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Abstract—Since the dynamics of immune cells change about 
phenomena in a living body, it is very important to observe and 
analyze cell dynamics in vivo in real-time. For this purpose, it is 
necessary to extract the information for the analysis by 
accurately tracking individual cells. As a method for this, 
general object tracking algorithms based on CNN 
(Convolutional Neural Networks) have been actively studied in 
the field of computer vision. However, in cell tracking, there are 
a large number of cells in fluorescent images that are similar in 
color and shape. It is not easy to recognize individual cells once 
they are lost due to overlap with other cells. Thus it is difficult 
to generate a large amount of training data with correct tracking 
trajectories. To cope with the problem of insufficient training 
data of cell images, our method extends the data by image 
processing and by assigning pseudo-labels. Furthermore, to 
obtain information more suitable for dynamic analysis, we 
propose to apply the re-identification function based on 
Euclidean distance. We demonstrate the effectiveness of our 
method with application to time-lapse images of immune cells 
against multiple inflammatory stimulations. 
 

Index Terms—Cell tracking, bioimaging, deep learning, cell 
image analysis 
 

I. INTRODUCTION 

It has been biologically and medically important to know 
the behavior of cells in a living body. For example, by 
observing the skin, we can see how the movement of immune 
cells such as granulocytes changes depending on conditions 
such as acute inflammation or allergy [1], and macrophages 
change according to the conditions of inflammatory stimuli 
[2]. Thus, immune cells in vivo have a lot of information that 
indicates the progress of diseases and the efficacy of drugs, 
and analysis of the behavior of immune cells is expected to 
contribute to the elucidation of the causes of diseases and the 
development of new therapeutic drugs.  

In analyzing the behavior of cells, recent developments in 
bioimaging technology, such as two-photon excitation 
microscopy, have made it possible to observe living cells in 
vivo without damaging them. This has made it possible not 
only to capture microscopic cellular activity but also to 
capture dynamic information with a time axis that could not 
be captured in the past. This has led to more in-depth research. 
On the other hand, however, there is a problem that manually 
analyzing the behavior of cells one by one from a large 
number of moving images produced every day is physically 
and mentally burdensome. In addition, human analysis is 

susceptible to biases caused by the observer's subjectivity, 
such as mistaken identification of cells due to preconceived 
notions and erroneous tracking due to fatigue. Therefore, the 
development of an automatic and objective analysis method 
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using a computer is an urgent issue. 
To analyze cell dynamics, it is first necessary to extract the 

information for the analysis by accurately tracking individual 
cells. As a method for this, general object tracking algorithms 
have been actively studied in the field of computer vision. 
Those algorithms track the motion of the entire image rather 
than a specific object by mapping it to a region segmentation 
[3], and optical flow [4][6]. On the other hand, cell tracking 
algorithms track a cell by using the cellular motion of the 
entire image rather than a specific object [7]. The methods 
often utilize machine learning based on the results of learning 
the data with their ground truth. 

Moreover tracking is hampered by the strong noise 
inherent in fluorescent images, and segmentation [8], which 
recognizes regions, cannot be performed in the same way. In 
optical flow, there is a concern about tracking accuracy in 
terms of pixel-by-pixel tracking. On the other hand, machine-
learning-based tracking can perform robust tracking against 
noise by learning the general features of the object to be 
tracked. In recent years, machine learning has made 
remarkable progress because it can learn the general features 
of the object to be tracked and can perform noise-robust 
tracking. 

However, in cell tracking, there are a large number of cells 
in fluorescent images that are similar in color and shape. In 
addition, the cells to be tracked are different from general 
objects in that they move with deformation, called migration, 
and it is very difficult to distinguish each cell by appearance. 
Therefore, it is not easy to generate training data with correct 
tracking trajectories. Furthermore, since the camera can only 
capture images at a low frame rate due to its phototoxicity in 
live fluorescence microscopy, it is difficult to recognize the 
target cells again once they are lost due to overlap with other 
cells. 

