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Abstract—We address the open problem of unsupervised 
multimodal multi-domain image-to-image (I2I) translation 
using a generative adversarial network. Previous works, such as 
MUNIT and DRIT, are able to translate images among multiple 
domains, but they generate images of inferior quality and less 
diverse. Moreover, they require training 𝒏ሺ𝒏 െ 𝟏ሻ generators 
and 𝒏 discriminators for learning to translate images among 𝒏 
domains, which is computationally expensive. In this paper, we 
propose a simpler yet more effective framework for 
unsupervised multimodal multi-domain I2I translation. Our 
approach only consists of a mapping network, a encode-decoder 
pair (generator), and a discriminator. Our method assumes that 
the latent space can be decomposed into content and style sub-
spaces by the encoder, where content space is deemed domain-
invariant and style space is domain-dependent. Unlike MUNIT 
and DRIT that simply sample style codes from a standard 
normal distribution when translating, we employ a mapping 
network to learn the style of different domains, which yields 
better translation results. Translation is done through the 
decoder by keeping content codes and exchanging the style codes. 
To encourage diversity in translated images, we employ style 
regularizations and inject Gaussian noise into the decoder. 
Extensive experiments show that our framework is superior or 
comparable to state-of-the-art baselines. 

Index Terms—Unsupervised multimodal multi-domain 
image-to-image translation, style codes, content codes, mapping 
network 

I. INTRODUCTION

Image-to-image (I2I) translation refers to translating 
images from one domain to another featuring different styles, 
which are visually distinctive among different domains. An 
example is the task of turning images of cartoon sketches into 
real-life graphs. Many tasks in computer vision can be viewed 
as I2I translation, such as image translation (MUNIT [1], 
AMMUNIT [2]), image inpainting [3], style transfer 
(StyleGANs [4], DRIT [5]), and super-resolution [6]. 
Supervised I2I translation tasks need paired data sets that are 
costly to obtain, and such tasks are relatively easier to solve 
than their unsupervised counterpart. Under paired data 
supervision, I2I translation can be done by taking a regression 
approach [7] or using conditional generative models [8]. Our 
work addresses the more challenging unsupervised I2I 
translation task without access to paired data sets. Most of 
works on unsupervised I2I translation draw inspiration from 
CycleGANs [9] using the cycle consistency constraint and 

have achieved impressive results. More recent studies have 
improved upon on CycleGANs and are able to translate 
images among multiple domains. They, such as MUNIT often  
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assumes latent codes can be decomposed as content codes and 
style codes. Translation is done by exchanging style codes 
with different domains while keeping the original content 
codes. Style codes, however, are simply sampled from a 
standard normal distribution, which leads to inferior 
translation results. Moreover, these works require training 
𝑛ሺ𝑛 െ 1ሻ  generators and 𝑛  discriminators for learning to 
translate images among 𝑛 domains, which is costly. In our 
study we propose a simpler yet more effective approach. Our 
framework shares the same assumption with style codes 
being domain-dependent and content codes being domain-
invariant. However, our approach only consists of one 
generator-discriminator pair and a mapping network, which 
learns the style codes of different domains. We also employ 
several effective techniques for encouraging translated results 
being more diverse. Extensive experiments show that our 
framework is superior or comparable to state-of-the-art 
(SOTA) baselines. The contrition of our work can be 
summarized as follows: 

 We propose a new unified framework for
unsupervised multimodal multi-domain I2I
translation that largely simplifies the architecture of
existing works and improves the translation
performance by a large margin.

 Instead of sampling from a standard normal
distribution, we learn the style of domains by
employing a mapping network, which yields better
translation results.

 We propose two new regularization techniques for
learning content and style information of domains.

 Extensive experiments show that our framework is
superior or comparable to state-of-the-art (SOTA)
baselines.

II. RELATED WORK

A. Generative Adversarial Networks

Ideally, generative models learn how data is distributed,
thus allowing data synthesis from the learned distribution. 
Since the advent of GANs [10], generative models have 
achieved impressive results in various tasks like data 
augmentation [11] and style transfer [12]. GANs try to learn 
the data distribution by approximating the similarity of 
distributions between the training data and the fake data 
produced by the learned model. GANs usually comprise a 
generator and a discriminator. The entire model learns by 
playing a minimax game: the generator tries to fool the 

Shangxian Wang is with the Department of Electrical and Computer 
Engineering, Johns Hopkins University, Baltimore, MD, 21210, USA. 

