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Abstract—We have designed and developed an efficient 
priority queue data structure that utilizes buckets into which 
data elements are inserted and from which data elements are 
deleted. The data structure leverages hashing to determine the 
appropriate bucket to place a data element based on the data 
element’s key value. This allows the data structure to access 
data elements that are in the queue with an O(1) time 
complexity. Heaps access data elements that are in the queue 
with an O(log n) time complexity, where n is the number of 
nodes on the heap. Thus, the data structure improves the 
performance of applications that utilize a min/max heap. 
Targeted areas include big data applications, data science, 
artificial intelligence, and parallel processing. In this paper, we 
present results several applications. We demonstrate that the 
data structure when used to replace a min/max heap improves 
the performance applications by reducing the execution time. 
The performance improvement increases as the number of data 
elements placed in the queue increases. Also, in addition to 
being designed as a double-ended priority queue (DEPQ), the 
data structure can be configured to be a queue (FIFO), a stack  
(LIFO), and a set (which doesn’t allow duplicates). 
 

Index Terms—Priority queue, Buckets data structure, big 
data, heap, performance  
 

I. INTRODUCTION 

Many have abandoned the idea of hashing despite the fact 
that it affords an O(1) time complexity for accessing data 
elements. This is because of the possible collisions that can 
occur due to not having a unique slot for every key. However, 
many applications require only a limited and manageable 
number of keys. For example, using our proposed data 
structure, the 15-puzzle application for a given initial state 
required only 30 unique keys and the goal state was found in 
1,056,405 less iterations than when a heap was used. 
Furthermore, many applications do not require every data 
element to have a unique key. A range of data elements can 
be grouped together with one key and experience only a 
slight amount of accuracy loss if any. For instance, using our 
data structure for a sample integral computed with adaptive 
multivariate integration, only 85 slots were generated when 
ranges of numbers were coalesced. The results were identical 
to using unique values out to 10 decimal places. 

 

II. HEAP DATA STRUCTURE 

Although priority queues can be implemented with arrays 
and linked lists, heaps are the most common data structure 
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used to implement priority queues. Heap operations include 
insert, delete-min (delete-max), and find-min (find-max). 
Min heaps use the minimum key operations and max heaps 
use the maximum key operations. The structure of a heap is 
tree-based. There is a variety of types of heaps that have 
different operations and complexities.  

A binary heap is based on a binary tree and is known as the 
standard heap. The heap property ensures that the keys of any 
parent node’s children are not less than or greater than its key 
for a min heap or max heap, respectively [1]. In order to 
preserve the heap property, significant maintenance is 
required for both inserting and deleting data. We call this 
process “heapify”. The heapify process is more costly from a 
time perspective when deleting from a heap than it is when 
inserting into a heap. 

The insert and delete operations of a heap both have an 
O(logn) time complexity. This is adequate for most 
applications. However, some heap-intensive applications 
could experience performance degradation when the number 
of data elements on the heap is enormous. The priority queue 
data structure that we designed lowers the time complexity 
and produces comparable accuracy for these types of 
applications. By getting rid of the data manipulation required 
for heaps, our data structure improves the performance of 
applications by reducing the amount of CPU time required 
for applications to complete execution. 

 

III. BUCKETS DATA STRUCTURE 

The priority queue data structure that we designed and 
developed is bucket-based. We investigated the idea of using 
buckets as the solution to eliminate the heapify process. We 
associate buckets with nodes on a heap and note a difference 
between a data element and a heap element. A data element is 
an individual node that is in a linked list. A heap element is 
the head node of a linked list and corresponds to a heap node 
that can be inserted or deleted. The nodes on a heap are 
buckets of nodes that have the same or similar key. 

A bucket, which is a linked list, may have many nodes in it. 
However, the heap will only have the head node of the linked 
list on it. In particular, the nodes on the heap will be pointers 
to head nodes of linked lists. Although there could be 
millions of data elements on a heap, only a fraction of the 
nodes would have to be rearranged during the heapify 
process. When they are moved all the nodes in a bucket will 
be treated as one node. 

The buckets used to store data elements are implemented 
as an array of pointers to the heads of linked lists. Since it is 
dynamic the array can grow and shrink. When a bucket no 
longer has any nodes because of the last node being deleted, 
the next non-null bucket with the minimum or maximum 
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value is selected. When a data element is inserted into a 
bucket that doesn’t have any nodes, no data manipulation is 
required. 