In this study, we propose a more effective method of cell 
tracking for cell dynamics analysis by extending Tracktor [9], 
which is one of the object tracking methods based on 
convolutional neural networks (CNNs) among machine 
learning methods. Our method attempts to improve the 
tracking accuracy by generating a large amount of high-
quality training data through data augmentation to address the 
annotation problem of cell images for training. In addition, to 
address the problem in low-frame-rate time-lapse images, we 
attempt to track target cells over a longer period by 
introducing reidentification based on Euclidean distance. We 
then demonstrate the effectiveness of this method in 
analyzing cellular dynamics by tracking the movement of 
immune cells in response to multiple inflammatory stimuli. 
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II. CELL TRACKING 

A. Cell Images 

In this paper, time-lapse images of mouse skin, in which 
inflammation was induced by multiple inflammatory stimuli, 
were taken every minute by two-photon excitation 
microscopy. Two-photon excitation microscopy is a 
microscope that induces a two-photon absorption process by 
increasing the density of photons during excitation light 
illumination and observes fluorescence through an excited 
state. It is suitable for observation of the inside of living 
organisms [10]. And these data sets capture the movement of 
immune cells activated by either of two types of stimuli, LPS 
(lipopolysaccharide) stimulation or GM-CSF (granulocyte 
monocyte colony-stimulating factor) stimulation. There are 
two datasets of LPS stimulation (91 frames each) and 11 
datasets of GM-CSF stimulation (2 datasets with 91 frames 
and 9 datasets with 61 frames). The cell image data used in 
the experiment consists of 512[pixels]×512[pixels] of 0.5μm 
per pixel in the x- and y-directions and 15 depth layers of 
3.0μm per layer in the z-direction. 

 
Fig. 1. Example of application of MIP to cell images. 

 
We applied the maximum intensity projection (MIP) 

method to the images. The method is to project a three-
dimensional structure onto a two-dimensional plane to 
facilitate recognition of the motion of an object of interest. 
The advantage of MIP is that the S/N ratio of the image is 
improved, and it is easier to detect cells and perform cell 
detection. Fig. 1 shows an example of MIP applied to cell 
images. The images consist of 15 slices on the z-axis and are 
projected by MIP, but in Fig. 1, only three images are 
extracted for convenience. In Fig. 1, immune cells are labeled 
green by EGFP (green fluorescent protein). 

B. Tracktor 

There are two types of CNN-based general object tracking 
methods: single-object tracking (SOT) [11, 12], which tracks 
one object at a time, and multi-object tracking (MOT) [13, 
14], which tracks multiple objects simultaneously. While the 
SOT-based object tracking method predicts the position of an 
object in the next frame based on its initial position, the MOT-
based tracking method uses an object detector, so there is no 
need to set initial values for the objects to be tracked, and it 
can respond to the appearance of new objects or the 
disappearance of objects. This makes it possible to respond to 
the appearance or disappearance of new objects. We propose 
a novel cell tracking method based on Tracktor [9], one of the 
MOT methods. 

Tracktor consists of two steps: (i) detecting the position of 
an object in each frame separately and (ii) linking the 
corresponding detections over time to form a track. For each 
of these two steps, it is often necessary to build their training 
models. However, Tracktor utilizes the classifier and 
regressor in the object detector for tracking, allowing tracking 
to be performed without the need to build complex tracking 
models. The flow of the Tracktor algorithm applied to a 
cellular image is shown in Fig. 2. The performance of the 
method was demonstrated by applying it to object tracking 
using the MOT17 dataset [9]. 

 

 
Fig. 2. A flow of tracking by Tracktor. 

 

1) Object detection 

The core part of Tracktor is an object detector that contains 
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a classifier and a regressor, which is based on Faster-RCNN 
[15]. Fig. 3 shows that the object detection step of Tracktor 
first takes a sequence of frame images as input and searches 
for cell i, the target of tracking, by sampling candidate 
rectangles around the position of the region where cell i was 
observed at time t-1 to estimate the position of cell i in the 
next frame ሺ𝐵ଵ, 𝐵ଶ,⋯ , 𝐵ேሻ. The resulting rectangle is called 
the sample and is used to estimate the position of the cell i to 
be tracked in the next frame. The resulting rectangles are 
called samples, and are denoted by (1).  