*Correspondence: leiluoray@ksu.edu(L.L.)

doi: 10.18178/ijml.2023.13.2.1132

International Journal of Machine Learning, Vol. 13, No. 2, April 2023

77



  

discriminator by gradually generating realistic data samples, 
and the discriminator, in turn, tries to distinguish real samples 
from fake ones. GANs have been improved in various ways. 
To produce more realistic samples, an architecture of stacked 
GANs has been proposed: the Laplacian pyramid of GANs 
[13]; layered, recursive GANs [14]; progressive growing 
GANs [15]; and style based GANs (StyleGANs). Several 
studies have attempted to solve the instability training of 
GANs using energy based GANs [16], Wasserstein GANs 
[17], and boundary equilibrium GANs [18]. In this study, we 
use GANs with their improved techniques to learn the 
distribution of data and how to translate among different 
domains. 

B. Unsupervised I2I Translation 

Unsupervised I2I translation translates images from one 
domain to another without paired data supervision. Much 
success in unsupervised I2I translation is due to the cycle 
consistency constraint, proposed in three earlier works: 
CycleGANs [9], DiscoGANs [19], and DualGANs [20]. To 
translate more than two domains, MUNIT and DRIT are 
proposed. These methods, however, naively sample style 
codes from a standard normal distribution, which leads to 
inferior translation results. Moreover, they require training 
n(n-1) generators and n discriminators for translating images 
among n domains, which is computationally expensive and 
time-consuming. Our method proposes a simpler yet more 
effective approach that requires only one set of generator-
discriminator. Recent systems such as StarGAN2 [21] and 
ModularGANs [22] are developed to perform multimodal I2I 
translation to produce images with the same content but 
different contexts. Inspired by StyleGANs, we employ a 
mapping network to model style codes of different domains. 
Furthermore, we add several regularization techniques to 
encourage the diversity in translated results.  

 

III. METHODS 

A. Preliminaries 

Let 𝑥 be an image that belongs to one of many domains. 
The graph (a) in Fig. 1 shows an overview of our model. We 
start from a latent vector 𝑧 that is sampled from a standard 
normal distribution. 𝑧  goes through a mapping network, 
which learns style codes 𝑠 of a specific domain, where 𝑚 is a 
domain label and 𝑠 ൌ 𝑀ሺ𝑧, 𝑚ሻ . Meanwhile, we employ a 
content encoder 𝐸௖  to extract content codes 𝑐  from image 
inputs. The decoder 𝐷  takes content and style codes to 
generate reconstructed images 𝑥ᇱ , which are then used by 
style encoder 𝐸௦ to produce reconstructed style codes 𝑠ᇱ. We 
compute two L1 losses using the reconstructed images and 
style codes. Finally, we use a multi-task discriminator to 
distinguish real images from fake ones. During the translation 
phase, we keep the same content codes but use the style codes 
of target domains. The graph (b) of Fig. 1 illustrates an 
example of image translation within two domains. 

B. Model Architecture 

We discuss the architectures of different modules in our 
framework in this section. Even though our framework is 
closely related to MUNIT and DRIT, we redesign the 
architecture of neural networks for better performance. 

 
Fig. 1. The structure of our framework. (a) shows how our framework 
learns, and (b) shows cross-domain translation within two domains. 

 

Encoder Our encoder has two sub-encoders: the style 
encoder and the content encoder. Both start with a 
convolution layer. The content encoder consists of six 
residual blocks [23]. All the layers are downsampled by 
average pooling operation (except for the last two layers) and 
are followed by an instance normalization (IN) [24]. The style 
encoder also comprises six residual blocks but without any 
activation function expect for the last residual block. Lastly, 
the style encoder consists of a convolution layer with leaky 
ReLU and a reshape operation before outputting style codes 
by a linear layer.  

Mapping Network Style codes of domains are modelled 
by a mapping network, which consists of eight linear layers 
with ReLU activation function expect for the last layer. 

Decoder The decoder maps latent codes, which consist of 
style codes and content codes, to the original image space. To 
apply style to images of different domain, the style codes are 
injected into the decoder by AdaIN [25] coupled with residual 
blocks. Inspired by StyleGANs, we also introduce stochastic 
variation into our model by injecting noise into the decoder. 
The decoder consists of six residual blocks with AdaIN, and 
the last layer is a convolution layer whose outputs are 
generated images. 

