

Abstract—With proper data fragmentation and distribution

of data chunks to different computer clouds, data owners may
stay protected from unauthorized access or data breach even in
cases when some of the involved computer clouds get
compromised. To reduce the number of cloud providers needed
to store fragmented data, we propose an outsourcing model for
relational databases that uses a combination of data
fragmentation, encryption, and hashing. Since client-side
encrypted or cryptographically hashed data significantly limits
the ability to process them in the cloud, we propose an
algorithm to select the most appropriate data protection
method that still enables their processing inside the DBMS
without converting them into a plaintext. TPC-H benchmark
shows that the proposed algorithm successfully processes all 22
types of reference queries, at the same time being able to reduce
the necessary number of cloud storage sites up to 80 percent.

Index Terms—Data outsourcing, multi-cloud database,
fragmentation, encryption, hashing.

I. INTRODUCTION

With the rapid growth of data collected, stored, and
processed, there is an increasing need for organizations to
outsource their workloads to an external cloud. One of the
biggest challenges in exporting private data to an external
computing infrastructure is the lack of trust between data
owners and cloud service providers [1]. There are several
ways in which data exported to the cloud can be
compromised, from targeted external attacks on the cloud
infrastructure to disloyal spying by curious cloud
administrators to legislations requiring cloud providers to
allow access to stored data for inspection and investigation
purposes [2], [3].

Recently, the idea of multi-cloud computing has emerged
where the data is intelligently partitioned into chunks and
then exported to multiple independent computer clouds in
order to reduce the necessary degree of trust between data
owner and cloud service providers. Portions of data tuples
containing sensitive information are separated from each
other and deployed to different computer clouds [4],
presumably ones that are geographically dispersed and
operated by different service providers. Storing the data with
different cloud service providers reduces the risk of data
leakage or disclosure of confidential information because no
participant in the system has access to all parts necessary to
disclose the confidential information.

Manuscript received July 9, 2021; revised February 22, 2022; accepted
May 3, 2022.

The authors are with the University of Zagreb, Faculty of Electrical
Engineering and Computing, Zagreb, Croatia.

The problem with using fragmentation as a method of
protecting outsourced data is that the required number of data
fragments is likely to exceed the number of available cloud
service providers, especially for large databases with
numerous data links that must be broken prior to outsourcing.
In [5], researchers describe metrics for evaluating the
security risk for different combinations of multi-cloud data
deployments with a limited number of cloud providers, and
then select the deployment with the highest security rating
using multi-objective optimization. Even with this approach,
it is not always possible to split the data into fragments in a

*Correspondence: iva.jurkovic@fer.hr.

way that satisfies all confidentiality constraints.
We expand on this research by combining data

fragmentation with various methods of transforming the data
from plaintext to ciphertext. To protect the data from
unauthorized access from outside, the data transformation
methods are applied on the application side prior to
outsourcing. The rationale for this approach is that sensitive
data pairs can still be stored together if at least part of the pair
is stored in ciphertext. This means that some of the sensitive
data links are broken by data encryption, which in turn
reduces the number of cloud service providers required to
store the entire database. In this paper, we combine data
fragmentation with deterministic and nondeterministic
encryption, limited forms of order-preserving and
homomorphic encryption, and cryptographic hashing.
Different methods are necessary if we want to enable a
database management system (DBMS) to process queries
over encrypted data anyway. By applying a particular method
to the selected data, we hide the information that
meaningfully connects that data to the rest of the sensitive
data tuple, but still enable the DBMS to answer queries. For
example, the data used in range search queries must be
protected with order-preserving encryption, while the data
used solely for retrieval can be protected with stronger
nondeterministic encryption. In this paper, we propose a
method to detect parts of the database that can be
cryptographically protected on the application side in such a
way that DBMS still retains its full functionality. The
detection process and the assignment of specific
transformation methods to the specific parts of the database is
based on the analysis of the representative queries that the
data consuming application sends to the database.