𝐵௡ ൌ ൫𝑥௟௘௙௧, 𝑦௧௢௣, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡൯                      (1) 

Here, 𝑥௟௘௙௧, 𝑦௧௢௣, width, and height denote the x-coordinate 
of the upper left, y-coordinate of the upper left, width, and 
height of the rectangle, respectively. 

Then, in the inner classifier part, among the samples 
ሺ𝐵ଵ, 𝐵ଶ,⋯ , 𝐵ேሻ generated around the target, a positive score 
𝑓ା indicating foregrounds, and a negative score 𝑓ି, which 
indicates backgrounds. The sample candidate corresponding 
to the highest positive score is estimated as the optimal 
position in the next frame. Then, in the part of the regressor 
that encompasses the target, the location is estimated from 
multiple samples generated around the target, and since the 
rectangle that indicates the location of the target may not 
neatly surround the target, bounding box regression is applied 
to estimate the detailed location of the rectangle. Therefore, 
we apply the bounding box regression to estimate the detailed 
position of the rectangle. 

 
Fig. 3. A schema of object detection by image analysis. (a) Algorithm for 

generating sample(bounding box). (b) Algorithm for calculating object 
score. (c) Algorithm for regressing bounding box.  

 
In applying Tracktor to cell tracking, there are a large 

number of cells with similar colors and shapes in cell images 
compared to general object images. Therefore, distinguishing 
the movement of individual cells from such images requires 
an enormous amount of time and effort. In other words, cell 
tracking has the problem that it is very difficult to label cells 
manually, and there is little training data. However, a 
sufficient amount of training data is essential to perform high-
quality learning and accurate prediction. Therefore, we 
propose a method of repeating learning while increasing the 
amount of training data by data augmentation. This allows for 
high-quality learning and more accurate tracking. 

2) Tracking 

After cells are detected by the object detector, ID mapping 
is performed to determine whether they are the same object 
or not. At this time, the overlap rate in (2) is calculated as a 
criterion for determining whether or not they are the same 
object. Here rୟ is the rectangle in the previous frame and rୠ 
is the detected rectangle. If the overlap rate between the 
detected cell and all the cells predicted as the position of the 
next frame is less than 30%, the object is considered to have 
disappeared. If the overlap rate with all the cells detected in 
the previous frame in the detected object is less than 30%, the 
object is recognized as a new object. 

IoU ൌ
௥ೌ ∩௥್
௥ೌ ∪௥್

                                        (2) 

 
However, a problem in applying Tracktor, which performs 

general object tracking, to cell tracking is the frame rate issue. 
Generally, when capturing the movement of cells, light is 
used to image internal biological information, but it is very 
difficult to capture cells in vivo at a high frame rate because 
there is concern that excessive irradiation may disrupt the 
internal functions of the tissues or the cells. Therefore, 
compared to general object images, which are usually 
captured with high frame rate video, the distance of the target 
cell traveled between frames is large, and if the target is 
temporarily lost due to overlap between cells or frame-out, 
the trajectory during tracking is interrupted as it is. In other 
words, it is difficult to continuously track the target cells over 
a long period, and it is impossible to obtain the information 
necessary for dynamic analysis, which continuously analyzes 
changes in the speed and direction of movement of the target. 
To cope with this issue, we adopt a re-identification function 
based on the Euclidean distance to re-recognize temporarily 
lost cells. This makes it possible to track individual cells over 
a long period. 

C. Our Method 

1) Data augmentation 

In our method, only the green channel in each pixel of the 
input image is extracted as a preprocessing step to perform 
cell tracking independent of the background. This makes it 
easier to distinguish objects from the background and to 
detect cells. In addition, to increase the amount of missing 
training data, this method uses data augmentation by image 
processing and pseudo-labels. The data augmentation by 
image processing is a method of expanding the labeled 
training data, and generally includes image rotation, scaling, 
noise, and so on. In this study, image data were rotated by 90, 
180, and 270 degrees, increasing the training data by a factor 
of four. Data augmentation with pseudo-labels is a method in 
which the prediction results with high confidence are used as 
training data. In this study, since long-term tracking is 
necessary for the analysis of cellular dynamics, we gave 
pseudo-labels to data which the predicted tracking is judged 
to be successful in more than 80% of all frames and we 
repeated the learning process by increasing the amount of 
training data. 