Buckets not only lower the time spent to heapify but also 
lower the frequency of calling the heapify process. When a 
data element is deleted from a bucket and there is still at least 
one node in it, a call to the heapify process is avoided. 
Furthermore, when a data element is inserted into a bucket 
that has at least one node in it, a call to the heapify process is 
avoided. A hashing function is used to determine the 
appropriate buckets with an O(1) time complexity. This 
allowed us to develop a priority queue data structure that 
alleviated the heapify process and its associated data 
manipulation. 

 

IV. BACKGROUND 

We began our research with the objective to improve the 
performance of a multivariate integration application [29]. 
The application utilizes a heap and is driven by a parallel 
algorithm [1015]. It implements a Compute Unified Device 
Architecture (CUDA) kernel to evaluate regions. The 
application deletes a node that represents the region with the 
largest error from the heap, divides it into 2, 4, 8, or 16 
subregions, evaluates the subregions (computes their integral 
contribution and estimated error) and inserts them into the 
heap. The application continues until the total error is 
reduced below a user-prescribed level or a prescribed number 
of function evaluations have been performed. We identified 
the heap as a bottleneck when a huge number of data 
elements were inserted into the queue.  

Originally, our goal was to improve the performance of the 
heap. We focused on reducing the number of calls to the 
heapify process. We identified that if ranges of data could be 
grouped together that would both decrease the number of 
nodes to be moved during the heapify process and decrease 
the number of calls to the heapify process. 

We decided to use the error estimate of the regions as the 
key for a hashing function. The error estimate is declared as a 
double datatype which could not be used directly as an index 
into an array, so we used the exponent and mantissa of the 
number as indexes into a two-dimensional array. Our 
implementation is based on the IEEE Standard for 
Floating-Point Arithmetic (IEEE 754) representation and a 
computer program at [16]. After a several improvements of 
the data structure, we were ultimately able to eliminate the 
heap with its tree structure and recursive heapify process 
entirely. The data structure is now an array of pointers to 
heads of doubly linked lists. 

 

V. APPROACH 

We developed two versions of several applications one 
implemented with a heap and another with the buckets data 
structure. We executed both versions of the applications and 
analyzed and compared the results. The applications were 
executed on a system with the following specifications: 

Dual 8C Intel Xeon E5-2670 @2.6GHz host, with 128GB 
of RAM 

Kepler 20(m) GPU, with 2496 CUDA cores, 4.8GB global 
memory, and 956.8 GFLOPS double precision theoretical 
performance. 

 

VI. HUFFMAN CODES 

Huffman codes constitute an application of binary trees 
with minimal weighted external path length that obtain an 
optimal set of codes for messages. The codes are binary 
strings that are used to transmit the corresponding messages. 
A decode tree is used at the receiving end to decode the 
message. The external nodes (leaves) of a decode tree 
represent messages. The branching that is necessary at each 
level of the decode tree to reach the correct external node is 
determined by the bits in the codeword for a message. A zero 
is interpreted as a left branch and a one is interpreted as a 
right branch. The bit strings from the root to an external node 
are called Huffman codes. The cost of decoding is 
proportional to the number of bits in the code, which is equal 
to the distance from the root to the external node. If fi is the 
relative frequency in which a message will be transmitted and 
di is the distance from the root node to the external node for a 
message, then the expected decode time is , where h 
is the height of the tree [17]. By choosing codewords 
resulting in a decode tree with minimal weighted external 
path length, the expected decode time is minimized. The 
expected decode time is the expected length of a transmitted 
message. Thus, the code that minimizes expected decode 
time, minimizes the expected length of a message code, as 
well. 

A program that implements Huffman Codes usually 
implements a min heap as a priority queue. There are two 
main steps to the algorithm to generate the codes. The first is 
to load the priority queue with the data elements and their 
associated frequencies. The frequencies are used as the keys 
where the minimum key is given the highest priority and is 
therefore the next data element to be deleted from the priority 
queue. 

After the data is loaded into the priority queue, the building 
process starts. This process consists of deleting two data 
elements with minimum frequencies, creating a new node 
that will be the parent of the two nodes that were deleted and 
become the new node’s left and right children. The new node 
is inserted into the queue. This process continues until there 
is only one node resulting in a binary tree. 

The final process of generating the codes by assigns a zero 
to the left child and a one to the right child of every parent 
node. However, since we are primarily concerned with the 
operations of the priority queue, we did not include the code 
assigning process in our analysis. 