The rest of the paper is organized as follows. Section II
presents related work in the area of encrypted databases and
multi-cloud related data fragmentation. Section III
demonstrates, through an example, the approach to reduce
the required number of cloud-based storage sites using a
combination of data fragmentation and encryption. Section
IV describes the data transformation methods used in our

International Journal of Machine Learning, Vol. 13, No. 1, January 2023

Protection of Sensitive Data in a Multi-Cloud Database
Based on Fragmentation, Encryption, and Hashing

Iva Jurkovic*, Dejan Skvorc, and Rudolf Lovrencic

31doi: 10.18178/ijml.2023.13.1.1126

research and analyzes the conditions under which each
method is applicable. Section V describes the algorithm for
assignment of a particular transformation method to different
columns of database tables based on the analysis of the
representative queries. The benefits of using the algorithm to
reduce the number of cloud providers required to run the
fragmented database are discussed in Section VI. Section VII
concludes the paper.

II. RELATED WORK

The idea of using cryptography and similar data
transformation methods to export encrypted data to untrusted
databases is by no means new and is exploited so far by
several research groups. Their approaches differ mostly in
what portion of the query processing is enabled in the DBMS
over the ciphertext, and what is left out to be transferred to
the application side that holds the encryption keys.

CryptDB [6] is an early try to combine several different
encryption techniques to maintain a confidentiality of the
outsourced data. Data are encrypted in layers, where each
layer adds a new level of protection to the data encrypted in
previous layer. Going from outer to inner layers, encryption
is weaker, but allows the DBMS to perform more complex
operations over the encrypted data. A minimum set of
decryption keys necessary to strip out the outer encryption
layers is transferred from client to the DBMS along with the
query up to the layer that enables query processing, except
for the most inner layer. This way, the DBMS never gets
access to the plaintext data, but can still answer certain
queries. However, the critics emphasize that such encryption
scheme penalizes the DBMS too heavily since many practical
queries cannot be answered [7].

Monomi [7] builds on the CryptDB design, but instead of
using layered encryption, adds partial query executions.
Processing of the query is split between the DBMS and the
client. The encryption technique differs from data to data and
is selected according to the expected types of queries that
target specific data. In case of conflicting requirements, at the
DBMS side the query is answered just coarsely and then
transferred to the client for final processing. Monomi’s
approach is similar to the one proposed in this paper, with the
difference that in case there is no encryption method suitable
for particular part of database, they transfer part of the
processing to the client, while we introduce new storage site
that enables physical separation of sensitive data from each
other. Neither approach is absolutely dominant over another
one. They are rather complementary and the decision which
one to use depends on the tradeoff between the number of
clouds someone is ready to use and the amount of processing
that is acceptable to transfer to the client.

Arx [8] is another database system built on the CryptDB
design. Unlike the CryptDB which combines several types of
encryption, Arx applies only the strongest encryption
schemes. To answer queries over the encrypted data, the
system uses two proxies between the application and the
database server: one to rewrite queries and decrypt the results,
and another to maintain indices over the encrypted data and
execute queries. This architecture enables that the decryption
key is never sent to the untrusted database server. Since

CryptDB is implemented on MySQL, while Arx is on
MongoDB, they cannot be directly compared in terms of
query execution performance.

Seabed [9] is designed for efficient analytics over large
encrypted datasets. Since CryptDB and Monomi both rely on
expensive cryptographic operations that are too costly for big
data analytics, Seabed introduced a new additive symmetric
homomorphic encryption scheme. Experimental evaluation
shows a significant improvement in response time compared
to existing solutions. In addition, they propose dividing
sensitive database columns into multiple columns to hide the
frequency in the data. This approach provides better security,
but is more costly than regular deterministic encryption.

Zeph [10] offers users the ability to set the privacy level of
their data, i.e. to decide how the data are to be shared and
processed. Users can set their preferences in four levels:
share with no one, share with specific users only, share
without restrictions, and share only a general view.
Depending on the settings, the data in the database is
encrypted accordingly. The similarity between Zeph and our
proposal is that data owners classify the sensitivity of
particular data groups by themselves. However, Zeph do not
offer fine grained sensitivity relations among the groups.