Discriminator The architecture of discriminator is similar 
to that of the style encoder except that it has one more 
convolutional layer to predict domains. 

C. Training Objectives 

In this section, we discuss the loss functions for learning 
our framework. 

Image Reconstruction Loss After images are encoded to 
style and content codes, the decoder maps the latent space 
back to the image space and reconstructs the image. Image 
reconstruction loss is formulated as:  

𝐿௥௘௖௢௡
௫ ൌ |𝐷൫𝐸௖ሺ𝑥ሻ, 𝑀ሺ𝑧, 𝑚ሻ൯ െ 𝑥|ଵ (1) 

where m is the domain, to which image x belongs. 
Style Code Reconstruction Loss After encoding 

reconstructed images using the style encoder, we can obtain 
reconstructed style codes. We construct the style code 
reconstruction loss as follows: 

𝐿௥௘௖௢௡
௦ ൌ |𝑠 െ 𝐸௦ሺ𝑥ᇱሻ|ଵ, (2) 

where 𝑥ᇱ ൌ 𝐷൫𝐸௖ሺ𝑥ሻ, 𝑀ሺ𝑧, 𝑚ሻ൯ and 𝑥 ∈  𝑋௠. 
Regularization on Style and Content Codes To further 
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encourage style codes being domain-variant and content 
codes being domain-invariant, we add regularization on style 
and content encoders. The style regularizer forces style codes 
of different domains to be different by minimizing 𝐿௥௘௚௨

௦ , 
which is calculated as:  

𝐿௥௘௚௨
௦ ൌ  െ| 𝐷ሺ𝑐௠, 𝑠௠ሻ െ  𝐷ሺ𝑐௠, 𝑠௡ሻ|ଵ

െ | 𝐷ሺ𝑐௡, 𝑠௠ሻ െ  𝐷ሺ𝑐௡, 𝑠௡ሻ|ଵ, 
(3) 

where ሺ𝑐௠, 𝑠௠ሻ ൌ ൫𝐸௖ሺ𝑥௠ሻ, 𝐸௦ሺ𝑥௠ሻ൯  and ሺ𝑐௡, 𝑠௡ሻ ൌ
൫𝐸௖ሺ𝑥௡ሻ, 𝐸௦ሺ𝑥௡ሻ൯. 𝑐௠ and 𝑠௠ are content and style codes of 
image 𝑥௠ ∈ 𝑋௠ . 𝑐௡  and 𝑠௡  are content and style codes of 
image 𝑥௡ ∈ 𝑋௡.  

The content regularizer encourages content codes of 
different domains to be similar by minimizing 𝐿௥௘௚௨

௖ , which 
is formulated as:  

𝐿௥௘௚௨
௖ ൌ  | 𝐷ሺ𝑐௠, 𝑠௠ሻ െ  𝐷ሺ𝑐௡, 𝑠௠ሻ|ଵ

൅ | 𝐷ሺ𝑐௠, 𝑠௡ሻ െ  𝐷ሺ𝑐௡, 𝑠௡ሻ|ଵ. 
(4) 

Inspired by StarGAN2 [21], we calculate style diversity as: 

𝐿ௗ௦ ൌ  | 𝐸௦ሺ𝑥ଵሻ െ 𝐸௦ሺ𝑥ଶሻ|ଵ, (5) 

where 𝑧ଵ  and 𝑧ଶ  are two random latent vectors; 𝑥ଵ ൌ
𝐷൫𝐸௖ሺ𝑥ሻ, 𝑀ሺ𝑧ଵ, 𝑚ሻ൯, and 𝑥ଶ ൌ 𝐷൫𝐸௖ሺ𝑥ሻ, 𝑀ሺ𝑧ଶ, 𝑚ሻ൯. 

