
 

 


Abstract—With proper data fragmentation and distribution 

of data chunks to different computer clouds, data owners may 
stay protected from unauthorized access or data breach even in 
cases when some of the involved computer clouds get 
compromised. To reduce the number of cloud providers needed 
to store fragmented data, we propose an outsourcing model for 
relational databases that uses a combination of data 
fragmentation, encryption, and hashing. Since client-side 
encrypted or cryptographically hashed data significantly limits
the ability to process them in the cloud, we propose an 
algorithm to select the most appropriate data protection 
method that still enables their processing inside the DBMS 
without converting them into a plaintext. TPC-H benchmark 
shows that the proposed algorithm successfully processes all 22
types of reference queries, at the same time being able to reduce 
the necessary number of cloud storage sites up to 80 percent. 

Index Terms—Data outsourcing, multi-cloud database, 
fragmentation, encryption, hashing.  

I. INTRODUCTION

With the rapid growth of data collected, stored, and 
processed, there is an increasing need for organizations to 
outsource their workloads to an external cloud. One of the 
biggest challenges in exporting private data to an external 
computing infrastructure is the lack of trust between data 
owners and cloud service providers [1]. There are several 
ways in which data exported to the cloud can be 
compromised, from targeted external attacks on the cloud 
infrastructure to disloyal spying by curious cloud 
administrators to legislations requiring cloud providers to 
allow access to stored data for inspection and investigation 
purposes [2], [3]. 

Recently, the idea of multi-cloud computing has emerged 
where the data is intelligently partitioned into chunks and 
then exported to multiple independent computer clouds in 
order to reduce the necessary degree of trust between data 
owner and cloud service providers. Portions of data tuples 
containing sensitive information are separated from each 
other and deployed to different computer clouds [4], 
presumably ones that are geographically dispersed and 
operated by different service providers. Storing the data with 
different cloud service providers reduces the risk of data 
leakage or disclosure of confidential information because no 
participant in the system has access to all parts necessary to 
disclose the confidential information. 
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The problem with using fragmentation as a method of 
protecting outsourced data is that the required number of data 
fragments is likely to exceed the number of available cloud 
service providers, especially for large databases with 
numerous data links that must be broken prior to outsourcing. 
In [5], researchers describe metrics for evaluating the 
security risk for different combinations of multi-cloud data 
deployments with a limited number of cloud providers, and 
then select the deployment with the highest security rating 
using multi-objective optimization. Even with this approach, 
it is not always possible to split the data into fragments in a
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way that satisfies all confidentiality constraints. 
We expand on this research by combining data 

fragmentation with various methods of transforming the data 
from plaintext to ciphertext. To protect the data from 
unauthorized access from outside, the data transformation 
methods are applied on the application side prior to 
outsourcing. The rationale for this approach is that sensitive 
data pairs can still be stored together if at least part of the pair 
is stored in ciphertext. This means that some of the sensitive 
data links are broken by data encryption, which in turn 
reduces the number of cloud service providers required to 
store the entire database. In this paper, we combine data 
fragmentation with deterministic and nondeterministic 
encryption, limited forms of order-preserving and 
homomorphic encryption, and cryptographic hashing. 
Different methods are necessary if we want to enable a 
database management system (DBMS) to process queries 
over encrypted data anyway. By applying a particular method 
to the selected data, we hide the information that 
meaningfully connects that data to the rest of the sensitive 
data tuple, but still enable the DBMS to answer queries. For 
example, the data used in range search queries must be 
protected with order-preserving encryption, while the data 
used solely for retrieval can be protected with stronger 
nondeterministic encryption. In this paper, we propose a 
method to detect parts of the database that can be 
cryptographically protected on the application side in such a 
way that DBMS still retains its full functionality. The 
detection process and the assignment of specific 
transformation methods to the specific parts of the database is
based on the analysis of the representative queries that the 
data consuming application sends to the database. 

The rest of the paper is organized as follows. Section II 
presents related work in the area of encrypted databases and 
multi-cloud related data fragmentation. Section III 
demonstrates, through an example, the approach to reduce 
the required number of cloud-based storage sites using a 
combination of data fragmentation and encryption. Section 
IV describes the data transformation methods used in our 
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research and analyzes the conditions under which each 
method is applicable. Section V describes the algorithm for 
assignment of a particular transformation method to different 
columns of database tables based on the analysis of the 
representative queries. The benefits of using the algorithm to 
reduce the number of cloud providers required to run the 
fragmented database are discussed in Section VI. Section VII 
concludes the paper. 