We developed a program that uses a min heap as a priority 
queue and used it to perform the load and build processes. 
We also developed a program that uses the buckets data 
structure as a priority queue and used it to perform the load 
and build processes. Fig. 1 presents the results as a plot with 
load, build, and total (load + build) times for both the heap 
program and the buckets program for a range of the number 
of data elements on the resulting tree. The plot shows that as 
the number of data elements increases, the efficiency of the 
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buckets data structure increases. 
Fig. 1 shows that for Huffman Codes load times for the 

heap and the buckets data structure are similar as the two 
curves on the plot overlap. However, there is a substantial 
difference in the build times for the two data structures. The 
build time for the buckets data structure is 0.36 seconds at 1 
million data elements. The build time for the heap is 2.61 
seconds at 1 million data elements. Thus, the buckets data 
structure provided an 86.2% build time improvement as 
compared with the heap. The difference in the total times for 
the data structures is 2.25 (2.76 heap – 0.51 buckets) seconds 
which is an 81.5% improvement provided by the buckets data 
structure.  

 

 
Fig. 1. Operation times for the Huffman Codes application. 

 
In addition to a priority queue operation improvement, 

there is a total execution time improvement. The total 
execution time difference is 1 minute and 38 seconds (2 
minutes and 3 seconds for the heap – 25 seconds for the 
buckets data structure), which is a 79.5% improvement 
achieved by the buckets data structure. The heapify process 
used by heaps to maintain the heap property causes the 
program to run almost five times longer than with the buckets 
data structure. This is because the heapify process is called 
recursively, and there is a vast amount of overhead associated 
with this recursion. Thus, the buckets data structure provides 
a decrease in CPU time over heaps due to both a priority 
queue operation improvement and a decrease in overall 
execution time. The execution improvement occurred with 
all the application instances we evaluated and analyzed. The 
resulting trees that were generated by both data structures 
were identical for every test case for the various numbers of 
data elements. Therefore, the buckets data structure did not 
cause any loss of accuracy. 

 

VII. THE TRANSPORTATION PROBLEM 

The importance of transportation has a great role to play in 
society. The profits of companies from moving merchandise 
from one location on the globe to another are determined by 
transportation. Transportation costs and time can rival 
production costs and production time. Transportation theory 
is the study of optimal transportation and allocation of 
resources. 

One type of transportation problem that is associated with 
Linear Programming (LP) deals with the physical 
transportation of products from sources to destinations, the 

objective being to minimize the cost of transportation. 
The transportation problem consists of the following 

pieces of information [18]: 
 
1) m = the number of sources 
2) n = the number of destinations 
3) The total quantity available at each source 
4) The total quantity required at each destination 
5) The cost of transportation of one unit from each source 

to each destination 
 

In our analysis, m = n. Thus, the number of sources equals 
the number of destinations. The transportation problem has 
the following assumptions: 

 
1) The total quantity available at all the sources is equal to 

the total quantity required at all the destinations. If they 
are not equal, an extra source or destination is added. 

2) The unit transportation cost from a source to a 
destination is known. 

3) The unit cost is independent of the number of products 
transported. 

4) The objective is to minimize the transportation cost. 
 
The transportation problem is formulated in matrix form. 

The rows are sources and the columns are destinations the 
supply amounts will be added as an extra separate column 
and the demand amounts will be added as an extra separate 
row. The cells of the matrix will have the cost of transporting 
one unit from and to the corresponding source and 
destination, respectively. There are three known initial basic 
feasible methods for solving the transportation problem: 

 
1) North-West (N-W) Corner Rule 
2) Least Cost Method 
3) Vogel’s Approximation Method 

 
The North-West (N-W) Corner Rule starts with the 

north-west corner of the matrix and transports as much of the 
demand of the corresponding destination as the 
corresponding source can supply. Either the corresponding 
destination’s demand will be met and the column will be 
eliminated, or the corresponding source’s supplies will be 
exhausted and the row will be eliminated, or both. This 
process of choosing the north-west corner of the resulting 
matrix continues until all destinations’ demands have been 
met and all sources’ supplies have been exhausted. 

The Least Cost Method starts with the cell that has the 
minimum cost and transports as much of the demand of the 
corresponding destination as the corresponding source can 
supply. If there is more than one cell with the minimum cost, 
any of the cells can be selected. Either the corresponding 
destination’s demand will be met and the column will be 
eliminated, or the corresponding source’s supplies will be 
exhausted and the row will be eliminated, or both. This 
process of choosing the cell that has the minimum cost of the 
resulting matrix continues until all destinations’ demands 
have been met and all sources’ supplies have been exhausted. 