Adversarial Loss GANs are used to match the distribution 
of translated results to real image samples, so the 
discriminator finds real and fake samples indistinguishable. 
We use two adversarial losses with one for learning latent-
guided translation and the other for reference-guided 
translation. Latent-guided translation refers to using the 
mapping network to obtain target style codes, and reference-
guided translation uses the style encoder to extract style codes 
of target domains. The adversarial loss for learning the 
discriminator 𝐶௠ with latent-guided translation is formulated 
as:  

 𝐿௔ௗ௩
௟ ൌ 𝔼

௭∼ேሺ଴,ூሻ,௫೙∼௣ሺ௑೙ሻ
ቂ𝑙𝑜𝑔𝐶௠ ቀ𝐷൫𝐸௖ሺ𝑥௡ሻ, 𝑀ሺ𝑧, 𝑚ሻ൯ቁቃ

൅ 𝔼
௫೘∼௣ሺ௑೘ሻ

ൣ𝑙𝑜𝑔൫1 െ 𝐶௠ሺ𝑥௠ሻ൯൧, 
(6) 

and the adversarial loss for learning the discriminator 𝐶௠with 
reference-guided translation is constructed as:  

𝐿௔ௗ௩
௥ ൌ 𝔼

௫೘∼௣ሺ௑೘ሻ,௫೙∼௣ሺ௑೙ሻ
ቂ𝑙𝑜𝑔𝐶௠ ቀ𝐷൫𝐸௖ሺ𝑥௡ሻ, 𝐸௦ሺ𝑥௠ሻ൯ቁቃ

൅ 𝔼
௫೘∼௣ሺ௑೘ሻ

ൣ𝑙𝑜𝑔൫1 െ 𝐶௠ሺ𝑥௠ሻ൯൧, 
(7) 

where the discriminator 𝐶௠ tries to tell if images are from the 
domain 𝑚.  

Full Objective Our full objective is formulated as follows:  

𝑚𝑖𝑛
ெ,ா,஽

 𝑚𝑎𝑥
஼

𝜆ଵ𝐿௥௘௖௢௡
௫ ൅ 𝜆ଶ𝐿௥௘௖௢௡

௦

൅ 𝜆ଷ൫𝐿௥௘௚௨
௦ ൅ 𝐿௥௘௚௨

௖ ൯
൅ 𝜆ସ൫𝐿௔ௗ௩

௟ ൅ 𝐿௔ௗ௩
௥ ൯ െ 𝜆ହ𝐿ௗ௦, 

(8) 

where 𝜆ଵ to 𝜆ହ are hyperparameters for each loss term. 
 

IV. EXPERIMENTS 

In this section we talk about data sets, baselines, evaluation 
metrics, and implementation details of our framework.  

A. Baselines 

We compare our framework against three baseline models 
developed in recent years. Our framework is closely related 
to MUNIT and DRIT, which we use as baseline models. More 
recent works on unsupervised I2I translation include 
StarGAN2, TransGaGa [26], ContrastiveGAN [27], and 
FUNIT [28], which achieved impressive results. Only 
StarGAN2, however, is used as another baseline as other 
works try to focus on different aspects of I2I. TransGaGa 
studies a different aspect of I2I than our work, which is how 
to preserve geometry information before and after image 
translation. FUNIT also focuses on a different problem, 
which is few-shot I2I. Our approach is not directly 
comparable to that of ContrastiveGAN, which crops input 
images into small patches and learns by increasing the mutual 
information between patches from the same location, while 
we treat the entire image as input. 

B. Data Sets 

We evaluate our framework on the CelebA-HQ and AFHQ 
data sets. Similar to StarGAN2, we also separate CelebA-HQ 
as domains of male and female, and AFHQ as domains of cat, 
dog, and wild. For fair comparison purposes, all images are 
trained with size 256 ൈ  256, which is the largest resolution 
supported by the baselines.  

C. Evaluation Metrics  

We evaluate the visual quality using Fréchet inception 
distance (FID) [29] and the diversity of translated images 
with learned perceptual image patch similarity (LPIPS) [30]. 
Images generated by our framework are compared with the 
testing data set to calculate FID and LPIPS. Lower FID values 
indicate that the two sets of images have more similar 
distributions. Higher values of LPIPS indicate higher 
diversity of generated images. 

D. Experiment Settings  

We use a NVIDIA RTX 3090 GPU to conduct all our 
experiments. Adam optimizer is used for all the experiments 
with 𝛽ଵ ൌ 0, 𝛽ଶ ൌ 0.999, and initial learning rate of 1𝑒ିସ 
with weight decay of 1𝑒ିସ. Batch size is set to 8 for all the 
experiments. For the CelebA-HQ date set we set 
hyperparameters 𝜆ଵ  to 𝜆ହ   to 1, and when training on the 
AFHQ data set we set 𝜆ହ to 2 and the rest to 1. We train all 
models for 100, 000 iterations, which take about 2.5 days. 
Model training using MUNIT and DRIT, however, take more 
than 6 days. 