 

II. RELATED WORK 

The idea of using cryptography and similar data 
transformation methods to export encrypted data to untrusted 
databases is by no means new and is exploited so far by 
several research groups. Their approaches differ mostly in 
what portion of the query processing is enabled in the DBMS 
over the ciphertext, and what is left out to be transferred to 
the application side that holds the encryption keys. 

CryptDB [6] is an early try to combine several different 
encryption techniques to maintain a confidentiality of the 
outsourced data. Data are encrypted in layers, where each 
layer adds a new level of protection to the data encrypted in 
previous layer. Going from outer to inner layers, encryption 
is weaker, but allows the DBMS to perform more complex 
operations over the encrypted data. A minimum set of 
decryption keys necessary to strip out the outer encryption 
layers is transferred from client to the DBMS along with the 
query up to the layer that enables query processing, except 
for the most inner layer. This way, the DBMS never gets 
access to the plaintext data, but can still answer certain 
queries. However, the critics emphasize that such encryption 
scheme penalizes the DBMS too heavily since many practical 
queries cannot be answered [7]. 

Monomi [7] builds on the CryptDB design, but instead of 
using layered encryption, adds partial query executions. 
Processing of the query is split between the DBMS and the 
client. The encryption technique differs from data to data and 
is selected according to the expected types of queries that 
target specific data. In case of conflicting requirements, at the 
DBMS side the query is answered just coarsely and then 
transferred to the client for final processing. Monomi’s 
approach is similar to the one proposed in this paper, with the 
difference that in case there is no encryption method suitable 
for particular part of database, they transfer part of the 
processing to the client, while we introduce new storage site 
that enables physical separation of sensitive data from each 
other. Neither approach is absolutely dominant over another 
one. They are rather complementary and the decision which 
one to use depends on the tradeoff between the number of 
clouds someone is ready to use and the amount of processing 
that is acceptable to transfer to the client. 

Arx [8] is another database system built on the CryptDB 
design. Unlike the CryptDB which combines several types of 
encryption, Arx applies only the strongest encryption 
schemes. To answer queries over the encrypted data, the 
system uses two proxies between the application and the 
database server: one to rewrite queries and decrypt the results, 
and another to maintain indices over the encrypted data and 
execute queries. This architecture enables that the decryption 
key is never sent to the untrusted database server. Since 

CryptDB is implemented on MySQL, while Arx is on 
MongoDB, they cannot be directly compared in terms of 
query execution performance. 

Seabed [9] is designed for efficient analytics over large 
encrypted datasets. Since CryptDB and Monomi both rely on 
expensive cryptographic operations that are too costly for big 
data analytics, Seabed introduced a new additive symmetric 
homomorphic encryption scheme. Experimental evaluation 
shows a significant improvement in response time compared 
to existing solutions. In addition, they propose dividing 
sensitive database columns into multiple columns to hide the 
frequency in the data. This approach provides better security, 
but is more costly than regular deterministic encryption. 

Zeph [10] offers users the ability to set the privacy level of 
their data, i.e. to decide how the data are to be shared and 
processed. Users can set their preferences in four levels: 
share with no one, share with specific users only, share 
without restrictions, and share only a general view. 
Depending on the settings, the data in the database is 
encrypted accordingly. The similarity between Zeph and our 
proposal is that data owners classify the sensitivity of 
particular data groups by themselves. However, Zeph do not 
offer fine grained sensitivity relations among the groups. 

The approach most similar to the one presented in this 
paper is described in [4] where a combination of encryption 
and data fragmentation is used. The premise is that data 
remain secure if they get physically separated from the rest of 
the sensitive tuple they are semantically connected with. Any 
data that falls under the confidentiality constraint and cannot 
be divided due to an insufficient number of clouds is 
encrypted, leaving only one element of the sensitive tuple in 
plaintext. This approach provides decent data security, but is 
quite inefficient since the encrypted data columns have to be 
retrieved from the database in its entirety and then transferred 
to the client side for decryption. We build on this approach by 
using several different encryption methods instead of a single 
one. Since some of the schemes allow certain computations 
over the encrypted data, we map them to particular database 
columns only if this does not prevent the DBMS to process 
the expected set of queries. Otherwise, we fragment the data 
and deploy them to separate computer clouds. 

