

An Efficient Priority Queue Data Structure for Big Data
Applications

James Rhodes* and Elise de Doncker

Abstract—We have designed and developed an efficient
priority queue data structure that utilizes buckets into which
data elements are inserted and from which data elements are
deleted. The data structure leverages hashing to determine the
appropriate bucket to place a data element based on the data
element’s key value. This allows the data structure to access
data elements that are in the queue with an O(1) time
complexity. Heaps access data elements that are in the queue
with an O(log n) time complexity, where n is the number of
nodes on the heap. Thus, the data structure improves the
performance of applications that utilize a min/max heap.
Targeted areas include big data applications, data science,
artificial intelligence, and parallel processing. In this paper, we
present results several applications. We demonstrate that the
data structure when used to replace a min/max heap improves
the performance applications by reducing the execution time.
The performance improvement increases as the number of data
elements placed in the queue increases. Also, in addition to
being designed as a double-ended priority queue (DEPQ), the
data structure can be configured to be a queue (FIFO), a stack
(LIFO), and a set (which doesn’t allow duplicates).

Index Terms—Priority queue, Buckets data structure, big
data, heap, performance

I. INTRODUCTION

Many have abandoned the idea of hashing despite the fact
that it affords an O(1) time complexity for accessing data
elements. This is because of the possible collisions that can
occur due to not having a unique slot for every key. However,
many applications require only a limited and manageable
number of keys. For example, using our proposed data
structure, the 15-puzzle application for a given initial state
required only 30 unique keys and the goal state was found in
1,056,405 less iterations than when a heap was used.
Furthermore, many applications do not require every data
element to have a unique key. A range of data elements can
be grouped together with one key and experience only a
slight amount of accuracy loss if any. For instance, using our
data structure for a sample integral computed with adaptive
multivariate integration, only 85 slots were generated when
ranges of numbers were coalesced. The results were identical
to using unique values out to 10 decimal places.

II. HEAP DATA STRUCTURE

Although priority queues can be implemented with arrays
and linked lists, heaps are the most common data structure

Manuscript received October 20, 2022; revised December 7, 2022;

accepted March 29, 2023.
The authors are with Western Michigan University, Kalamazoo, MI

49008 USA.
*Correspondence: james.rhodes@wmich.edu (J.R.)

used to implement priority queues. Heap operations include
insert, delete-min (delete-max), and find-min (find-max).
Min heaps use the minimum key operations and max heaps
use the maximum key operations. The structure of a heap is
tree-based. There is a variety of types of heaps that have
different operations and complexities.

A binary heap is based on a binary tree and is known as the
standard heap. The heap property ensures that the keys of any
parent node’s children are not less than or greater than its key
for a min heap or max heap, respectively [1]. In order to
preserve the heap property, significant maintenance is
required for both inserting and deleting data. We call this
process “heapify”. The heapify process is more costly from a
time perspective when deleting from a heap than it is when
inserting into a heap.

The insert and delete operations of a heap both have an
O(logn) time complexity. This is adequate for most
applications. However, some heap-intensive applications
could experience performance degradation when the number
of data elements on the heap is enormous. The priority queue
data structure that we designed lowers the time complexity
and produces comparable accuracy for these types of
applications. By getting rid of the data manipulation required
for heaps, our data structure improves the performance of
applications by reducing the amount of CPU time required
for applications to complete execution.

III. BUCKETS DATA STRUCTURE

The priority queue data structure that we designed and
developed is bucket-based. We investigated the idea of using
buckets as the solution to eliminate the heapify process. We
associate buckets with nodes on a heap and note a difference
between a data element and a heap element. A data element is
an individual node that is in a linked list. A heap element is
the head node of a linked list and corresponds to a heap node
that can be inserted or deleted. The nodes on a heap are
buckets of nodes that have the same or similar key.

A bucket, which is a linked list, may have many nodes in it.
However, the heap will only have the head node of the linked
list on it. In particular, the nodes on the heap will be pointers
to head nodes of linked lists. Although there could be
millions of data elements on a heap, only a fraction of the
nodes would have to be rearranged during the heapify
process. When they are moved all the nodes in a bucket will
be treated as one node.

The buckets used to store data elements are implemented
as an array of pointers to the heads of linked lists. Since it is
dynamic the array can grow and shrink. When a bucket no
longer has any nodes because of the last node being deleted,
the next non-null bucket with the minimum or maximum

International Journal of Machine Learning, Vol. 13, No. 2, April 2023

doi: 10.18178/ijml.2023.13.2.1129 55

value is selected. When a data element is inserted into a
bucket that doesn’t have any nodes, no data manipulation is
required.

Buckets not only lower the time spent to heapify but also
lower the frequency of calling the heapify process. When a
data element is deleted from a bucket and there is still at least
one node in it, a call to the heapify process is avoided.
Furthermore, when a data element is inserted into a bucket
that has at least one node in it, a call to the heapify process is
avoided. A hashing function is used to determine the
appropriate buckets with an O(1) time complexity. This
allowed us to develop a priority queue data structure that
alleviated the heapify process and its associated data
manipulation.