The approach most similar to the one presented in this
paper is described in [4] where a combination of encryption
and data fragmentation is used. The premise is that data
remain secure if they get physically separated from the rest of
the sensitive tuple they are semantically connected with. Any
data that falls under the confidentiality constraint and cannot
be divided due to an insufficient number of clouds is
encrypted, leaving only one element of the sensitive tuple in
plaintext. This approach provides decent data security, but is
quite inefficient since the encrypted data columns have to be
retrieved from the database in its entirety and then transferred
to the client side for decryption. We build on this approach by
using several different encryption methods instead of a single
one. Since some of the schemes allow certain computations
over the encrypted data, we map them to particular database
columns only if this does not prevent the DBMS to process
the expected set of queries. Otherwise, we fragment the data
and deploy them to separate computer clouds.

III. REDUCTION OF DATA FRAGMENTS

Suppose a database containing sensitive information needs
to be outsourced to a public cloud. In our example, the
database consists of a single table with the following columns:
first_name, last_name, city, and age. Let suppose that
person’s living place and the age are private information that
any unauthorized party should not be able to link with a
person’s identity. Therefore, the data are considered secure if
person’s first and last name are not accessible together with
the information about its living place and the age. However,
if we suppose that in a small group people can still be
identified based solely on their living place and age, even if
no one has access to the part of the database storing their first
and last name, we have to further separate these two pieces of
information.

We describe the confidentiality relations among the
database columns using the confidentiality constraints. A

International Journal of Machine Learning, Vol. 13, No. 1, January 2023

32

confidentiality constraint contains the columns that stored
together may reveal a sensitive information. To secure the
data, it is mandatory to separate at least one of the columns
from the other columns that belong to the same
confidentiality constraint. In our example database, we
assume the following confidentiality constraints:
• first_name, city
• last_name, city
• first_name, age
• last_name, age
• city, age
We can satisfy the given set of constraints if we separate

the data into three fragments, as shown in Fig. 1. The first
fragment contains the columns first_name and
last_name, while the second and third contain city and
age, respectively. Since the first_name and last_name
never appear in the same confidentiality constraint, they may
belong to the same data fragment i.e. they are allowed to be
stored together on the same cloud. To run a fragmented
database, we need three independent computer clouds.

Fig. 1. Protection of data confidentiality in a multi-cloud database based on

fragmentation. Three computer clouds are necessary to run a database.

Fig. 2. Protection of data confidentiality in a multi-cloud database based on
combination of fragmentation and encryption. Only two (a and b), or even a

single computer cloud (c) is enough to run a database.

With a large number of columns and confidentiality
constraints, it is likely that the number of cloud providers
necessary to deploy a fragmented database would not be
available. In the given example, if only two cloud providers
are available, there is no way of splitting the data into two
fragments without breaking at least some of the
confidentiality constraints. However, if we encrypt the data
prior to deployment to the cloud, then we can rejoin some

data pieces that should not be stored together otherwise.
Storing the data in ciphertext effectively breaks the
confidentiality constraints among the data pieces. Fig. 2
shows three viable database deployments where encryption is
selectively applied to a subset of the database columns. Each
of them satisfies the given set of confidentiality constraints,
while at the same time reduces the resources needed to run
the database from three to two or even a single cloud.

IV. DATA ENCRYPTION METHODS

Data fragmentation involves dividing the database into
fragments that are stored separately. Confidentiality is
achieved through an increased number of storage sites. Since
the fragmentation just breaks the meaningful connections
among the semantically linked data parts, but leaves the
actual data in plaintext, computations required to answer the
database queries can still be performed in the cloud. On the
other hand, application-side encryption is useful to reduce the
necessary number of storage sites, but makes the cloud-based
computations impractical. Thus, instead of encrypting the
entire database, we prefer to apply the encryption selectively
to particular columns to enable the DBMS to still process the
queries without having access to the encryption keys. In
addition, we simultaneously combine several different
encryption methods and apply the one that suits the most to a
particular database column. If none is applicable, then this
database column if split from the rest of the sensitive data
using fragmentation. List of encryption methods used in our
approach and the database operations they support over the
encrypted data is shown in Table I.

TABLE I: DATABASE OPERATIONS SUPPORTED OVER THE ENCRYPTED

DATA FOR VARIOUS ENCRYPTION METHODS

Method /
Operation

Project Eq Order Sum Mul

RND
DET

OPE

HOM-P

HOM-G

HASH

A. Random Encryption (RND)

Random encryption transforms two equal plaintexts into
two different ciphertexts. This is considered the most secure
confidentiality protection method, but does not allow for
effective computation with ciphertexts. The only thing the
cloud-based DBMS can do is to deliver the encrypted data for
the application-side decryption.