 

III. REDUCTION OF DATA FRAGMENTS 

Suppose a database containing sensitive information needs 
to be outsourced to a public cloud. In our example, the 
database consists of a single table with the following columns: 
first_name, last_name, city, and age. Let suppose that 
person’s living place and the age are private information that 
any unauthorized party should not be able to link with a 
person’s identity. Therefore, the data are considered secure if 
person’s first and last name are not accessible together with 
the information about its living place and the age. However, 
if we suppose that in a small group people can still be 
identified based solely on their living place and age, even if 
no one has access to the part of the database storing their first 
and last name, we have to further separate these two pieces of 
information. 

We describe the confidentiality relations among the 
database columns using the confidentiality constraints. A 

International Journal of Machine Learning, Vol. 13, No. 1, January 2023 

32



  

confidentiality constraint contains the columns that stored 
together may reveal a sensitive information. To secure the 
data, it is mandatory to separate at least one of the columns 
from the other columns that belong to the same 
confidentiality constraint. In our example database, we 
assume the following confidentiality constraints: 
• first_name, city 
• last_name, city 
• first_name, age 
• last_name, age  
• city, age 
We can satisfy the given set of constraints if we separate 

the data into three fragments, as shown in Fig. 1. The first 
fragment contains the columns first_name and 
last_name, while the second and third contain city and 
age, respectively. Since the first_name and last_name 
never appear in the same confidentiality constraint, they may 
belong to the same data fragment i.e. they are allowed to be 
stored together on the same cloud. To run a fragmented 
database, we need three independent computer clouds. 

 

 
Fig. 1. Protection of data confidentiality in a multi-cloud database based on 

fragmentation. Three computer clouds are necessary to run a database. 
 

 
Fig. 2. Protection of data confidentiality in a multi-cloud database based on 
combination of fragmentation and encryption. Only two (a and b), or even a 

single computer cloud (c) is enough to run a database. 
 

With a large number of columns and confidentiality 
constraints, it is likely that the number of cloud providers 
necessary to deploy a fragmented database would not be 
available. In the given example, if only two cloud providers 
are available, there is no way of splitting the data into two 
fragments without breaking at least some of the 
confidentiality constraints. However, if we encrypt the data 
prior to deployment to the cloud, then we can rejoin some 

data pieces that should not be stored together otherwise. 
Storing the data in ciphertext effectively breaks the 
confidentiality constraints among the data pieces. Fig. 2 
shows three viable database deployments where encryption is 
selectively applied to a subset of the database columns. Each 
of them satisfies the given set of confidentiality constraints, 
while at the same time reduces the resources needed to run 
the database from three to two or even a single cloud. 

 

IV. DATA ENCRYPTION METHODS 

Data fragmentation involves dividing the database into 
fragments that are stored separately. Confidentiality is 
achieved through an increased number of storage sites. Since 
the fragmentation just breaks the meaningful connections 
among the semantically linked data parts, but leaves the 
actual data in plaintext, computations required to answer the 
database queries can still be performed in the cloud. On the 
other hand, application-side encryption is useful to reduce the 
necessary number of storage sites, but makes the cloud-based 
computations impractical. Thus, instead of encrypting the 
entire database, we prefer to apply the encryption selectively 
to particular columns to enable the DBMS to still process the 
queries without having access to the encryption keys. In 
addition, we simultaneously combine several different 
encryption methods and apply the one that suits the most to a 
particular database column. If none is applicable, then this 
database column if split from the rest of the sensitive data 
using fragmentation. List of encryption methods used in our 
approach and the database operations they support over the 
encrypted data is shown in Table I. 