IV. BACKGROUND

We began our research with the objective to improve the
performance of a multivariate integration application [29].
The application utilizes a heap and is driven by a parallel
algorithm [1015]. It implements a Compute Unified Device
Architecture (CUDA) kernel to evaluate regions. The
application deletes a node that represents the region with the
largest error from the heap, divides it into 2, 4, 8, or 16
subregions, evaluates the subregions (computes their integral
contribution and estimated error) and inserts them into the
heap. The application continues until the total error is
reduced below a user-prescribed level or a prescribed number
of function evaluations have been performed. We identified
the heap as a bottleneck when a huge number of data
elements were inserted into the queue.

Originally, our goal was to improve the performance of the
heap. We focused on reducing the number of calls to the
heapify process. We identified that if ranges of data could be
grouped together that would both decrease the number of
nodes to be moved during the heapify process and decrease
the number of calls to the heapify process.

We decided to use the error estimate of the regions as the
key for a hashing function. The error estimate is declared as a
double datatype which could not be used directly as an index
into an array, so we used the exponent and mantissa of the
number as indexes into a two-dimensional array. Our
implementation is based on the IEEE Standard for
Floating-Point Arithmetic (IEEE 754) representation and a
computer program at [16]. After a several improvements of
the data structure, we were ultimately able to eliminate the
heap with its tree structure and recursive heapify process
entirely. The data structure is now an array of pointers to
heads of doubly linked lists.

V. APPROACH

We developed two versions of several applications one
implemented with a heap and another with the buckets data
structure. We executed both versions of the applications and
analyzed and compared the results. The applications were
executed on a system with the following specifications:

Dual 8C Intel Xeon E5-2670 @2.6GHz host, with 128GB
of RAM

Kepler 20(m) GPU, with 2496 CUDA cores, 4.8GB global
memory, and 956.8 GFLOPS double precision theoretical
performance.

VI. HUFFMAN CODES

Huffman codes constitute an application of binary trees
with minimal weighted external path length that obtain an
optimal set of codes for messages. The codes are binary
strings that are used to transmit the corresponding messages.
A decode tree is used at the receiving end to decode the
message. The external nodes (leaves) of a decode tree
represent messages. The branching that is necessary at each
level of the decode tree to reach the correct external node is
determined by the bits in the codeword for a message. A zero
is interpreted as a left branch and a one is interpreted as a
right branch. The bit strings from the root to an external node
are called Huffman codes. The cost of decoding is
proportional to the number of bits in the code, which is equal
to the distance from the root to the external node. If fi is the
relative frequency in which a message will be transmitted and
di is the distance from the root node to the external node for a
message, then the expected decode time is , where h
is the height of the tree [17]. By choosing codewords
resulting in a decode tree with minimal weighted external
path length, the expected decode time is minimized. The
expected decode time is the expected length of a transmitted
message. Thus, the code that minimizes expected decode
time, minimizes the expected length of a message code, as
well.

A program that implements Huffman Codes usually
implements a min heap as a priority queue. There are two
main steps to the algorithm to generate the codes. The first is
to load the priority queue with the data elements and their
associated frequencies. The frequencies are used as the keys
where the minimum key is given the highest priority and is
therefore the next data element to be deleted from the priority
queue.

After the data is loaded into the priority queue, the building
process starts. This process consists of deleting two data
elements with minimum frequencies, creating a new node
that will be the parent of the two nodes that were deleted and
become the new node’s left and right children. The new node
is inserted into the queue. This process continues until there
is only one node resulting in a binary tree.

The final process of generating the codes by assigns a zero
to the left child and a one to the right child of every parent
node. However, since we are primarily concerned with the
operations of the priority queue, we did not include the code
assigning process in our analysis.

We developed a program that uses a min heap as a priority
queue and used it to perform the load and build processes.
We also developed a program that uses the buckets data
structure as a priority queue and used it to perform the load
and build processes. Fig. 1 presents the results as a plot with
load, build, and total (load + build) times for both the heap
program and the buckets program for a range of the number
of data elements on the resulting tree. The plot shows that as
the number of data elements increases, the efficiency of the

International Journal of Machine Learning, Vol. 13, No. 2, April 2023

56

buckets data structure increases.
Fig. 1 shows that for Huffman Codes load times for the

heap and the buckets data structure are similar as the two
curves on the plot overlap. However, there is a substantial
difference in the build times for the two data structures. The
build time for the buckets data structure is 0.36 seconds at 1
million data elements. The build time for the heap is 2.61
seconds at 1 million data elements. Thus, the buckets data
structure provided an 86.2% build time improvement as
compared with the heap. The difference in the total times for
the data structures is 2.25 (2.76 heap – 0.51 buckets) seconds
which is an 81.5% improvement provided by the buckets data
structure.

Fig. 1. Operation times for the Huffman Codes application.