Vogel’s Approximation Method is more complex than the 
above two methods but often provides better results. It 
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consists of first finding the difference between the two lowest 
cost values in each row and column. These differences are 
called penalties. The maximum value among all the penalties 
of all rows and columns is determined. If there is more than 
one row or column with the maximum penalty, any one of 
them can be selected. Find the cell that has the minimum cost 
in the row or column that was selected with the maximum 
penalty. If there is more than one cell with the minimum cost, 
any of the cells can be selected. Transport as much of the 
demand of the corresponding destination as the 
corresponding source can supply. Either the corresponding 
destination’s demand will be met and the column will be 
eliminated, or the corresponding source’s supplies will be 
exhausted and the row will be eliminated, or both. This 
process of finding the maximum penalty and choosing the 
cell that has the minimum cost of the resulting matrix 
continues until all destinations’ demands have been met and 
all sources’ supplies have been exhausted. 

We propose a fourth initial feasible method to solve the 
transportation problem. It uses a greedy algorithm and two 
priority queues. This method consists of inserting all the 
sources with their associated costs into a minimum priority 
queue where cost is the priority. Delete a node from the 
minimum priority queue, which will provide one of the 
sources that have the lowest cost available. Use the source to 
find all the destinations to which the source transports at the 
minimum cost. Insert those destinations with their associated 
demands into a maximum priority queue where demand is the 
priority. Delete a node from the maximum priority queue, 
which will provide one of the destinations that have the 
highest demand available. Transport as much of the demand 
of the destination as the source can supply. Either the 
destination’s demand will be met and it will be eliminated, or 
the source’s supplies will be exhausted and it will be 
eliminated, or both. This process of finding the source with 
the minimum cost and the destination with the maximum 
demand continues until all destinations’ demands have been 
met and all sources’ supplies have been exhausted.  

While an initial feasible solution may satisfy the 
requirements of all the sources and destinations, it may not 
provide the least cost possible. The solution that minimizes 
the transportation cost is the optimal solution. After obtaining 
the results from an initial feasible method, the solution must 
be verified with an optimality test. It will determine whether 
an initial feasible solution is the best solution and, if not, it 
will provide the optimal solution. 

 

 
Fig. 2. Operation times for the Transportation Problem application. 

We developed a program that uses a min heap and a max 
heap as priority queues and used them to perform the initial 
feasible solution that we proposed. We also developed a 
program that uses our buckets data structure as minimum and 
maximum priority queues and used them to perform the 
initial feasible solution that we proposed. Fig. 2 presents the 
results in the form of a plot with insert, delete, and total 
(insert + delete) times for both the heap program and the 
buckets program for a range of the number of sources and 
destinations. The plot shows that as the number of sources 
and destinations increases, the efficiency of the buckets data 
structure increases. 

Fig. 2 shows that, for the Transportation Problem, insert  
times for the heap and insert and delete times for the buckets 
data structure are similar as the three lines on the plot overlap. 
However, the delete times for the heap are much longer than 
the other times. The delete time for the buckets data structure 
is 0.22 seconds at 1 million data elements. The delete time for 
the heap is over 1.39 seconds at 1 million data elements. Thus, 
the buckets data structure provided an 84.2% delete time 
improvement as compared with the heap. The difference in 
the total times for the data structures is 1.20 (1.64 heap – 0.44 
buckets) seconds, which is a 73.2% improvement provided 
by the buckets data structure.  

In addition to a priority queue operation improvement, 
there is a decrease in total execution time. The total execution 
time difference is 1 minutes and 11 seconds (2 minutes and 
15 seconds for the heap – 1 minute and 4 seconds for the 
buckets data structure), which is a 52.4% improvement 
achieved by the buckets data structure. The heapify process 
to maintain the heap property causes the program to run more 
than twice as long as it does with the buckets data structure. 
The resulting minimized transportation costs that were 
generated by both data structures were identical for every test 
case with the various numbers of data elements. Therefore, 
the buckets data structure did not cause any loss of accuracy. 

 

VIII. A* SEARCH ALGORITHM 

The A* Search algorithm is an extension of Dijkstra’s 
algorithm and is useful for finding the lowest cost path 
between two vertices in a graph. The A* Search algorithm is 
a modification of Dijkstra’s algorithm that is optimized for a 
single destination. It is a combination of Dijkstra’s and best 
first search algorithms. It uses a cost function f(n) = g(n) + 
h(n) where g(n) is the cost of the path from the origin to 
vertex n and h(n) is a heuristic function that is the cost of the 
path from n to the destination. 