 
TABLE I: DATABASE OPERATIONS SUPPORTED OVER THE ENCRYPTED 

DATA FOR VARIOUS ENCRYPTION METHODS 

Method / 
Operation 

Project Eq Order Sum Mul 

RND      
DET      

OPE      

HOM-P      

HOM-G      

HASH      

 

A. Random Encryption (RND) 

Random encryption transforms two equal plaintexts into 
two different ciphertexts. This is considered the most secure 
confidentiality protection method, but does not allow for 
effective computation with ciphertexts. The only thing the 
cloud-based DBMS can do is to deliver the encrypted data for 
the application-side decryption. 

B. Deterministic Encryption (DET) 

In deterministic encryption, equal plaintexts are converted 
into equal ciphertexts, which allows for equality checks over 
the encrypted data. The application holding the encryption 
keys can still retrieve the encrypted data from the storage, 
decrypt it locally, and disclose the hidden information. 
Compared to random encryption, this method is considered 
weaker in terms of security since it is possible to tell which 
parts of the data have the same value. There is a high risk of 
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confidential information disclosure if the range of values is 
small, or frequency of the same data brings valuable 
information to an attacker. 

C. Order-preserving Encryption (OPE) 

With order-preserving encryption [11]–[15], it is possible 
to compare plaintext values by comparing their ciphertexts. 
This is useful to perform database functions, such as ORDER 
BY, MIN, and MAX, without having access to the plaintext data. 
The method is reversible, which means that the application 
can still select encrypted data from the database and decrypt 
the original values. In terms of security, this method is 
considered the weakest of those described, since revealing 
the order of the elements carries a lot of useful information to 
the attackers. 

D. Homomorphic Encryption (HOM-P, HOM-G) 

Homomorphic encryption is a type of encryption that 
allows for mathematical calculations over the encrypted data. 
The result of the operation is protected as well since its value 
has to be decrypted on the application side. Although 
practically applicable fully homomorphic encryption scheme 
is not developed yet, efficient methods exist for certain 
operations. Paillier homorphic encryption (HOM-P) [16] 
allows summations of ciphertexts, while multiplication over 
the encrypted data is possible with the ElGamal cryptosystem 
(HOM-G) [17]. Both methods are reversible and allow for 
ciphertext retrieval and application-side decryption. 

E. Hash Function 

Cryptographic hash function maps arbitrary size data into 
fixed size ciphertext. It allows for equality checking as equal 
data are always hashed into the same value. The hashing is 
keyless, which does not require a complex cryptographic key 
distribution if many actors access the stored data. In certain 
situations, this makes it more practical than random 
encryption, although both provides very strong 
confidentiality protection. However, keyless hashing is also 
its main drawback since the transformation is irreversible and 
does not allow to revert the plaintext once the value is stored 
as ciphertext. Hashing is applicable if the data exported to the 
cloud is used only for equality checking and are never 
retrieved back from the database (e.g. passwords). 

 

V. ENCRYPTION METHOD SELECTION 

The solution proposed in this paper combines data 
fragmentation, encryption, and hashing to hide sensitive 
relations among the data in database columns. For each 
column, an appropriate protection method is selected. The 
selection of the method depends on how the data from a given 
column are used in queries. The goal is to select a method that 
supports all the required database operations for a given 
column in a set of expected queries. As shown in Fig. 3, 
during the first step we analyze the queries sent from the 
database consuming application and keep track of what 
database operations are required over particular columns. 
During the second step, we select the strongest encryption 
method for each column that still enables all the required 
database operations over that column, according to the Table 

I. In case of conflicting requirements where none of the 
methods are applicable, we apply a data fragmentation to 
physically separate a given column from the rest of the 
database it is constrained with. 

 

 
Fig. 3. Selection of the encryption methods for database columns based on 

query analysis. 
 

A. Query Analysis 

The process of method selection starts with query analysis. 
The input to the analyzer is a database schema with table and 
column names and a set of queries sent to the database from 
the consuming application. Results are represented as an nm 
matrix as shown in Table II, where rows are assigned to 
different database columns, while columns represent 
different types of database operations. The analyzer iterates 
through queries, following the procedure described in the 
Algorithm 1, and marks in the matrix what database 
operations are required over particular database columns. 