In addition to a priority queue operation improvement,

there is a total execution time improvement. The total
execution time difference is 1 minute and 38 seconds (2
minutes and 3 seconds for the heap – 25 seconds for the
buckets data structure), which is a 79.5% improvement
achieved by the buckets data structure. The heapify process
used by heaps to maintain the heap property causes the
program to run almost five times longer than with the buckets
data structure. This is because the heapify process is called
recursively, and there is a vast amount of overhead associated
with this recursion. Thus, the buckets data structure provides
a decrease in CPU time over heaps due to both a priority
queue operation improvement and a decrease in overall
execution time. The execution improvement occurred with
all the application instances we evaluated and analyzed. The
resulting trees that were generated by both data structures
were identical for every test case for the various numbers of
data elements. Therefore, the buckets data structure did not
cause any loss of accuracy.

VII. THE TRANSPORTATION PROBLEM

The importance of transportation has a great role to play in
society. The profits of companies from moving merchandise
from one location on the globe to another are determined by
transportation. Transportation costs and time can rival
production costs and production time. Transportation theory
is the study of optimal transportation and allocation of
resources.

One type of transportation problem that is associated with
Linear Programming (LP) deals with the physical
transportation of products from sources to destinations, the

objective being to minimize the cost of transportation.
The transportation problem consists of the following

pieces of information [18]:

1) m = the number of sources
2) n = the number of destinations
3) The total quantity available at each source
4) The total quantity required at each destination
5) The cost of transportation of one unit from each source

to each destination

In our analysis, m = n. Thus, the number of sources equals
the number of destinations. The transportation problem has
the following assumptions:

1) The total quantity available at all the sources is equal to

the total quantity required at all the destinations. If they
are not equal, an extra source or destination is added.

2) The unit transportation cost from a source to a
destination is known.

3) The unit cost is independent of the number of products
transported.

4) The objective is to minimize the transportation cost.

The transportation problem is formulated in matrix form.

The rows are sources and the columns are destinations the
supply amounts will be added as an extra separate column
and the demand amounts will be added as an extra separate
row. The cells of the matrix will have the cost of transporting
one unit from and to the corresponding source and
destination, respectively. There are three known initial basic
feasible methods for solving the transportation problem:

1) North-West (N-W) Corner Rule
2) Least Cost Method
3) Vogel’s Approximation Method

The North-West (N-W) Corner Rule starts with the

north-west corner of the matrix and transports as much of the
demand of the corresponding destination as the
corresponding source can supply. Either the corresponding
destination’s demand will be met and the column will be
eliminated, or the corresponding source’s supplies will be
exhausted and the row will be eliminated, or both. This
process of choosing the north-west corner of the resulting
matrix continues until all destinations’ demands have been
met and all sources’ supplies have been exhausted.

The Least Cost Method starts with the cell that has the
minimum cost and transports as much of the demand of the
corresponding destination as the corresponding source can
supply. If there is more than one cell with the minimum cost,
any of the cells can be selected. Either the corresponding
destination’s demand will be met and the column will be
eliminated, or the corresponding source’s supplies will be
exhausted and the row will be eliminated, or both. This
process of choosing the cell that has the minimum cost of the
resulting matrix continues until all destinations’ demands
have been met and all sources’ supplies have been exhausted.

Vogel’s Approximation Method is more complex than the
above two methods but often provides better results. It

International Journal of Machine Learning, Vol. 13, No. 2, April 2023

57

consists of first finding the difference between the two lowest
cost values in each row and column. These differences are
called penalties. The maximum value among all the penalties
of all rows and columns is determined. If there is more than
one row or column with the maximum penalty, any one of
them can be selected. Find the cell that has the minimum cost
in the row or column that was selected with the maximum
penalty. If there is more than one cell with the minimum cost,
any of the cells can be selected. Transport as much of the
demand of the corresponding destination as the
corresponding source can supply. Either the corresponding
destination’s demand will be met and the column will be
eliminated, or the corresponding source’s supplies will be
exhausted and the row will be eliminated, or both. This
process of finding the maximum penalty and choosing the
cell that has the minimum cost of the resulting matrix
continues until all destinations’ demands have been met and
all sources’ supplies have been exhausted.

We propose a fourth initial feasible method to solve the
transportation problem. It uses a greedy algorithm and two
priority queues. This method consists of inserting all the
sources with their associated costs into a minimum priority
queue where cost is the priority. Delete a node from the
minimum priority queue, which will provide one of the
sources that have the lowest cost available. Use the source to
find all the destinations to which the source transports at the
minimum cost. Insert those destinations with their associated
demands into a maximum priority queue where demand is the
priority. Delete a node from the maximum priority queue,
which will provide one of the destinations that have the
highest demand available. Transport as much of the demand
of the destination as the source can supply. Either the
destination’s demand will be met and it will be eliminated, or
the source’s supplies will be exhausted and it will be
eliminated, or both. This process of finding the source with
the minimum cost and the destination with the maximum
demand continues until all destinations’ demands have been
met and all sources’ supplies have been exhausted.