B. Deterministic Encryption (DET)

In deterministic encryption, equal plaintexts are converted
into equal ciphertexts, which allows for equality checks over
the encrypted data. The application holding the encryption
keys can still retrieve the encrypted data from the storage,
decrypt it locally, and disclose the hidden information.
Compared to random encryption, this method is considered
weaker in terms of security since it is possible to tell which
parts of the data have the same value. There is a high risk of

International Journal of Machine Learning, Vol. 13, No. 1, January 2023

33

confidential information disclosure if the range of values is
small, or frequency of the same data brings valuable
information to an attacker.

C. Order-preserving Encryption (OPE)

With order-preserving encryption [11]–[15], it is possible
to compare plaintext values by comparing their ciphertexts.
This is useful to perform database functions, such as ORDER
BY, MIN, and MAX, without having access to the plaintext data.
The method is reversible, which means that the application
can still select encrypted data from the database and decrypt
the original values. In terms of security, this method is
considered the weakest of those described, since revealing
the order of the elements carries a lot of useful information to
the attackers.

D. Homomorphic Encryption (HOM-P, HOM-G)

Homomorphic encryption is a type of encryption that
allows for mathematical calculations over the encrypted data.
The result of the operation is protected as well since its value
has to be decrypted on the application side. Although
practically applicable fully homomorphic encryption scheme
is not developed yet, efficient methods exist for certain
operations. Paillier homorphic encryption (HOM-P) [16]
allows summations of ciphertexts, while multiplication over
the encrypted data is possible with the ElGamal cryptosystem
(HOM-G) [17]. Both methods are reversible and allow for
ciphertext retrieval and application-side decryption.

E. Hash Function

Cryptographic hash function maps arbitrary size data into
fixed size ciphertext. It allows for equality checking as equal
data are always hashed into the same value. The hashing is
keyless, which does not require a complex cryptographic key
distribution if many actors access the stored data. In certain
situations, this makes it more practical than random
encryption, although both provides very strong
confidentiality protection. However, keyless hashing is also
its main drawback since the transformation is irreversible and
does not allow to revert the plaintext once the value is stored
as ciphertext. Hashing is applicable if the data exported to the
cloud is used only for equality checking and are never
retrieved back from the database (e.g. passwords).

V. ENCRYPTION METHOD SELECTION

The solution proposed in this paper combines data
fragmentation, encryption, and hashing to hide sensitive
relations among the data in database columns. For each
column, an appropriate protection method is selected. The
selection of the method depends on how the data from a given
column are used in queries. The goal is to select a method that
supports all the required database operations for a given
column in a set of expected queries. As shown in Fig. 3,
during the first step we analyze the queries sent from the
database consuming application and keep track of what
database operations are required over particular columns.
During the second step, we select the strongest encryption
method for each column that still enables all the required
database operations over that column, according to the Table

I. In case of conflicting requirements where none of the
methods are applicable, we apply a data fragmentation to
physically separate a given column from the rest of the
database it is constrained with.

Fig. 3. Selection of the encryption methods for database columns based on

query analysis.

A. Query Analysis

The process of method selection starts with query analysis.
The input to the analyzer is a database schema with table and
column names and a set of queries sent to the database from
the consuming application. Results are represented as an nm
matrix as shown in Table II, where rows are assigned to
different database columns, while columns represent
different types of database operations. The analyzer iterates
through queries, following the procedure described in the
Algorithm 1, and marks in the matrix what database
operations are required over particular database columns.

For the projection clause, each item in the query projection
list, which can either be a named single column or a more
complex expression, is analyzed according to the Algorithm
2. If a single column is specified, then a query is used to
retrieve the data from that column. The column is marked in
matrix for retrieval (column Project in Table II). If complex
functional expression is specified instead, then we
recursively analyze what type of function is expected to be
performed. At the end of recursion, columns used in
summation and multiplication expressions are marked for
summation and multiplication, respectively (columns Sum
and Mul in Table II), while those used for other types of
operations are marked as unsupported (column Other in
Table II) since there is no encryption method that supports
calculation for that type of operation.