For the projection clause, each item in the query projection 
list, which can either be a named single column or a more 
complex expression, is analyzed according to the Algorithm 
2. If a single column is specified, then a query is used to 
retrieve the data from that column. The column is marked in 
matrix for retrieval (column Project in Table II). If complex 
functional expression is specified instead, then we 
recursively analyze what type of function is expected to be 
performed. At the end of recursion, columns used in 
summation and multiplication expressions are marked for 
summation and multiplication, respectively (columns Sum 
and Mul in Table II), while those used for other types of 
operations are marked as unsupported (column Other in 
Table II) since there is no encryption method that supports 
calculation for that type of operation. 

Join conditions, as well as conditions in WHERE and 
HAVING clauses, are analyzed following the steps in the 
Algorithm 3. Depending on the type of condition, it is 
decomposed into subexpressions, each of which is further 
analyzed using the Algorithm 2 with the appropriate query 
type as a parameter. 

For the GROUP BY and ORDER BY clauses, that in turn check 
the equality and calculate the order of the data, we start the 
subexpression analysis with an indication that the final result 
is used for equality check or order calculation. If 
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subexpression is a single database column, that column is 
immediately marked for equality check or comparison 
(columns Equal and Order in Table II). If subexpression has 
a more complex structure, then it is further decomposed and 
analyzed recursively. 

Fig. 4 shows the analysis of the Query (1) according to the 
aforementioned procedure. The results are shown in Table II. 

 
Algorithm 1  Query analysis  
Input: Database schema, Set of representative queries  
Output: Data usage matrix 

1 for each query  
representative_queries do 

2      for each clause  query do 

3           if projection_clause then 

4                if subquery then  

5                    representative_queries += subquery  

6                  else  

7                    for each expr  projection_clause do 

8                         a_ex(expr, “project”) 

9           if from_clause then 

10                if subquery then  

11                    representative_queries += subquery  

12                else  

13                    for each join_on_condition  from_clause 
do 

14                         a_con(join_on_condition) 

15           if where_clause then 

16               for each condition  where_clause do 

17                    a_con(condition) 

18           if group_by_clause then 

19               for each expr  group_by_clause do 

20                    a_ex(expr, “equal”) 

21           if order_by_clause then 

22               for each expr  order_by_clause do 

23                    a_ex(expr, “order”) 

24           if having_clause then 

25               for each condition  having_clause do 

26                    a_con(condition) 

  

Algorithm 2  Expression analysis (a_ex) 
Input: expr, query_type  

1 if expr is column_name then 

2      mark_in_matrix(column_name, query_type) 

3 if expr is conditional_expr then 

4      a_con(when_condition) 

5      a_ex(then_expr, query_type) 

6        a_ex(else_expr, query_type 

7 if expr is function_expr then 

8      if expr is sum_function then 

9           for each function_expr do 

10                a_ex(function_expr, “sum”) 

11      else if expr is mul_function then 

12           for each function_expr do 

13                a_ex(function_expr, “mul”) 

14      else 

15           for each function_expr do 

16                a_ex(function_expr, “other”) 

  

Algorithm 3 Condition analysis (a_con)  
Input: condition  

1 if condition is comparison_condition then 
2      if condition is relational_comparison then               
3           if checks equality then 
4                a_ex(left_expr, “equal”) 
5                a_ex(right_expr, “equal”) 
6             if checks order then 
7                a_ex(left_expr, “order”) 
8                a_ex(right_expr, “order”) 
9      if condition is between_condition then               

10           a_ex(main_expr, “equal”) 
11           a_ex(lower_expr, “equal”) 
12           a_ex(upper_expr, “equal”) 
13           a_ex(main_expr, “order”) 
14           a_ex(lower_expr, “order”) 
15           a_ex(upper_expr, “order”) 
16      if condition is in_condition then               
17           a_ex(in_expr, “equal”) 
18      if condition is is_null then               
19           a_ex(is_expr, “equal”) 
20      if condition is like_condition then               
21           a_ex(left_expr, “other”) 
22           a_ex(right_expr, “other”) 
23 if condition_with_subquery then 
24      if condition is in_condition then               
25           a_ex(left_expr, “equal”) 
26           analyze_query(subquery) 
27      if condition is exists_condition then               
28            analyze_query(subquery) 