While an initial feasible solution may satisfy the
requirements of all the sources and destinations, it may not
provide the least cost possible. The solution that minimizes
the transportation cost is the optimal solution. After obtaining
the results from an initial feasible method, the solution must
be verified with an optimality test. It will determine whether
an initial feasible solution is the best solution and, if not, it
will provide the optimal solution.

Fig. 2. Operation times for the Transportation Problem application.

We developed a program that uses a min heap and a max
heap as priority queues and used them to perform the initial
feasible solution that we proposed. We also developed a
program that uses our buckets data structure as minimum and
maximum priority queues and used them to perform the
initial feasible solution that we proposed. Fig. 2 presents the
results in the form of a plot with insert, delete, and total
(insert + delete) times for both the heap program and the
buckets program for a range of the number of sources and
destinations. The plot shows that as the number of sources
and destinations increases, the efficiency of the buckets data
structure increases.

Fig. 2 shows that, for the Transportation Problem, insert
times for the heap and insert and delete times for the buckets
data structure are similar as the three lines on the plot overlap.
However, the delete times for the heap are much longer than
the other times. The delete time for the buckets data structure
is 0.22 seconds at 1 million data elements. The delete time for
the heap is over 1.39 seconds at 1 million data elements. Thus,
the buckets data structure provided an 84.2% delete time
improvement as compared with the heap. The difference in
the total times for the data structures is 1.20 (1.64 heap – 0.44
buckets) seconds, which is a 73.2% improvement provided
by the buckets data structure.

In addition to a priority queue operation improvement,
there is a decrease in total execution time. The total execution
time difference is 1 minutes and 11 seconds (2 minutes and
15 seconds for the heap – 1 minute and 4 seconds for the
buckets data structure), which is a 52.4% improvement
achieved by the buckets data structure. The heapify process
to maintain the heap property causes the program to run more
than twice as long as it does with the buckets data structure.
The resulting minimized transportation costs that were
generated by both data structures were identical for every test
case with the various numbers of data elements. Therefore,
the buckets data structure did not cause any loss of accuracy.

VIII. A* SEARCH ALGORITHM

The A* Search algorithm is an extension of Dijkstra’s
algorithm and is useful for finding the lowest cost path
between two vertices in a graph. The A* Search algorithm is
a modification of Dijkstra’s algorithm that is optimized for a
single destination. It is a combination of Dijkstra’s and best
first search algorithms. It uses a cost function f(n) = g(n) +
h(n) where g(n) is the cost of the path from the origin to
vertex n and h(n) is a heuristic function that is the cost of the
path from n to the destination.

The A* Search algorithm is like the 15-puzzle and the REL
relocation problem [19] since it has a cost f(n) = g(n) + h(n)
and 0 or 1 for blocked and unblocked cells, respectively, in a
matrix that is used to represent graphs. The cost function [17]
for the 15-puzzle application is c(x) = f(x) + g(x) where f(x) is
the length of the path from the root of the state space tree to
node x and g(x) is a heuristic function representing the
number of tiles that are not in the correct position in the
matrix for the state of node x. The 0 and 1 in the A* Search
algorithm determines the passage from one cell to an adjacent
cell in the matrix. The 0 and 2 in REL determines the capacity
from one vertex to an adjacent vertex in the graph.

International Journal of Machine Learning, Vol. 13, No. 2, April 2023

58

Fig. 3. Operation times for the A* Search algorithm application.

The A* Search algorithm uses a priority queue, which is a
set – preventing duplicate values from being inserted into it.
It also uses a stack to display the path in the correct order
from origin to destination since the path is created from
destination to origin. This prompted us to further design the
buckets priority queue to be configured as a set or a stack
(LIFO). It can also be configured to be a queue (FIFO). We
implemented the A* Search algorithm using two buckets
priority queues. One was configured to be a set and the other
was configured to be a stack.

For testing and analysis, we developed a program that uses
a min heap as a priority queue and used it to perform the A*
Search algorithm. We also developed a program that
implements the buckets data structure as a priority queue and
used it to perform the A* Search algorithm. Fig. 3 presents
the results in the form of a plot with insert, delete, and total
(insert + delete) times for both the heap program and the
buckets program for various matrix sizes. The plot shows that
as the number of cells in the matrix that is searched increases,
the efficiency of the buckets data structure increases.

Fig. 3 shows that, for the A* Search algorithm delete times
for the heap are longer than but close to the delete times for
the buckets data structure. However, the insert times for the
heap are longer than the insert times for the buckets data
structure. The insert time for the buckets data structure is 0.63
milliseconds at 1 million data elements. The insert time for
the heap is 0.93 milliseconds at 1 million data elements. This
is more than the buckets data structure’s total time, which is
0.91 milliseconds. Thus, the buckets data structure provided
a 32.3% insert time improvement when compared with the
heap. The difference in the total times for the data structures
is 0.44 (1.35 heap – 0.91 buckets) milliseconds which is a
32.6% improvement achieved by the buckets data structure.