The A* Search algorithm is like the 15-puzzle and the REL 
relocation problem [19] since it has a cost f(n) = g(n) + h(n) 
and 0 or 1 for blocked and unblocked cells, respectively, in a 
matrix that is used to represent graphs. The cost function [17] 
for the 15-puzzle application is c(x) = f(x) + g(x) where f(x) is 
the length of the path from the root of the state space tree to 
node x and g(x) is a heuristic function representing the 
number of tiles that are not in the correct position in the 
matrix for the state of node x. The 0 and 1 in the A* Search 
algorithm determines the passage from one cell to an adjacent 
cell in the matrix. The 0 and 2 in REL determines the capacity 
from one vertex to an adjacent vertex in the graph.  
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Fig. 3. Operation times for the A* Search algorithm application. 

 

The A* Search algorithm uses a priority queue, which is a 
set – preventing duplicate values from being inserted into it. 
It also uses a stack to display the path in the correct order 
from origin to destination since the path is created from 
destination to origin. This prompted us to further design the 
buckets priority queue to be configured as a set or a stack 
(LIFO). It can also be configured to be a queue (FIFO). We 
implemented the A* Search algorithm using two buckets 
priority queues. One was configured to be a set and the other 
was configured to be a stack. 

For testing and analysis, we developed a program that uses 
a min heap as a priority queue and used it to perform the A* 
Search algorithm. We also developed a program that 
implements the buckets data structure as a priority queue and 
used it to perform the A* Search algorithm. Fig. 3 presents 
the results in the form of a plot with insert, delete, and total 
(insert + delete) times for both the heap program and the 
buckets program for various matrix sizes. The plot shows that 
as the number of cells in the matrix that is searched increases, 
the efficiency of the buckets data structure increases. 

Fig. 3 shows that, for the A* Search algorithm delete times 
for the heap are longer than but close to the delete times for 
the buckets data structure. However, the insert times for the 
heap are longer than the insert times for the buckets data 
structure. The insert time for the buckets data structure is 0.63 
milliseconds at 1 million data elements. The insert time for 
the heap is 0.93 milliseconds at 1 million data elements. This 
is more than the buckets data structure’s total time, which is 
0.91 milliseconds. Thus, the buckets data structure provided 
a 32.3% insert time improvement when compared with the 
heap. The difference in the total times for the data structures 
is 0.44 (1.35 heap – 0.91 buckets) milliseconds which is a 
32.6% improvement achieved by the buckets data structure.  

In addition to a priority queue operation improvement, 
there is a decrease in total execution time to 2 seconds (4 
seconds for the heap – 2 seconds for the buckets data 
structure), which is a 57.1% improvement achieved by the 
buckets data structure. The heapify process to maintain the 
heap property causes the program to run twice as long as it 
does with the buckets data structure. The resulting paths that 
were generated by both data structures were identical for 
every test case with the various numbers of data elements. 
Therefore, the buckets data structure did not cause any loss of 
accuracy. 

 

IX. QUEUE OR STACK CONFIGURATION 

Since the buckets priority queue uses linked lists to store 

the nodes that are inserted into it, it did not require a lot of 
effort to design it to be configured as a queue or a stack. The 
required steps were to first make the linked lists doubly 
linked lists. The next step was to create attributes that 
determine whether to insert at the tail or head and whether to 
delete from the head or tail. 

We determined through testing that with the buckets 
priority queue it is best to insert at the tail and delete from the 
head for a queue and insert at the head and delete from the 
head for a stack. Operating a queue and a stack in this fashion 
is more efficient from a time perspective than inserting at the 
head and deleting from the tail for a queue and inserting at the 
tail and deleting from the tail for a stack. There are two 
attributes, insert_end and delete_end, which determine where 
to insert and delete data elements, respectively. The 
insert_end attribute can have the following settings: 

 
1) insert at the tail 
2) insert at the head 
3) 50% probability of inserting at the tail or head 

 
The delete_end attribute can have the following settings: 

 
1) delete from the head 
2) delete from the tail 
3) 50% probability of deleting from the head or tail 

 
The option to randomly insert at the tail or head and delete 

from the head or tail with a 50% probability allowed the 
buckets data structure to find the goal state from an initial 
state of the 15-puzzle application in 1,056,405 less iterations 
than when a heap was used. 

 

X. SET CONFIGURATION 

The design and implementation phases of the buckets 
priority queue uncovered interesting aspects of a priority 
queue. The driving focus and reason for designing a buckets 
priority queue was to eliminate the overhead associated with 
heaps. The overhead was eliminated by putting the same or 
similar values into one bucket. This led to a developmental 
process of identifying duplicate values. The design handles 
the first insert into and the last delete from a bucket 
separately from all subsequent inserts and deletes. Thus, to 
configure the buckets priority queue into a set is as simple as 
preventing subsequent inserts into a bucket. An attribute 
(isASet) is used to configure the buckets priority queue as a 
set. If the buckets priority queue is configured to be a set, 
whenever a bucket is not empty, any attempts to add 
additional nodes into the bucket will not be allowed. For a 
heap to be used as a set, on average half of the nodes in the 
queue must be searched each time a node is inserted, to 
determine if the value being inserted is already in the queue. 
The buckets priority queue can perform this task with an O(1) 
time complexity. 