 
  SELECT 
    name, 
    SUM(price*(1-discount)) AS revenue 
    SUM(CASE 
      WHEN nation = "CROATIA" 
      THEN volume 
      ELSE 0 
    END) / SUM(volume) as mkt_share                              (1) 
  FROM 
    lineitem 
  WHERE 
    shipdate >= 1.6.2019 
    AND shipdate < 1.6.2020 
    AND discount BETWEEN 0.4 AND 0.6 
  GROUP BY 
    name 
  ORDER BY 

revenue DESC; 
 

TABLE II: RESULTS OF QUERY ANALYSIS WITH INDICATION OF WHAT TYPE 

OF DATABASE OPERATIONS ARE REQUIRED FOR PARTICULAR DATABASE 

COLUMNS (DATA USAGE MATRIX FOR QUERY (1)) 

DB Column / 
Operation 

Project Eq Order Sum Mul Other 

name       

price       

discount       

nation       

volume       

shipdate       
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Fig. 4. Example of the query analysis (algorithm invocation tree for Query (1) is shown). 

 

B. Method Selection 

The output of the query analyzer is used as input for the 
method selection. Based on the marcation in the data usage 
matrix, a database column-wise list of applicable methods is 
generated. From the given list, the method with the highest 
confidence is selected to be applied to the data. 

A simple example is used to explain this process. The input 
to the analyzer is a database from Section III, which contains 
a table with four columns (first_name, last_name, city, 
and age). Initially, a 45 matrix is created with all the cells 
empty (4 rows for 4 database columns, 5 columns for 5 
database operations). Suppose that a set of representative 
queries contains only the Query (2). 
 
  SELECT first_name, last_name 
  FROM table                                                                                              (2) 
  WHERE age > 26 
  AND city = "Rijeka" 
 

Results of the query analysis are shown in Table III. The 
columns first_name and last_name are used for retrieval 
and are delivered to the consuming application as a result of 
the query execution. The column city is used for equality 
checking, while the column age is used for order calculation. 
Both operations need to be performed internally by the 
DBMS in order to produce valid query results. 

Since this is the only query that is expected to ever hit the 
database, the columns first_name and last_name can be 
encrypted using any method, except the irreversible hash 
function. When selecting the method, random encryption 

would be chosen as it provides the highest security among all. 
The column age can only be encrypted using the 
order-preserving method, since the DBMS has to compare 
the values for order. The column city can either be 
encrypted with deterministic encryption or hashed since both 
methods enable the DBMS to perform equality check over 
the encrypted data. 

 
TABLE III: QUERY ANALYSIS RESULTS WITH ONLY QUERY (2) IN A SET 

DB Column / 
Operation 

Project Eq Order Sum Mul Other 

first_name       
last_name       
city       
age       

 
TABLE IV: QUERY ANALYSIS RESULTS WITH QUERY (2) AND QUERY (3) IN 

A SET 

DB Column / 
Operation 

Project Eq Order Sum Mul Other 

first_name       
last_name       
city       
age       

 
Since there exists at least one applicable encryption 

method for each column, we can export the entire database to 
a single cloud without any risk of disclosure of sensitive 
relations among the data. Moreover, confidentiality 
constraints would be satisfied even if one out of three groups 
of data (either first_name and last_name, or age, or 
city) remains in plaintext. Therefore, we have four different 
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possibilities for deployment of the given database to the 
cloud, as shown in Fig. 5a. 

 

 
Fig. 5. Database deployment solutions for the example query sets. 

 

If the query set gets extended with the Query (3), then the 
result of the analysis is slightly different, as shown in Table 
IV. 

  SELECT SUM(age)                                 (3) 
  FROM table 

The column age can no longer be encrypted since it is now 
used both to compare the values and to calculate the sum. 
There is no encryption method available so far that supports 
both operations over the encrypted data. In this case, we have 
to export the column age in plaintext. Fortunately, we can 
still apply the encryption to the rest of the columns and export 
the entire database to a single cloud, as shown in Fig. 5b. 
Otherwise, database fragmentation would step in, which 
would in turn require one additional computer cloud to run 
the database. 

 

VI. VALIDATION OF DATA FRAGMENT REDUCTION 

We validated the process of encryption method selection 
using the TPC BenchmarkTM H (TPC-H) [18]. TPC-H is a 
decision-support benchmark with broad industry-wide 
relevance. It contains a database of large data sets and 
provides a list of queries with a high degree of complexity. 
The database consists of 8 individual tables that have a total 
of 61 columns. The benchmark contains 22 queries that are 
used for the method selection. 