2) Re-identification based on Euclidean distance 

In our method, a reidentification function based on the 
Euclidean distance is introduced to track each targeted cell 
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for a longer period and obtain information suitable for 
dynamic analysis. The formula for calculating the Euclidean 
distance in this method is shown in (3). Where 𝑝௜ represents 
the center position in the previous frame and q୧ represents the 
center position of the detected cells. This makes it possible to 
re-identify and associate with IDs of cells that were 
temporarily undetected because they were partially hidden by 
other cells due to cell overlap, or because their trajectories 
were temporarily interrupted by frame-out. 

 

𝐷 ൌ ඩ෍ሺ𝑞௜ െ 𝑝௜ሻଶ
ଶ

௜ୀଵ

ሺ3ሻ 

III. RESULTS 

A. Evaluation Criteria 

In this paper, we compare the tracking accuracy using a 
total of six indices [16] based on those in Table I, which are 
commonly used to evaluate performance in such two-class 
classification problems. Here, FP means false positive and 
FN means missed, while TP means successfully detected. In 
this experiment, “Successful detection (TP)” refers to the 
distance between a cell and one of the predicted trajectories 
in a given frame (here calculated based on IoU) that is less 
than a threshold value, which in this experiment is defined as 
50%. 

 
TABLE I: EVALUATION INDEX OF BINARY(2-CLASS) CLASSIFICATION 

 Correct trajectory (GT) 

Positive Negative 

Predict 
trajectory 

Positive TP FP 

Negative FN TN 

 
PRECISION 

Rate of correct trajectories among the predicted trajectories. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ൌ
்௉

்௉ାி௉
                              (4) 

 
RECALL 

Rate of correct predictions among the correct trajectories. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
்௉

்௉ାிே
                                   (5) 

 
IDSW (ID SWITCH) 

The number of switched IDs for all data. 
MT (MOSTLY TRACKED) 

Rate of mostly tracked trajectories, i.e., ground-truth 
trajectories that are tracked as the same target at least 80% 
frames of their life span. 
ML (MOSTLY LOST)  

Rate of mostly lost trajectories, i.e., ground-truth 
trajectories that are tracked at most 20% frames of their life 
span. 
MOTA (MULTI-OBJECT TRACKING ACCURACY) 

Rate of the correct prediction that was tracked correctly. 
Larger values indicate better results. 𝑔௧ in (6) is the sum of 
the data of correct answers in frame t. 

𝑀𝑂𝑇𝐴 ൌ
ி௉ାிேାூ஽ௌௐ

௚೟
                            (6) 

B. Datasets 

1) MOT datasets 

To test the usefulness of this method, we first used general 
object (person, car...) tracking datasets were used for the 
tracking. In this experiment, we used the MOT20 dataset. All 
of these datasets have different image sizes, each taken at 40-
millisecond intervals. 

2) Cell image datasets 

In this paper, the cell image datasets are presented in 
Section II.A were used to verify the accuracy of our method. 
These data sets consist of 13 types (2 types of LPS stimuli 
and 11 types of GM-CSF stimuli) and each of the data were 
taken at 60-second intervals. In this paper, these 13 datasets 
were trained and tested by 5-fold cross-validation. The 
breakdown of these datasets is shown in Table II. 

 
TABLE II: BREAKDOWN OF CELL IMAGE DATASETS FOR 5-FOLD CROSS-

VALIDATION 

 

Train Test 

Data name 
Data 
name 

The average number 
of cells per frame 

Group1 
01, 02, 03, 04, 06, 07, 

08, 09, 11, 12, 13 
05, 10 18.7 

Group2 
02, 03, 04, 05, 07, 08, 

09, 10, 12, 13 
01, 06, 

11 
33.3 

Group3 
01, 03, 04, 05, 06, 08, 

09, 10, 11, 13 
02, 07, 

12 
53.7 

Group4 
01, 02, 04, 05, 06, 07, 

09, 10, 11, 12, 13 
03, 08 43.2 

Group5 
01, 02, 03, 05, 06, 07, 

08, 10, 11, 12 
04, 09, 

13 
29.3 

 