Join conditions, as well as conditions in WHERE and
HAVING clauses, are analyzed following the steps in the
Algorithm 3. Depending on the type of condition, it is
decomposed into subexpressions, each of which is further
analyzed using the Algorithm 2 with the appropriate query
type as a parameter.

For the GROUP BY and ORDER BY clauses, that in turn check
the equality and calculate the order of the data, we start the
subexpression analysis with an indication that the final result
is used for equality check or order calculation. If

International Journal of Machine Learning, Vol. 13, No. 1, January 2023

34

subexpression is a single database column, that column is
immediately marked for equality check or comparison
(columns Equal and Order in Table II). If subexpression has
a more complex structure, then it is further decomposed and
analyzed recursively.

Fig. 4 shows the analysis of the Query (1) according to the
aforementioned procedure. The results are shown in Table II.

Algorithm 1 Query analysis
Input: Database schema, Set of representative queries
Output: Data usage matrix

1 for each query
representative_queries do

2 for each clause query do

3 if projection_clause then

4 if subquery then

5 representative_queries += subquery

6 else

7 for each expr projection_clause do

8 a_ex(expr, “project”)

9 if from_clause then

10 if subquery then

11 representative_queries += subquery

12 else

13 for each join_on_condition from_clause
do

14 a_con(join_on_condition)

15 if where_clause then

16 for each condition where_clause do

17 a_con(condition)

18 if group_by_clause then

19 for each expr group_by_clause do

20 a_ex(expr, “equal”)

21 if order_by_clause then

22 for each expr order_by_clause do

23 a_ex(expr, “order”)

24 if having_clause then

25 for each condition having_clause do

26 a_con(condition)

Algorithm 2 Expression analysis (a_ex)
Input: expr, query_type

1 if expr is column_name then

2 mark_in_matrix(column_name, query_type)

3 if expr is conditional_expr then

4 a_con(when_condition)

5 a_ex(then_expr, query_type)

6 a_ex(else_expr, query_type

7 if expr is function_expr then

8 if expr is sum_function then

9 for each function_expr do

10 a_ex(function_expr, “sum”)

11 else if expr is mul_function then

12 for each function_expr do

13 a_ex(function_expr, “mul”)

14 else

15 for each function_expr do

16 a_ex(function_expr, “other”)

Algorithm 3 Condition analysis (a_con)
Input: condition

1 if condition is comparison_condition then
2 if condition is relational_comparison then
3 if checks equality then
4 a_ex(left_expr, “equal”)
5 a_ex(right_expr, “equal”)
6 if checks order then
7 a_ex(left_expr, “order”)
8 a_ex(right_expr, “order”)
9 if condition is between_condition then

10 a_ex(main_expr, “equal”)
11 a_ex(lower_expr, “equal”)
12 a_ex(upper_expr, “equal”)
13 a_ex(main_expr, “order”)
14 a_ex(lower_expr, “order”)
15 a_ex(upper_expr, “order”)
16 if condition is in_condition then
17 a_ex(in_expr, “equal”)
18 if condition is is_null then
19 a_ex(is_expr, “equal”)
20 if condition is like_condition then
21 a_ex(left_expr, “other”)
22 a_ex(right_expr, “other”)
23 if condition_with_subquery then
24 if condition is in_condition then
25 a_ex(left_expr, “equal”)
26 analyze_query(subquery)
27 if condition is exists_condition then
28 analyze_query(subquery)

 SELECT
 name,
 SUM(price*(1-discount)) AS revenue
 SUM(CASE
 WHEN nation = "CROATIA"
 THEN volume
 ELSE 0
 END) / SUM(volume) as mkt_share (1)
 FROM
 lineitem
 WHERE
 shipdate >= 1.6.2019
 AND shipdate < 1.6.2020
 AND discount BETWEEN 0.4 AND 0.6
 GROUP BY
 name
 ORDER BY

revenue DESC;

TABLE II: RESULTS OF QUERY ANALYSIS WITH INDICATION OF WHAT TYPE

OF DATABASE OPERATIONS ARE REQUIRED FOR PARTICULAR DATABASE

COLUMNS (DATA USAGE MATRIX FOR QUERY (1))

DB Column /
Operation

Project Eq Order Sum Mul Other

name

price

discount

nation

volume

shipdate

International Journal of Machine Learning, Vol. 13, No. 1, January 2023

35

Fig. 4. Example of the query analysis (algorithm invocation tree for Query (1) is shown).