 

V. RESULTS 

In this section, we show the qualitative and quantitative 
results of the experiments. Ablation study is also carried out 
to evaluate the effectiveness of several key design choices. 

A. Quantitative Results 

Similar to StarGAN2, we perform reference-guided and 
latent-guided translation, examples of which are shown in 
Figs. 2 and 3. We use FID to evaluate the similarity of 
distributions and LPIPS to evaluate the diversity of generated 
images. As Table I and Table II show, performance by our 
method and StarGAN2 are close, both outperforming 
MUNIT and DRIT by a great margin except for latent-guided 
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LPIPS results of MUNIT on AFHQ. StarGAN2 achieves the 
lowest FID on both data sets, and our method achieves 
highest LPIPS among all models. 

 

 
Fig. 2. Examples of reference-guided translation. 

 

 
Fig. 3. Examples of latent-guided translation. 

 
TABLE I: QUANTITATIVE RESULTS ON LATENT-GUIDED TRANSLATION 

Models 
CelebA-HQ AFHQ 

FID (↓) LPIPS (↑) FID (↓) LPIPS (↑) 
MUNIT 31.4 0.363 41.5 0.511 

DRIT 52.1 0.178 95.6 0.326 
StarGAN2 13.7 0.452 16.2 0.450 
Ours 17.5 0.459 19.9 0.476 
Test data 14.8 -- 12.9 -- 

 
TABLE II: QUANTITATIVE RESULTS ON REFERENCE-GUIDED 

TRANSLATION 

Models 
CelebA-HQ AFHQ 

FID (↓) LPIPS (↑) FID (↓) LPIPS (↑) 
MUNIT 107.1 0.176 223.9 0.199 

DRIT 53.3 0.311 114.8 0.156 
StarGAN2 23.8 0.388 19.8 0.432 
Ours 25.3 0.391 22.3 0.439 
Test data 14.8 -- 12.9 -- 

 

B. Qualitative Results 

We utilize the Amazon Mechanical Turk (AMT) to 

compare our results against the baselines based on user 
preferences. Given a source image and a reference image, we 
instruct AMT workers to select the best transfer result among 
all models. We ask 60 questions for all ten workers. As shown 
in Table III, our method slightly outperforms StarGAN2 and 
exceed MUNIT and DRIT for a large margin.  

 
TABLE III: VOTES FROM ATM WORKERS FOR MOST PREFERRED STYLE 

TRANSFER RESULTS 

Models Performance 

MUNIT 2.820% 

DRIT 9.050% 

StarGAN2 43.50% 

Ours 44.63% 

C. Ablation Studies 

To further validate effects of key design choices in our 
framework, we carry out ablation studies on the AFHQ data 
set, whose results are shown in Fig. 4 and Table IV. Let the 
model without style and content regularizer, and noise 
injection be the vanilla model. We can see that style 
regularizer is effective in increasing diversity in generated 
images. 

 

 
Fig. 4. Examples of reference-guided translation by adding modules. 

 
TABLE IV: FID AND LPIPS RESULTS OF INCREMENTALLY ADDING 

MODULES TO OUR FRAMEWORK FOR REFERENCE-GUIDED TRANSLATION ON 

THE AFHQ DATA SET. THE VANILLA MODEL DOES NOT REPORT LPIPS 

RESULT AS IT IS A DETERMINISTIC MODEL 
Models FID (↓) LPIPS (↑) 
vanilla model 29.1 -- 

+ noise injection 27.6 0.407 

+ content regularizer 23.8 0.414 

+ style regularizer 22.3 0.439 

VI. CONCLUSIONS 

In this research, we present a simpler yet more effective 
framework for unsupervised multimodal multi-domain I2I 
translation. Our model only consists of a mapping network 
and a generator-discriminator pair. Unlike MUNIT and DRIT 
that simply sample style codes from a standard normal 
distribution when translating, we employ a mapping network 
to learn the style of different domains, which yields better 
translation results. To further encourage diversity in 
translated images, we employ style regularizations and inject 
Gaussian noise into the decoder. The qualitative and 
quantitative results show that our framework is superior or 
comparable to the SOTA baselines in unsupervised 
multimodal multi-domain I2I translation. 
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