In addition to a priority queue operation improvement,
there is a decrease in total execution time to 2 seconds (4
seconds for the heap – 2 seconds for the buckets data
structure), which is a 57.1% improvement achieved by the
buckets data structure. The heapify process to maintain the
heap property causes the program to run twice as long as it
does with the buckets data structure. The resulting paths that
were generated by both data structures were identical for
every test case with the various numbers of data elements.
Therefore, the buckets data structure did not cause any loss of
accuracy.

IX. QUEUE OR STACK CONFIGURATION

Since the buckets priority queue uses linked lists to store

the nodes that are inserted into it, it did not require a lot of
effort to design it to be configured as a queue or a stack. The
required steps were to first make the linked lists doubly
linked lists. The next step was to create attributes that
determine whether to insert at the tail or head and whether to
delete from the head or tail.

We determined through testing that with the buckets
priority queue it is best to insert at the tail and delete from the
head for a queue and insert at the head and delete from the
head for a stack. Operating a queue and a stack in this fashion
is more efficient from a time perspective than inserting at the
head and deleting from the tail for a queue and inserting at the
tail and deleting from the tail for a stack. There are two
attributes, insert_end and delete_end, which determine where
to insert and delete data elements, respectively. The
insert_end attribute can have the following settings:

1) insert at the tail
2) insert at the head
3) 50% probability of inserting at the tail or head

The delete_end attribute can have the following settings:

1) delete from the head
2) delete from the tail
3) 50% probability of deleting from the head or tail

The option to randomly insert at the tail or head and delete

from the head or tail with a 50% probability allowed the
buckets data structure to find the goal state from an initial
state of the 15-puzzle application in 1,056,405 less iterations
than when a heap was used.

X. SET CONFIGURATION

The design and implementation phases of the buckets
priority queue uncovered interesting aspects of a priority
queue. The driving focus and reason for designing a buckets
priority queue was to eliminate the overhead associated with
heaps. The overhead was eliminated by putting the same or
similar values into one bucket. This led to a developmental
process of identifying duplicate values. The design handles
the first insert into and the last delete from a bucket
separately from all subsequent inserts and deletes. Thus, to
configure the buckets priority queue into a set is as simple as
preventing subsequent inserts into a bucket. An attribute
(isASet) is used to configure the buckets priority queue as a
set. If the buckets priority queue is configured to be a set,
whenever a bucket is not empty, any attempts to add
additional nodes into the bucket will not be allowed. For a
heap to be used as a set, on average half of the nodes in the
queue must be searched each time a node is inserted, to
determine if the value being inserted is already in the queue.
The buckets priority queue can perform this task with an O(1)
time complexity.

XI. CONTAINS METHOD

The buckets priority queue has a method, called “contains”,

International Journal of Machine Learning, Vol. 13, No. 2, April 2023

59

that returns TRUE or FALSE if a node with a certain value is
in the queue. For a heap to have this method, on average half
of the nodes on the queue must be searched to determine if a
node with a certain value is in the queue. The buckets priority
queue can perform this task with an O(1) time complexity.

XII. DOUBLE-ENDED PRIORITY QUEUE

The buckets priority queue was already designed to be
configured to replace a min heap or a max heap. The data
structure had an attribute (min_max) that was set to 0 to
configure it to replace a max heap, or set to 1 to configure it to
replace a min heap. There were places in the code where
statements depended upon the value of min_max. For
example, either the pointer to the bucket with the minimum
value(s) or the maximum value(s) was updated dependent
upon the value of min_max. The min_max attribute was
eliminated, and the places in the code where it was used were
changed to execute both statements to keep track of the
buckets with the minimum and maximum value(s).

By adding this extra feature, the code became more
efficient. A parameter (delete_end) is passed to the delete and
top methods and is set to 0 to return the maximum value and
set to 1 to return the minimum value. The effort required to
implement and maintain a DEPQ with the buckets priority
queue is less complex and more efficient than it is with a
heap.

One benefit of a DEPQ that simultaneously keeps track of
the minimum and maximum value(s) is that nodes that are
determined to be unusable on either end of the queue can be
deleted from the queue. When an application already has
more nodes in the priority queue than will be processed, the
excess nodes can be deleted to free up memory. This can be
performed from either end of the priority queue.

After updating the code to convert the buckets data
structure to be a DEPQ, thorough testing was done to ensure
that after several inserts and deletes the pointers to the
minimum and maximum value(s) were still valid. Nodes
were inserted into the buckets priority queue and the proper
updating of the pointers to minimum and maximum value(s)
was verified. Then, nodes with both minimum and maximum
value(s) were deleted from the buckets priority queue and the
proper updating of the pointers to minimum and maximum
value(s) was verified again. This procedure was executed
several times to fully verify that the data structure was
working as expected.