B. Method Selection

The output of the query analyzer is used as input for the
method selection. Based on the marcation in the data usage
matrix, a database column-wise list of applicable methods is
generated. From the given list, the method with the highest
confidence is selected to be applied to the data.

A simple example is used to explain this process. The input
to the analyzer is a database from Section III, which contains
a table with four columns (first_name, last_name, city,
and age). Initially, a 45 matrix is created with all the cells
empty (4 rows for 4 database columns, 5 columns for 5
database operations). Suppose that a set of representative
queries contains only the Query (2).

 SELECT first_name, last_name
 FROM table (2)
 WHERE age > 26
 AND city = "Rijeka"

Results of the query analysis are shown in Table III. The
columns first_name and last_name are used for retrieval
and are delivered to the consuming application as a result of
the query execution. The column city is used for equality
checking, while the column age is used for order calculation.
Both operations need to be performed internally by the
DBMS in order to produce valid query results.

Since this is the only query that is expected to ever hit the
database, the columns first_name and last_name can be
encrypted using any method, except the irreversible hash
function. When selecting the method, random encryption

would be chosen as it provides the highest security among all.
The column age can only be encrypted using the
order-preserving method, since the DBMS has to compare
the values for order. The column city can either be
encrypted with deterministic encryption or hashed since both
methods enable the DBMS to perform equality check over
the encrypted data.

TABLE III: QUERY ANALYSIS RESULTS WITH ONLY QUERY (2) IN A SET

DB Column /
Operation

Project Eq Order Sum Mul Other

first_name
last_name
city
age

TABLE IV: QUERY ANALYSIS RESULTS WITH QUERY (2) AND QUERY (3) IN

A SET

DB Column /
Operation

Project Eq Order Sum Mul Other

first_name
last_name
city
age

Since there exists at least one applicable encryption

method for each column, we can export the entire database to
a single cloud without any risk of disclosure of sensitive
relations among the data. Moreover, confidentiality
constraints would be satisfied even if one out of three groups
of data (either first_name and last_name, or age, or
city) remains in plaintext. Therefore, we have four different

International Journal of Machine Learning, Vol. 13, No. 1, January 2023

36

possibilities for deployment of the given database to the
cloud, as shown in Fig. 5a.

Fig. 5. Database deployment solutions for the example query sets.

If the query set gets extended with the Query (3), then the
result of the analysis is slightly different, as shown in Table
IV.

 SELECT SUM(age) (3)
 FROM table

The column age can no longer be encrypted since it is now
used both to compare the values and to calculate the sum.
There is no encryption method available so far that supports
both operations over the encrypted data. In this case, we have
to export the column age in plaintext. Fortunately, we can
still apply the encryption to the rest of the columns and export
the entire database to a single cloud, as shown in Fig. 5b.
Otherwise, database fragmentation would step in, which
would in turn require one additional computer cloud to run
the database.

VI. VALIDATION OF DATA FRAGMENT REDUCTION

We validated the process of encryption method selection
using the TPC BenchmarkTM H (TPC-H) [18]. TPC-H is a
decision-support benchmark with broad industry-wide
relevance. It contains a database of large data sets and
provides a list of queries with a high degree of complexity.
The database consists of 8 individual tables that have a total
of 61 columns. The benchmark contains 22 queries that are
used for the method selection.

Since confidentiality constraints are not specified in the
benchmark, the experiment assumed the worst-case scenario
– each database column is constrained with every other
column. The results of the validation are presented in Table
V.

TABLE V: REDUCTION OF THE NUMBER OF COMPUTER CLOUDS NECESSARY

TO DEPLOY THE TPC-H DATABASE USING A COMBINATION OF

FRAGMENTATION, ENCRYPTION, AND HASHING

Data protection method Required number of clouds
Fragmentation only 61
Fragmentation + encryption + hashing 13

If protection of the database would rely solely on the data
fragmentation, the minimum number of cloud providers
required to split and deploy all the data into separate
fragments is equal to the number of columns. For the TPC-H
database, this means that 61 cloud providers are required to
export the data in a secure manner.