 

XI. CONTAINS METHOD 

The buckets priority queue has a method, called “contains”, 
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that returns TRUE or FALSE if a node with a certain value is 
in the queue. For a heap to have this method, on average half 
of the nodes on the queue must be searched to determine if a 
node with a certain value is in the queue. The buckets priority 
queue can perform this task with an O(1) time complexity. 

 

XII. DOUBLE-ENDED PRIORITY QUEUE 

The buckets priority queue was already designed to be 
configured to replace a min heap or a max heap. The data 
structure had an attribute (min_max) that was set to 0 to 
configure it to replace a max heap, or set to 1 to configure it to 
replace a min heap. There were places in the code where 
statements depended upon the value of min_max. For 
example, either the pointer to the bucket with the minimum 
value(s) or the maximum value(s) was updated dependent 
upon the value of min_max. The min_max attribute was 
eliminated, and the places in the code where it was used were 
changed to execute both statements to keep track of the 
buckets with the minimum and maximum value(s). 

By adding this extra feature, the code became more 
efficient. A parameter (delete_end) is passed to the delete and 
top methods and is set to 0 to return the maximum value and 
set to 1 to return the minimum value. The effort required to 
implement and maintain a DEPQ with the buckets priority 
queue is less complex and more efficient than it is with a 
heap.  

One benefit of a DEPQ that simultaneously keeps track of 
the minimum and maximum value(s) is that nodes that are 
determined to be unusable on either end of the queue can be 
deleted from the queue. When an application already has 
more nodes in the priority queue than will be processed, the 
excess nodes can be deleted to free up memory. This can be 
performed from either end of the priority queue.  

After updating the code to convert the buckets data 
structure to be a DEPQ, thorough testing was done to ensure 
that after several inserts and deletes the pointers to the 
minimum and maximum value(s) were still valid. Nodes 
were inserted into the buckets priority queue and the proper 
updating of the pointers to minimum and maximum value(s) 
was verified. Then, nodes with both minimum and maximum 
value(s) were deleted from the buckets priority queue and the 
proper updating of the pointers to minimum and maximum 
value(s) was verified again. This procedure was executed 
several times to fully verify that the data structure was 
working as expected. 

 

XIII. STRESS TESTING 

Every task of this project and, in fact the whole pursuit of 
designing an efficient priority queue data structure, led to 
conducting stress testing. However, the idea didn’t come to 
realization until converting the buckets priority queue into a 
DEPQ. After completing the DEPQ testing and verification 
process, there was a realization that all the applications, 
except for the transportation problem, have a common theme 
from a priority queue operations perspective. It consists of 
deleting a node from the queue, performing some processing, 
and inserting multiple nodes into the queue. The adaptive 

multivariate integration application that we used for testing in 
[20] deletes a region, divides it into 2, 4, 8, or 16 subregions, 
evaluates the subregions, and inserts them into the queue 
repeatedly until a tolerated error or maximum number of 
subdivisions is reached. The 15-puzzle application deletes a 
state, creates up to 4 new states, evaluates them, and inserts 
them into the queue repeatedly until the goal state is reached. 
The A* Search algorithm deletes a cell, identifies up to 8 new 
surrounding cells, evaluates them, and inserts them into the 
queue repeatedly until the destination is reached. The 
Huffman codes application has a similar priority queue 
process, but after the data elements are loaded into the queue, 
two nodes are deleted, joined and inserted into the queue. The 
transportation problem is the only application we 
implemented that does not have this type of continuous 
priority queue manipulation. Our proposed initial feasible 
solution for the transportation problem repeatedly inserts 
nodes into two priority queues and deletes all of the nodes 
from the priority queues before inserting more nodes into the 
priority queues. 

We developed an application that isolates a priority 
queue’s operations and analyzes its performance. The 
application deletes a node and then inserts a configured 
number of nodes, repeatedly until a configured number of 
data elements are inserted into the priority queue. The times 
spent inserting and deleting are accumulated separately and 
totaled.  