XIII. STRESS TESTING

Every task of this project and, in fact the whole pursuit of
designing an efficient priority queue data structure, led to
conducting stress testing. However, the idea didn’t come to
realization until converting the buckets priority queue into a
DEPQ. After completing the DEPQ testing and verification
process, there was a realization that all the applications,
except for the transportation problem, have a common theme
from a priority queue operations perspective. It consists of
deleting a node from the queue, performing some processing,
and inserting multiple nodes into the queue. The adaptive

multivariate integration application that we used for testing in
[20] deletes a region, divides it into 2, 4, 8, or 16 subregions,
evaluates the subregions, and inserts them into the queue
repeatedly until a tolerated error or maximum number of
subdivisions is reached. The 15-puzzle application deletes a
state, creates up to 4 new states, evaluates them, and inserts
them into the queue repeatedly until the goal state is reached.
The A* Search algorithm deletes a cell, identifies up to 8 new
surrounding cells, evaluates them, and inserts them into the
queue repeatedly until the destination is reached. The
Huffman codes application has a similar priority queue
process, but after the data elements are loaded into the queue,
two nodes are deleted, joined and inserted into the queue. The
transportation problem is the only application we
implemented that does not have this type of continuous
priority queue manipulation. Our proposed initial feasible
solution for the transportation problem repeatedly inserts
nodes into two priority queues and deletes all of the nodes
from the priority queues before inserting more nodes into the
priority queues.

We developed an application that isolates a priority
queue’s operations and analyzes its performance. The
application deletes a node and then inserts a configured
number of nodes, repeatedly until a configured number of
data elements are inserted into the priority queue. The times
spent inserting and deleting are accumulated separately and
totaled.

We developed a program that uses a min heap as a priority
queue and used it to perform stress testing. We also
developed a program that uses the buckets data structure as a
priority queue and used it to perform stress testing. The
results follow in a series of figures with plots that have insert,
delete, and total (insert + delete) times for both the heap
program and the buckets program at various stages of the
queue’s capacity until the queue contains one million data
elements. There is a plot for deleting one node and inserting 2,
4, 8 and 16 nodes, respectively. The plots show that as the
number of data elements increases, the efficiency of the
buckets data structure increases. The buckets priority queue
yields roughly a 20% time improvement on inserting and a
more than 90% time improvement on deleting as compared to
the heap. We present the plots in decreasing order of the
number of nodes that are inserted. For the heap, as the
number of nodes inserted for stress testing decreases, the
number of calls to heapify increases. Thus, the performance
improvement achieved by the buckets data structure over the
heap increases as well.

Fig. 4 shows that with deleting one node and inserting 16
nodes repeatedly until the queue has 1 million nodes, the
delete time (0.04 deciseconds) for the program that utilizes
the buckets data structure is a 91.1% improvement over the
delete time (0.45 deciseconds) for the program that utilizes
the heap. The insert time (0.69 deciseconds) for the program
that utilizes the buckets data structure is a 18.8%
improvement over the insert time (0.85 deciseconds) for the
program that utilizes the heap. The difference in the total
times for the data structures is 0.57 (1.30 heap – 0.73 buckets)
deciseconds, which is a 43.8% improvement achieved by the
buckets data structure.

In addition to a priority queue operation improvement,

International Journal of Machine Learning, Vol. 13, No. 2, April 2023

60

there is a decrease in the total execution time when inserting a
billion data elements. The total execution time difference is 1
minute and 23 seconds (4 minutes and 42 seconds for the
heap – 3 minutes and 19 seconds for the buckets data
structure), which is a 29.4% improvement provided by the
buckets data structure. This execution time improvement will
increase and become more substantial as the number of nodes
inserted for stress testing decreases.

Fig. 4. Operation times for the Stress Test application (insert 16 nodes).

Fig. 5 shows that with deleting one node and inserting 8
nodes repeatedly until the queue has 1 million nodes, the
delete time (0.09 deciseconds) for the program that utilizes
the buckets data structure is a 90.1% improvement over the
delete time (0.91 deciseconds) for the program that utilizes
the heap. The insert time (0.76 deciseconds) for the program
that utilizes the buckets data structure is a 19.1%
improvement over the insert time (0.94 deciseconds) for the
program that utilizes the heap. The difference in the total
times for the data structures is 1.00 (1.85 heap – 0.85 buckets)
deciseconds which is a 54.1% improvement provided by the
buckets data structure.

In addition to a priority queue operation improvement,
there is a total execution time improvement when inserting a
billion data elements. The total execution time difference is 2
minutes and 40 seconds (6 minutes and 23 seconds for the
heap – 3 minutes and 43 seconds for the buckets data
structure) which is a 41.7% improvement provided by the
buckets data structure.

Fig. 6 shows that when deleting one node and inserting 4
nodes repeatedly until the queue has 1 million nodes, the
delete time (0.21 deciseconds) for the program that utilizes
the buckets data structure is a 90.1% improvement over the
delete time (2.12 deciseconds) for the program that utilizes
the heap. The insert time (0.91 deciseconds) for the program
that utilizes the buckets data structure is a 32.6%
improvement of the insert time (1.35 deciseconds) over the
program that utilizes the heap. The difference in the total
times for the data structures is 2.35 (3.47 heap – 1.12 buckets)
deciseconds which is a 67.7% improvement provided by the
buckets data structure.