Analyzing 22 representative queries from the TPC-H

documentation using the procedure described in Section V,
48 out of 61 columns can be transformed using one of the
methods described in Section IV. This means that the number
of cloud providers required to run the database is reduced
from 61 to 13 or by 78.69 %. This not only reduces the
operational costs of running a multi-cloud database, but also
significantly improves the performance because of much less
inter-cloud join operations that are necessary to rebuild the
fragmented data.

Compared to [4], where only a single encryption scheme is
enabled along the fragmentation, our approach is far more
efficient in terms of necessary number of storage sites. In [4],
only the data that can be encrypted randomly may reside
alongside the plaintext data. For the TPC-H query set, this
reduces the number of required cloud providers by 18 %, i.e.
they still need 50 cloud providers to store and process data
securely, instead of 13.

As expected, CryptDB [6] and Monomi [7] outperform our
solution in terms of storage sites since both are inherently
single-cloud database systems. However, using a
combination of fragmentation and multiple types of
encryption, we can successfully answer the entire set of 22
reference queries specified in the TPC-H benchmark, unlike
the CryptDB which is able to process only 4 of them [7].
Monomi, on the other hand, can answer the entire set of
reference queries, but requires the entire database columns to
be transferred to the client for final filtering if they are
encrypted with the scheme that does not fit the given query.
Our solution never transfers excessive data to the client, but
requires simultaneous access to multiple storage sites and
completion of query processing at the client side to rejoin the
fragmented data tuples. As we already stated in Section II,
neither approach is absolutely dominant over another one.
They are rather complementary and the decision which one to
use depends on the tradeoff between the number of clouds
someone is ready to use and the amount of processing that is
acceptable to transfer to the client.

VII. CONCLUSION

A decent balance between running a data storage
on-premise and taking a risk of sensitive data disclosure
when exported to the cloud is using a multi-cloud database.
Besides the increased operational costs and performance
penalties imposed by distribution of data among several
independent clouds, practical problem is how to find an
adequate number of dependable and trustworthy cloud
providers. In this paper, we propose a methodology for
reducing the number of computer clouds necessary to run a
multi-cloud database based on combination of fragmentation,
encryption, and hashing. By using the combination of
methods, the data remain secure in fewer fragments than if a
single method was used. Furthermore, by intelligent selection
of different cryptographic methods to protect different parts
of the database, the DBMS still retains the capabilities for
query processing, regardless of the encrypted data.
Validation of the process over the TPC-H benchmark
resulted in a reduction of the number of cloud providers up to
80%, compared to using only the fragmentation.

Further research would be directed towards the
multi-modal data encryption and the dynamic properties of

International Journal of Machine Learning, Vol. 13, No. 1, January 2023

37

the query processing. When no encryption method is
applicable for a particular database column, multi-modal
encryption allows that a single data is encrypted and stored in
several different forms, each of which supports different
types of queries. Another direction is to detect frequent
computations used in queries, precompute the results, and
store them as new columns in the database. By storing
elementary data items separate from the precomputed
expressions we can still hide the sensitive information, while
enabling the DBMS to answer even more complex queries
over the encrypted data. However, a tradeoff between
introducing new columns with derived data items and
database normalization are yet to be explored.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Dejan Skvorc was a principal investigator and research
supervisor. He designed the methodology and developed the
idea. Iva Jurkovic conducted the research, implemented the
algorithms, and validated the results. Rudolf Lovrencic
revised the methodology and prepared the validation
framework. All authors discussed the results and contributed
to the preparation of the paper.

FUNDING

This research is co-sponsored by the European Union
Regional Development Fund through a research grant
KK.01.2.1.01.0109 “Cloud Computing Security during the
Use of Mobile Applications”.

ACKNOWLEDGMENT

We acknowledge the support of the Ministry of Economy
of the Republic of Croatia as well as our research partners
OROUNDO Mobile GmbH Austria and OROUNDO Mobile
GmbH Subsidiary Croatia.

REFERENCES
[1] K. Hashizume, D. G. Rosado, E. Fernandez-Medina, and E. B.

Fernandez, “An analysis of security issues for cloud computing,”
Journal of Internet Services and Applications, vol. 4, no. 1, pp. 1-13,
2013.

