the 

magnitude spectrogram and brings extra distortion. 

3. To further validate if the presented exponentiation 

operation with 𝑟 > 1 that potentially enlarges the 

magnitude can improve IRM, we set 𝑟 = 0.5 as a 

contrary test. From these two tables, we find the 

setting 𝑟 = 0.5 worsens both PESQ and STOI scores 

in almost all cases, which agrees with our proposition.

TABLE II: THE PESQ AND STOI SCORES OBTAINED FROM VARIOUS 

SITUATIONS: LEARNED IRM USING MFCC FEATURES WITH RESPECT TO 

EXPONENTIATED SPECTROGRAM WITH EXPONENT 𝑟 (THE CASE 𝑟 = 1
CORRESPONDS TO THE ORIGINAL IRM

exponent 𝑟

0.5
1.0

(original)
1.5 2.0 2.5

STOI 0.714 0.722 0.724 0.725 0.725

PESQ 1.914 1.937 1.943 1.946 1.944

TABLE III: THE PESQ AND STOI SCORES OBTAINED FROM VARIOUS 

SITUATIONS: LEARNED IRM USING GF FEATURES WITH RESPECT TO 

EXPONENTIATED SPECTROGRAM WITH EXPONENT 𝑟 (THE CASE 𝑟 = 1
CORRESPONDS TO THE ORIGINAL IRM

exponent 𝑟

0.5
1.0

(original)
1.5 2.0 2.5

STOI 0.721 0.728 0.729 0.726 0.723

PESQ 1.093 1.903 1.914 1.932 1.927

Finally, Tables IV and V list the evaluation scores for the 

IRM with the new exponentiated spectrogram at different 

exponent values with respect to MFCC and GF plus their 

delta features. Similar to Tables II and III, the presented 

methods with the exponent 𝑟 > 1 exhibit higher STOI and 

PESQ scores in most cases (except for the case with GF and 

delta GF features).

To briefly sum up, the optimal PESQ is 1.947, which 

occurs in the case with 𝑟 = 2 using GF and delta GF features, 

and the optimal STOI is 0.729, which is achieved by setting 

𝑟 = 1.5 and using GF features. Moreover, MFCC 

outperforms GF in the original IRM, while the presented 

method with 𝑟 > 1 makes GF outperform MFCC in the 

revised IRM.

TABLE IV: THE PESQ AND STOI SCORES OBTAINED FROM VARIOUS 

SITUATIONS: LEARNED IRM USING MFCC AND DELTA MFCC FEATURES

WITH RESPECT TO EXPONENTIATED SPECTROGRAM WITH EXPONENT 𝑟 (THE 

CASE 𝑟 = 1 CORRESPONDS TO THE ORIGINAL IRM

exponent 𝑟

0.5
1.0

(original)
1.5 2.0 2.5

STOI 0.712 0.718 0.720 0.721 0.719

PESQ 1.900 1.932 1.945 1.945 1.933

TABLE V: THE PESQ AND STOI SCORES OBTAINED FROM VARIOUS 

SITUATIONS: LEARNED IRM USING GF AND DELTA GF FEATURES WITH 

RESPECT TO EXPONENTIATED SPECTROGRAM WITH EXPONENT 𝑟 (THE CASE 

𝑟 = 1 CORRESPONDS TO THE ORIGINAL IRM

exponent 𝑟

0.5
1.0

(original)
1.5 2.0 2.5

STOI 0.718 0.723 0.726 0.726 0.725

PESQ 1.914 1.927 1.920 1.947 1.937

In addition to the quantitative metric comparison, here we 

pick an utterance in the test set and present its magnitude 

spectrograms at different conditions as a demonstration: 

clean, mixed, enhanced with an oracle IRM, the original 



  

 

 
(a)  

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 1. The spectrogram of an utterance in the test set at different situations: 
(a) clean (b) mixed with factory noise at -2 dB SNR, and noise mixed and 
enhanced by (c) the oracle IRM (d) the GF-feature learned IRM (e) the 
GF-feature learned IRM with exponent 𝑟 ൌ 2, (f) the GF-feature learned 
IRM with exponent 𝑟 ൌ 0.5. 