In addition to a priority queue operation improvement,
there is a substantial decrease in the total execution time
when inserting a billion data elements. The total execution
time difference is 5 minutes and 46 seconds (10 minutes and
28 seconds for the heap – 4 minutes and 42 seconds for the
buckets data structure) which is a 55.1% improvement

achieved by the buckets data structure. The heapify process
to maintain the heap property causes the program to run more
than twice as long as with the buckets data structure.

Fig. 5. Operation times for the Stress Test application (insert 8 nodes).

Fig. 6. Operation times for the Stress Test application (insert 4 nodes).

Fig. 7 shows that, with deleting 1 node and inserting 2

nodes repeatedly until the queue has 1 million nodes, the
delete time (0.62 deciseconds) for the program that utilizes
the buckets data structure is a 90.2% improvement over the
delete time (6.30 deciseconds) for the program that utilizes
the heap. The insert time (1.44 deciseconds) for the program
that utilizes the buckets data structure is a 17.2%
improvement of the insert time (1.74 deciseconds) over the
program that utilizes the heap. The difference in the total
times for the data structures is 5.98 (8.04 heap – 2.06 buckets)
deciseconds which is a 74.4% improvement achieved by the
buckets data structure.

In addition to a priority queue operation improvement,
there is a substantial decrease in the total execution time
when inserting a billion data elements, amounting to 15
minutes and 51 seconds (23 minutes and 53 seconds for the
heap – 8 minutes and 2 seconds for the buckets data structure)
which is a 66.4% improvement achieved by the buckets data
structure. The heapify process to maintain the heap property
causes the program to run almost three times as long as it
does with the buckets data structure.

XIV. SUMMARY

Table I shows insert, delete, and total (insert + delete)
times for both the heap and the buckets data structures at 1
million data elements for all applications and configurations
that we tested and analyzed and it shows the operation time

International Journal of Machine Learning, Vol. 13, No. 2, April 2023

61

improvement that the buckets data structure provides.
Table II shows execution times for both the heap and the

buckets data structure inserting 1 million (1 billion for stress
testing) data elements for all applications and configurations
that we tested and analyzed and it shows the execution time
improvement that the buckets data structure provides. Table
II also shows the number of direct and recursive heapify calls
that were made in the program that utilizes the heap for every
application and configuration that we tested and analyzed.
Because we were able to omit the heapify process, all those
calls to heapify were alleviated by the buckets data structure.

Fig. 7. Operation times for the Stress Test application (insert 2 nodes).

TABLE I: OPERATION TIMES AND IMPROVEMENT

Heap Buckets Heap Buckets Heap Buckets

Huffman Codes (s) 0.15 0.15 2.61 0.36 2.76 0.51 81.5

Transportation (s) 0.25 0.22 1.39 0.22 1.64 0.44 73.2

A* Search (ms) 0.93 0.63 0.42 0.28 1.35 0.91 32.6

Insert 16 Nodes (ds) 0.85 0.69 0.45 0.04 1.30 0.73 43.8

Insert 8 Nodes (ds) 0.94 0.76 0.91 0.09 1.85 0.85 54.1

Insert 4 Nodes (ds) 1.35 0.91 2.12 0.21 3.47 1.12 67.7

Insert 2 Nodes (ds) 1.74 1.44 6.30 0.62 8.04 2.06 74.4

Application
Insert Time Delete Time

Operation Time
Improvement

(%)

Total Time

TABLE II: EXECUTION TIMES AND IMPROVEMENT

Heap Buckets Direct Recursive

Huffman Codes 2.05 0.42 79.5 101,017,558 1,658,939,068

Transportation 2.25 1.07 52.4 151,542,810 1,167,808,107

A* Search 0.07 0.03 57.1 67,187 549,998

Insert 16 Nodes 4.70 3.32 29.4 66,666,666 1,849,418,575

Insert 8 Nodes 6.38 3.72 41.7 142,857,142 3,962,408,636

Insert 4 Nodes 10.47 4.70 55.1 333,333,332 9,244,380,216

Insert 2 Nodes 23.88 8.03 66.4 999,999,998 27,769,364,691

Heapify Calls
Application

Execution Time
(mins.)

Execution Time
Improvement

(%)

XV. CONCLUSION

We presented the results of an analysis where we
compared the performance of a novel buckets priority queue
data structure that we developed and a heap. We
implemented several applications with both data structures.
The results demonstrate that, for all applications
implemented, our data structure outperforms heaps. In
addition, the results demonstrate that the performance and
efficiency of the buckets data structure increases as the
number of data elements inserted into the queue increases.
The new data structure can profoundly improve the
performance of today’s big data applications that rely on
heaps. Furthermore, the performance improvement is
obtained without any loss of accuracy of the application. We
did not include applications that have extensive execution

times. However, we demonstrated that the buckets data
structure can accumulate a great deal of cost and time savings
even for applications that have relatively short execution
times.