[2] H. Tianfield, “Security issues in cloud computing,” in Proc. 2012 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
2012, pp. 1082-1089.

[3] J. Sarabdeen, M. Mazahir, and M. Ishak, “Impediment of privacy in the
use of clouds by educational institutions,” Journal of Advances in
Information Technology, pp. 167-172, 2015.

[4] V. Ciriani, S. D. C. D. Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Combining fragmentation and encryption to protect
privacy in data storage,” ACM Transactions on Information and System
Security (TISSEC), vol. 13, no. 3, pp. 1-33, 2010.

[5] R. Lovrencic, D. Jakobovic, D. Skvorc, and S. Gros, “Security risk
optimization for multi-cloud applications,” in Proc. International
Conference on the Applications of Evolutionary Computation (Part of
EvoStar), Springer, 2020, pp. 659-669.

[6] R. A. Popa, C. M. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting confidentiality with encrypted query
processing,” in Proc. the Twenty-Third ACM Symposium on Operating
Systems Principles, 2011, pp. 85-100.

[7] S. L. Tu, M. F. Kaashoek, S. R. Madden, and N. Zeldovich,
“Processing analytical queries over encrypted data,” in Proc. the VLDB
Endowment, 2013, vol. 6, no. 5, pp. 289-300.

[8] R. Poddar, T. Boelter, and R. A. Popa, “Arx: an encrypted database
using semantically secure encryption,” in Proc. the VLDB Endowment,
2019, vol. 12, no. 11, pp. 1664-1678.

[9] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A.
Haeberlen, H. Singh, A. Modi, and S. Badrinarayanan, “Big data
analytics over encrypted datasets with Seabed,” in Proc. 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), 2016, pp. 587-602.

[10] L. Burkhalter, N. Kuchler, A. Viand, H. Shafagh, and A. Hithnawi,
“Zeph: Cryptographic enforcement of end-to-end data privacy,” in 15th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pp. 387-404, 2021.

[11] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in Proc. the 2004 ACM SIGMOD
International Conference on Management of Data (SIGMOD 04),
2004, pp. 563-574.

[12] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security protocol for
order-preserving encoding,” in Proc. 2013 IEEE Symposium on
Security and Privacy, 2013, pp. 463-477.

[13] F. Kerschbaum and A. Schropfer, “Optimal average-complexity
ideal-security order-preserving encryption,” in Proc. the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014,
pp. 275-286.

[14] F. Kerschbaum, “Frequency-hiding order-preserving encryption,” in
Proc. the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 656-667.

[15] A. Tueno and F. Kerschbaum, “Efficient secure computation of
order-preserving encryption,” in Proc. the 15th ACM Asia Conference
on Computer and Communications Security (ASIA CCS 20, 2020), pp.
193-207.

[16] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. International Conference on the Theory
and Applications of Cryptographic Techniques, Springer, 1999, pp.
223-238.

[17] G. Xiang, B. Yu, and P. Zhu, “A algorithm of fully homomorphic
encryption,” in Proc. 2012 9th International Conference on Fuzzy
Systems and Knowledge Discovery, IEEE, 2012, pp. 2030-2033.

[18] TPC BENCHMARK™ H. (2021). Transaction Processing
Performance Council, rev. 3.0.0. [Online]. Available:
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf

Copyright © 2023 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

Iva Jurkovic is a Ph.D. student at the University of
Zagreb, Faculty of Electrical Engineering and
Computing. Her research interests include cloud
computing, data security, and relational databases. She
received her master’s degree in computer science from
the University of Zagreb.

Dejan Skvorc is an associate professor at the
University of Zagreb, Faculty of Electrical
Engineering and Computing, and principal
investigator for the project under which this research is
conducted. His research interests include distributed
systems, cloud computing, and mobile and web
information systems. He received his Ph.D. in
computer science from the University of Zagreb. He is
a member of the IEEE and former chair of the IEEE

Croatia Section Computer Chapter.

Rudolf Lovrencic is a Ph.D. student at the University
of Zagreb, Faculty of Electrical Engineering and
Computing. His research interests include cloud
computing, parallel computing, and application of
optimization algorithms. He received his master’s
degree in computer science from the University of
Zagreb.

International Journal of Machine Learning, Vol. 13, No. 1, January 2023

38

	1126-TS1007