We developed a program that uses a min heap as a priority 
queue and used it to perform stress testing. We also 
developed a program that uses the buckets data structure as a 
priority queue and used it to perform stress testing. The 
results follow in a series of figures with plots that have insert, 
delete, and total (insert + delete) times for both the heap 
program and the buckets program at various stages of the 
queue’s capacity until the queue contains one million data 
elements. There is a plot for deleting one node and inserting 2, 
4, 8 and 16 nodes, respectively. The plots show that as the 
number of data elements increases, the efficiency of the 
buckets data structure increases. The buckets priority queue 
yields roughly a 20% time improvement on inserting and a 
more than 90% time improvement on deleting as compared to 
the heap. We present the plots in decreasing order of the 
number of nodes that are inserted. For the heap, as the 
number of nodes inserted for stress testing decreases, the 
number of calls to heapify increases. Thus, the performance 
improvement achieved by the buckets data structure over the 
heap increases as well. 

Fig. 4 shows that with deleting one node and inserting 16 
nodes repeatedly until the queue has 1 million nodes, the 
delete time (0.04 deciseconds) for the program that utilizes 
the buckets data structure is a 91.1% improvement over the 
delete time (0.45 deciseconds) for the program that utilizes 
the heap. The insert time (0.69 deciseconds) for the program 
that utilizes the buckets data structure is a 18.8% 
improvement over the insert time (0.85 deciseconds) for the 
program that utilizes the heap. The difference in the total 
times for the data structures is 0.57 (1.30 heap – 0.73 buckets) 
deciseconds, which is a 43.8% improvement achieved by the 
buckets data structure.  

In addition to a priority queue operation improvement, 
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there is a decrease in the total execution time when inserting a 
billion data elements. The total execution time difference is 1 
minute and 23 seconds (4 minutes and 42 seconds for the 
heap – 3 minutes and 19 seconds for the buckets data 
structure), which is a 29.4% improvement provided by the 
buckets data structure. This execution time improvement will 
increase and become more substantial as the number of nodes 
inserted for stress testing decreases. 
 

 
Fig. 4. Operation times for the Stress Test application (insert 16 nodes). 

 

Fig. 5 shows that with deleting one node and inserting 8 
nodes repeatedly until the queue has 1 million nodes, the 
delete time (0.09 deciseconds) for the program that utilizes 
the buckets data structure is a 90.1% improvement over the 
delete time (0.91 deciseconds) for the program that utilizes 
the heap. The insert time (0.76 deciseconds) for the program 
that utilizes the buckets data structure is a 19.1% 
improvement over the insert time (0.94 deciseconds) for the 
program that utilizes the heap. The difference in the total 
times for the data structures is 1.00 (1.85 heap – 0.85 buckets) 
deciseconds which is a 54.1% improvement provided by the 
buckets data structure.  

In addition to a priority queue operation improvement, 
there is a total execution time improvement when inserting a 
billion data elements. The total execution time difference is 2 
minutes and 40 seconds (6 minutes and 23 seconds for the 
heap – 3 minutes and 43 seconds for the buckets data 
structure) which is a 41.7% improvement provided by the 
buckets data structure. 

Fig. 6 shows that when deleting one node and inserting 4 
nodes repeatedly until the queue has 1 million nodes, the 
delete time (0.21 deciseconds) for the program that utilizes 
the buckets data structure is a 90.1% improvement over the 
delete time (2.12 deciseconds) for the program that utilizes 
the heap. The insert time (0.91 deciseconds) for the program 
that utilizes the buckets data structure is a 32.6% 
improvement of the insert time (1.35 deciseconds) over the 
program that utilizes the heap. The difference in the total 
times for the data structures is 2.35 (3.47 heap – 1.12 buckets) 
deciseconds which is a 67.7% improvement provided by the 
buckets data structure.  

In addition to a priority queue operation improvement, 
there is a substantial decrease in the total execution time 
when inserting a billion data elements. The total execution 
time difference is 5 minutes and 46 seconds (10 minutes and 
28 seconds for the heap – 4 minutes and 42 seconds for the 
buckets data structure) which is a 55.1% improvement 

achieved by the buckets data structure. The heapify process 
to maintain the heap property causes the program to run more 
than twice as long as with the buckets data structure. 

 

 
Fig. 5. Operation times for the Stress Test application (insert 8 nodes). 

 

 
Fig. 6. Operation times for the Stress Test application (insert 4 nodes). 