XVI. FUTURE WORK

We will continue the implementation of real-world
applications with the new data structure to showcase its
innovation and use in the field of Computer Science both in
the private and educational sectors. We are particularly
interested in the areas of networking and IoT. We will further
test the bucket data structure with applications that have
extensive execution times to capitalize on more CPU-time
savings.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

A conducted the research and analysis and developed the
software; B provided direction and oversight; analyzed the
data; A initially wrote the paper; B provided final edits; A, B
approved the final version.

ACKNOWLEDGMENT

The authors would like to acknowledge Dr. J. Kapenga
and Dr. D. Zeitler for their valuable comments.

REFERENCES
[1] J. W. J. Williams, “Algorithm 232: Heapsort,” Comm. ACM, vol. 7, pp.

374–378, 1964.
[2] A. Genz and A. Malik, “An adaptive algorithm for numerical

integration over an n-dimensional rectangular region,” Journal of
Computational and Applied Mathematics, vol. 6, pp. 295–302, 1980.

[3] R. Piessens, E. de Doncker, C. W. Überhuber, and D. K. Kahaner,
“QUADPACK, a subroutine package for automatic integration,”
Springer Series in Computational Mathematics, vol. 1,
Springer-Verlag, 1983.

[4] J. Berntsen, T. O. Espelid, and A. Genz, “An adaptive algorithm for the
approximate calculation of multiple integrals,” ACM Trans. Math.
Softw., vol. 17, pp. 437–451, 1991.

[5] J. Berntsen, T. O. Espelid, and A. Genz, “Algorithm 698: DCUHRE-an
adaptive multidimensional integration routine for a vector of integrals,”
ACM Trans. Math. Softw, vol. 17, pp. 452–456, 1991.

[6] R. Cools and A. Haegemans, “Cubpack: Progress report,” in Numerical
Integration, Recent Developments, Software and Applications, NATO
ASI Series C: Mathematical and Physical Sciences, T. O. Espelid and
A. C. Genz, Eds., 1992, pp. 305–315.

[7] E. de Doncker, A. Genz, A. Gupta, and R. Zanny, “Tools for distributed
adaptive multivariate integration on NOW’s: PARINT1.0 release,”
Supercomputing, 1998.

[8] E. de Doncker, K. Kaugars, L. Cucos, and R. Zanny, “Current status of
the ParInt package for parallel multivariate integration,” in Proc.
Computational Particle Physics Symposium, 2001, pp. 110–119.

[9] T. Hahn, “Cuba − a library for multidimensional numerical
integration,” Comput. Phys. Commun., vol. 176, pp. 712–713, 2007.

[10] L. Jarzabek and P. Czarnul, “Performance evaluation of unified
memory and dynamic parallelism for selected parallel CUDA
applications,” J. Supercomputing, vol. 73, pp. 5378–5401, 2017.

[11] O. E. Olagbemi and E. de Doncker, “Scalable algorithms for
multivariate integration with ParAdapt and CUDA,” in Proc. 2019 Int.
Conf. on Computer Science and Computational Intelligence, 2019.

[12] E. de Doncker, F. Yuasa, A. Almulihi, N. Nakasato, H. Daisaka, and T.
Ishikawa, “Numerical multi-loop integration on heterogeneous
manycore processors,” The Journal of Physics: Conf. Series (JPCS),
vol. 1525, 2019.

[13] E. de Doncker, F. Yuasa, and A. Almulihi, “Efficient GPU integration
for multi-loop Feynman diagrams with massless internal lines,” Comp.

International Journal of Machine Learning, Vol. 13, No. 2, April 2023

62

and Exper. Simulations in Engineering, Mechanisms and Machine
Science, vol. 75, pp. 737–747, 2019.

[14] E. de Doncker, F. Yuasa, O. Olagbemi, and T. Ishikawa, “Large scale
automatic computations for Feynman diagrams with up to five loops,”
Springer Lecture Notes in Computer science (LNCS), vol. 12253, pp.
145–162, 2020.

[15] E. de Doncker and F. Yuasa, “Self-energy Feynman diagrams with four
loops and 11 internal lines,” Springer Lecture Notes in Computer
science (LNCS), vol. 12953, pp. 160–175, 2021.

[16] Program for conversion of 32 bits single precision IEEE 754 floating
point representation. (2021). [Online].
Available:https://www.geeksforgeeks.org/program-for-conversion-of-
32-bits-single-precision-ieee-754-floating-point-representation/

[17] E. Horowitz, S. Sahni, and B. Rajasekaran, Computer Algorithms/C++,
Computer Science Press, 1997.

[18] A. Babu, “Optimization in the transportation problem,” Medium,
Towards Data Science, July 5, 2020.

[19] D. Ratner and M. Warmuth, “The (n2 − 1)-puzzle and related relocation
problems,” Journal of Symbolic Computation, vol. 10, pp. 111–137,
1990.

[20] J. Rhodes and E. de Doncker, “Design and implementation of an
efficient priority queue data structure,” in Proc. 2022 Workshops
onComputational Science and Its Applications, Springer International
Publishing, Cham, 2022, pp. 343–357.

Copyright © 2023 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

International Journal of Machine Learning, Vol. 13, No. 2, April 2023

63