Since confidentiality constraints are not specified in the 
benchmark, the experiment assumed the worst-case scenario 
– each database column is constrained with every other 
column. The results of the validation are presented in Table 
V. 

 
TABLE V: REDUCTION OF THE NUMBER OF COMPUTER CLOUDS NECESSARY 

TO DEPLOY THE TPC-H DATABASE USING A COMBINATION OF 

FRAGMENTATION, ENCRYPTION, AND HASHING 

Data protection method Required number of clouds 
Fragmentation only 61 
Fragmentation + encryption + hashing 13 

 

If protection of the database would rely solely on the data 
fragmentation, the minimum number of cloud providers 
required to split and deploy all the data into separate 
fragments is equal to the number of columns. For the TPC-H 
database, this means that 61 cloud providers are required to 
export the data in a secure manner. 

Analyzing 22 representative queries from the TPC-H 

documentation using the procedure described in Section V, 
48 out of 61 columns can be transformed using one of the 
methods described in Section IV. This means that the number 
of cloud providers required to run the database is reduced 
from 61 to 13 or by 78.69 %. This not only reduces the 
operational costs of running a multi-cloud database, but also 
significantly improves the performance because of much less 
inter-cloud join operations that are necessary to rebuild the 
fragmented data. 

Compared to [4], where only a single encryption scheme is 
enabled along the fragmentation, our approach is far more 
efficient in terms of necessary number of storage sites. In [4], 
only the data that can be encrypted randomly may reside 
alongside the plaintext data. For the TPC-H query set, this 
reduces the number of required cloud providers by 18 %, i.e. 
they still need 50 cloud providers to store and process data 
securely, instead of 13. 

As expected, CryptDB [6] and Monomi [7] outperform our 
solution in terms of storage sites since both are inherently 
single-cloud database systems. However, using a 
combination of fragmentation and multiple types of 
encryption, we can successfully answer the entire set of 22 
reference queries specified in the TPC-H benchmark, unlike 
the CryptDB which is able to process only 4 of them [7]. 
Monomi, on the other hand, can answer the entire set of 
reference queries, but requires the entire database columns to 
be transferred to the client for final filtering if they are 
encrypted with the scheme that does not fit the given query. 
Our solution never transfers excessive data to the client, but 
requires simultaneous access to multiple storage sites and 
completion of query processing at the client side to rejoin the 
fragmented data tuples. As we already stated in Section II, 
neither approach is absolutely dominant over another one. 
They are rather complementary and the decision which one to 
use depends on the tradeoff between the number of clouds 
someone is ready to use and the amount of processing that is 
acceptable to transfer to the client. 
 

VII. CONCLUSION 

A decent balance between running a data storage 
on-premise and taking a risk of sensitive data disclosure 
when exported to the cloud is using a multi-cloud database. 
Besides the increased operational costs and performance 
penalties imposed by distribution of data among several 
independent clouds, practical problem is how to find an 
adequate number of dependable and trustworthy cloud 
providers. In this paper, we propose a methodology for 
reducing the number of computer clouds necessary to run a 
multi-cloud database based on combination of fragmentation, 
encryption, and hashing. By using the combination of 
methods, the data remain secure in fewer fragments than if a 
single method was used. Furthermore, by intelligent selection 
of different cryptographic methods to protect different parts 
of the database, the DBMS still retains the capabilities for 
query processing, regardless of the encrypted data. 
Validation of the process over the TPC-H benchmark 
resulted in a reduction of the number of cloud providers up to 
80%, compared to using only the fragmentation. 

Further research would be directed towards the 
multi-modal data encryption and the dynamic properties of 
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the query processing. When no encryption method is 
applicable for a particular database column, multi-modal 
encryption allows that a single data is encrypted and stored in 
several different forms, each of which supports different 
types of queries. Another direction is to detect frequent 
computations used in queries, precompute the results, and 
store them as new columns in the database. By storing 
elementary data items separate from the precomputed 
expressions we can still hide the sensitive information, while 
enabling the DBMS to answer even more complex queries 
over the encrypted data. However, a tradeoff between 
introducing new columns with derived data items and 
database normalization are yet to be explored. 
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