 
Fig. 7 shows that, with deleting 1 node and inserting 2 

nodes repeatedly until the queue has 1 million nodes, the 
delete time (0.62 deciseconds) for the program that utilizes 
the buckets data structure is a 90.2% improvement over the 
delete time (6.30 deciseconds) for the program that utilizes 
the heap. The insert time (1.44 deciseconds) for the program 
that utilizes the buckets data structure is a 17.2% 
improvement of the insert time (1.74 deciseconds) over the 
program that utilizes the heap. The difference in the total 
times for the data structures is 5.98 (8.04 heap – 2.06 buckets) 
deciseconds which is a 74.4% improvement achieved by the 
buckets data structure.  

In addition to a priority queue operation improvement, 
there is a substantial decrease in the total execution time 
when inserting a billion data elements, amounting to 15 
minutes and 51 seconds (23 minutes and 53 seconds for the 
heap – 8 minutes and 2 seconds for the buckets data structure) 
which is a 66.4% improvement achieved by the buckets data 
structure. The heapify process to maintain the heap property 
causes the program to run almost three times as long as it 
does with the buckets data structure. 

 

XIV. SUMMARY 

Table I shows insert, delete, and total (insert + delete) 
times for both the heap and the buckets data structures at 1 
million data elements for all applications and configurations 
that we tested and analyzed and it shows the operation time 
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improvement that the buckets data structure provides. 
Table II shows execution times for both the heap and the 

buckets data structure inserting 1 million (1 billion for stress 
testing) data elements for all applications and configurations 
that we tested and analyzed and it shows the execution time 
improvement that the buckets data structure provides. Table 
II also shows the number of direct and recursive heapify calls 
that were made in the program that utilizes the heap for every 
application and configuration that we tested and analyzed. 
Because we were able to omit the heapify process, all those 
calls to heapify were alleviated by the buckets data structure. 
 

 
Fig. 7. Operation times for the Stress Test application (insert 2 nodes). 

 
TABLE I: OPERATION TIMES AND IMPROVEMENT 

Heap Buckets Heap Buckets Heap Buckets

Huffman Codes (s) 0.15 0.15 2.61 0.36 2.76 0.51 81.5

Transportation (s) 0.25 0.22 1.39 0.22 1.64 0.44 73.2

A* Search (ms) 0.93 0.63 0.42 0.28 1.35 0.91 32.6

Insert 16 Nodes (ds) 0.85 0.69 0.45 0.04 1.30 0.73 43.8

Insert 8 Nodes (ds) 0.94 0.76 0.91 0.09 1.85 0.85 54.1

Insert 4 Nodes (ds) 1.35 0.91 2.12 0.21 3.47 1.12 67.7

Insert 2 Nodes (ds) 1.74 1.44 6.30 0.62 8.04 2.06 74.4

Application
Insert Time Delete Time

Operation Time 
Improvement 

(%)

Total Time

 
 

TABLE II: EXECUTION TIMES AND IMPROVEMENT 

Heap Buckets Direct Recursive

Huffman Codes 2.05 0.42 79.5 101,017,558  1,658,939,068    

Transportation 2.25 1.07 52.4 151,542,810  1,167,808,107    

A* Search 0.07 0.03 57.1 67,187            549,998               

Insert 16 Nodes 4.70 3.32 29.4 66,666,666     1,849,418,575    

Insert 8 Nodes 6.38 3.72 41.7 142,857,142  3,962,408,636    

Insert 4 Nodes 10.47 4.70 55.1 333,333,332  9,244,380,216    

Insert 2 Nodes 23.88 8.03 66.4 999,999,998  27,769,364,691 

Heapify Calls
Application

Execution Time 
(mins.)

Execution Time 
Improvement 

(%)

 
 

XV. CONCLUSION 

We presented the results of an analysis where we 
compared the performance of a novel buckets priority queue 
data structure that we developed and a heap. We 
implemented several applications with both data structures. 
The results demonstrate that, for all applications 
implemented, our data structure outperforms heaps. In 
addition, the results demonstrate that the performance and 
efficiency of the buckets data structure increases as the 
number of data elements inserted into the queue increases. 
The new data structure can profoundly improve the 
performance of today’s big data applications that rely on 
heaps. Furthermore, the performance improvement is 
obtained without any loss of accuracy of the application. We 
did not include applications that have extensive execution 

times. However, we demonstrated that the buckets data 
structure can accumulate a great deal of cost and time savings 
even for applications that have relatively short execution 
times.  

XVI. FUTURE WORK 

We will continue the implementation of real-world 
applications with the new data structure to showcase its 
innovation and use in the field of Computer Science both in 
the private and educational sectors. We are particularly 
interested in the areas of networking and IoT. We will further 
test the bucket data structure with applications that have 
extensive execution times to capitalize on more CPU-time 
savings. 
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