 

V. CONCLUSION AND FUTURE WORK 

This study investigates whether the pre-emphasis of the 
high-magnitude time-spatial units in the spectrogram of the 
utterances in the training set would benefit the backward IRM 
deep neural network. We present using the exponentiation 
operation to perform the pre-emphasis, and the preliminary 
experimental results reveal that the presented method 
moderately improves the SE behavior of the IRM network. 
As for the future avenue, we plan to embed the exponent term 
in the presented method into the neural network to make it 
learnable to fit the training dataset. 
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learned IRM with GF features using exponent 𝑟 =  1, and 

the learned IRM with GF features using exponent 𝑟 =  2, 0.5. 

They are depicted in Fig. 1(af). We have two observations 

from these figures:

1. Comparing Fig. 1(a, b), the apparent mismatch in the 

spectrogram reveals that noise significantly disturbs 

speech. However, the oracle IRM reduces the 

mismatch greatly (from Fig. 1(b, c) and nearly 

reconstructs the original clean speech (from Figs. 

1(a)(c)).

2. When employing the IRM learned from the training 

set either with or without an exponentiated 

spectrogram (as in Fig. 1(df)), the distortion caused 

by noise is moderately reduced, even though the 

corresponding denoising effect is not as good as the 

oracle IRM. Moreover, the differences among Fig. 

1(df) are not significant, which agrees with the 

PESQ and STOI results provided earlier that the 

improvement or degradation relative to the original 

IRM is moderate.



  

AUTHOR CONTRIBUTIONS 

J-W. Hung and C-E. Dai conducted the research and 
designed the initial evaluation experiments; P-C. Wu and 
C-W. Liao extended the evaluation experiments and analyzed 
the results; J-w. Hung and C-E. Dai wrote the paper; all 
authors had approved the final version. 

REFERENCES 
[1] Y. Wang, A. Narayanan and D. Wang, “On training targets for 

supervised speech separation,” IEEE/ACM Transactions on Audio, 
Speech, and Language Processing, 2014. 

[2] D. Wang, “On ideal binary mask as the computational goal of auditory 
scene analysis,” Speech Separation by Humans and Machines; 
Springer, 2005. 

[3] S. Srinivasan, N. Roman, and D. Wang, “Binary and ratio 
time-frequency masks for robust speech recognition,” Speech 
Communications, 2006 

[4] D. S. Williamson, Y. Wang, and D. Wang, “Complex ratio masking for 
monaural speech separation,” IEEE/ACM Transactions on Audio, 
Speech, and Language Processing, 2016 

[5] H. Erdogan, J. R. Hershey, S. Watanabe, and J. Le Roux, 
“Phase-sensitive and recognition-boosted speech separation using deep 
recurrent neural networks,” in Proc. ICASSP, 2015 

[6] Matlab toolbox for DNN based speech separation. [Online]. Available: 
http://web.cse.ohio-state.edu/pnl/DNN_toolbox/ 

[7] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, 
“Perceptual evaluation of speech quality (PESQ) – a new method for 
speech quality assessment of telephone networks and codecs,” in Proc. 
ICASSP, 2001. 

[8] C. H. Taal, R. C. Hendrks, R. Heusdens and J. Jensen, “An algorithm 
for intelligibility prediction of time–frequency weighted noisy speech,” 
IEEE Transactions on Audio, Speech, and Language Processing, 2011 

 
Copyright © 2023 by the authors. This is an open access article distributed 
under the Creative Commons Attribution License which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original 
work is properly cited (CC BY 4.0). 
 
 

 

International Journal of Machine Learning, Vol. 13, No. 3, July 2023 

108


	IJML-V13N3-1136-EI046