C. Cell Tracking Results 

To compare the tracking accuracy of the method and to 
verify the usefulness of the method, tracking was performed 
here on a dataset of general object images as well as a cellular 
image dataset. Table III shows the results at this time, with 
higher values indicating better performance on the () 
criterion and lower values indicating better performance on 
the () criterion. The best results for each criterion are also 
shown in bold. Tables I and II show that our method improves 
the accuracy of cell tracking in 5 out of the total 6 indicators. 

 
TABLE III: EVALUATION OF CELL TRACKING RESULTS ON THE 

VALIDATION SET OF MOT20 AND CELL IMAGES. 
THE BEST RESULTS ARE SHOWN IN BOLD 

 
MOT20 Cell images 

Tracktor Our method Tracktor Our method 

Precision 87.9 87.0 93.1 93.0 

Recall 54.0 56.5 87.6 91.4 

IDSW 10911 10691 457 440 

MT 18.2 20.9 67.1 77.9 

ML 19.5 15.3 9.18 4.90 

MOTA 45.6 47.1 79.7 83.0 

 
In particular, our method achieved better performance 

concerning the MT and ML criteria for both datasets. Thus, 
we confirmed that our method can continuously track cells 
for a longer time than existing Tracktor. Furthermore, Fig. 4 
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shows MOTA, which is commonly used to represent tracking 
accuracy, for each group of datasets. According to this figure, 
our method achieves better performance regardless of the 
number of cells in the image. Thus, we confirmed that our 
method can track more accurately than existing Tracktor even 
in areas crowded with cells. 

 

 
Fig. 4. MOTA for each group of datasets. 

 

 
Fig. 5. Example results of FP. 

 

 
Fig. 6. Example results of our tracking method as shown in cell images. 

 
However, in terms of the precision criterion, existing 

Tracktor achieved better performance. The reason for this is 

due to the increased FP. Fig. 5 shows an example of FPs. 
Frame 36 (middle) in Fig. 5, failed to capture cell migration 
and incorrectly detected cell deformation, and many FPs only 
temporarily captured cell deformation in this way. In cell 
tracking, it is more important to track the same target 
continuously than to track many targets accurately. Therefore, 
we consider continuous tracking more important than the 
reduction of the number of FPs. 

Fig. 6 shows an example of the tracking results of our 
method. In Fig. 6 (a), MT is improved by reducing the number 
of missed cells in Frame 62 (middle) and associated IDSW. 
The improvement may be the effect of data augmentation of 
the training data. 

 However, In Fig. 6 (b), cells overlap each other in Frame 
50 (middle) and another cell in Frame 53 (right). There are 
two possible reasons for this mistracking: the inability to 
detect individual cell overlaps and the failure to consider the 
motion vector from the previous frame of the target cell. 
Therefore, when objects overlap each other, as shown in 
Frame 50 in Fig. 6 (b), our method falsely detects them as a 
single cell. Furthermore, detection-based tracking, such as 
Tracktor, considers objects located close to the current 
position of the target cell in the next frame to be the same one. 
Therefore, in cases such as Fig. 6 (b), even though our method 
uses the reidentification function, the method may track the 
wrong cell due to similar location information. 

 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we propose an accurate cell tracking method 
for the analysis of cell dynamics. Our method tracks cells in 
images based on convolutional neural networks. We show 
that our method achieves better performance concerning 
continuous tracking of target cells, which is important for 
analyzing cell dynamics, compared to existing detection-
based tracking methods. 

However, the experimental results in Fig. 6 (b) show that 
our method misses the target. An intuitive way to solve this 
problem is to incorporate information about motion history 
during tracking, i.e., to build a model during motion history 
to improve performance. To this end, we are considering 
incorporating the depth information lost during projection 
into the training in the detection step. By doing so, our 
method may achieve more accurate tracking. 

The source code we developed is deposited at the GitHub 
repository (https://github.com/Hideo-Matsuda/LeukoTrack). 
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