


Abstract—Generating network traffic flows remains a critical

aspect of developing cyber and network security systems. In this

survey, we first consider the history of network traffic

generation methods and identify the weaknesses of these. We

then proceed to introduce more recent approaches based on

machine learning (ML) models. In particular, we focus on

Generative Adversarial Network (GAN) models, which have

developed from their initial form to encompass many variants

in today’s ML landscape. The use of GANs for generating traffic

flows that have appeared in the literature are then presented.

For each instance, we present the architecture, training methods,

generated results, identified limitations and prospects for

further research. We thus demonstrate that GANs are key to

future developments in network traffic generation and secure

cyber and network systems.

Index Terms—Generative adversarial networks, network

traffic, network traffic generation, neural networks.

I. INTRODUCTION

In developing, analyzing, and appraising secured networks

and cyber monitoring systems, network traffic flows play a

crucial role. Accessing sufficient real network traffic that is

appropriate for this purpose has remained a challenge due to

existing and increased privacy and security concerns.

Publicly available real traffic is largely inconsistent,

insufficient, or incomplete thus limiting how much is

achieved relying on it. This drives a need to generate

synthetic traffic, especially for research and analytical

purposes.

The process of generating synthetic traffic involves

extracting key characteristics of real network traffic and using

these to generate similar network traffic flows. Although a

very complex process, research has shown that this is possible.

Several generation techniques have been implemented over

time with each successive method attaining improved

generation levels over previous approaches, albeit with

associated limitations. This has recently culminated in the use

of Deep Learning models, particularly Generative

Adversarial Networks (GANs), which are the particular focus

in this survey.

In this study, we consider the range of existing network

traffic generation methods, and further make the following

key contributions:

 We highlight various evolutionary methods developed

 We discuss the limitations encountered by the various

approaches and show how each successive method

overcomes these limitations.

 We show how Deep Learning techniques, particularly

GANs, have surpassed previous state-of-the-art methods,

delivering enhanced results culminating in packet byte level

generation. This is despite their implementation the network

traffic generation domain and has suggests further research is

needed on the application of GANs in this area.

To this end, the paper is divided into sections as follows.

Section I.A surveys earlier traffic generation methods and

their shortfalls, Section I.B introduces GANs and highlights

seven key models that form the basic architecture of most

evolving models. Five GAN models trained for network

traffic generation are presented in Section II, and further

discussed in detail showing their architecture, training

process and results. The survey concludes in Section III with

discussion of several observations and conclusions

highlighting the prospects for GANs is this area.

A. The Evolution of Traffic Generation

Early traffic generation methods adapted the established

Erlang telephony model [1] to attempt to reproduce traffic

that was observed. This method used the Poisson distribution

for packet arrivals [2], [3] and allowed configuration of a

transfer probability matrix that could transfer protocol and

port [4]. The method worked well if the network application

was simple, but the performance became inconsistent with

complex network traffic (particularly the assumptions

concerning the packet arrival process and the Poisson

distribution) [5], giving rise to Self-Similar models [6]. The

ON/OFF traffic self-similar model generated traffic by

aggregating multiple sub-streams and each sub-stream cycle

(either ON or OFF) was seen to follow the Pareto distribution

[7]. Multi Fractal measure, another self-similar model,

applied a continuous spectrum to generate non-uniform

fractal traffic [8], while the Fractal Gaussian Noise (FGN)

model used the Fast Fourier Transform to generate

asymptotic self-similar traffic [9]. Self-similar models

showed good consistency in results but did not reflect the true

characteristics, particularly for packets and network flows [5].

To capture traffic characteristics during generation, various

methods were implemented for flow-level and packet-level

generation. Harpoon [10], [11] was used to generate

representative packet traffic based on empirical distributions

(file size, inter-connection times, and number of active

sessions) to match byte, packet, and flow volumes of the

original data at the Internet Protocol (IP) flow-level, this did,

however, exclude packet loss and flow duration. Flow-level

T. J. Anande and M. S. Leeson are with the University of Warwick,

Coventry, CV4 7AL U.K. (e-mail: Tertsegha-Joseph.Anande@

warwick.ac.uk).

Generative Adversarial Networks (GANs): A Survey on

Network Traffic Generation

Tertsegha J. Anande and Mark S. Leeson

International Journal of Machine Learning and Computing, Vol. 12, No. 6, November 2022

333

and implemented for network traffic generation, and the

extent of successful generation achieved using each method.

Manuscript received November 2, 2021; revised February 28, 2022.

This work was supported in part by the School of Engineering,

University of Warwick.

doi: 10.18178/ijmlc.2022.12.6.1120

matrices combined a random number generator of a Poisson

distribution, a Pareto distribution for flow duration, and a

Weibull distribution for flow size, to generate traffic that

reflected flow attributes such as occurrence rate, ratio,

duration, and size at the flow-level and not the packet level

[12]. Multi threads and interdomain traffic simulation were

other methods used for generating network traffic at the flow-

level that were also not implemented at the packet-level [5]

but several tools were proposed to generate network traffic

that level. A packet-level traffic generator was incorporated

in the ON/OFF model that enabled it to generate traffic

corresponding to the user’s configuration with Inter-

Departure Time (IDT) and Packet Size (PS) distributions [13].

Plab captured Hypertext Transfer Protocol (HTTP) traffic

and determined that Inter-Packet Time (IPT) followed a

Weibull distribution and PS followed a Lognormal

distribution [5]. Swing [14] could extract the characteristics

of each HTTP session from real flows such as source IP and

destination IP, PS, packet arrival distributions, request size

and response size, although it could only achieve generation

for Transmission Control Protocol (TCP). Generated traffic

accuracy for packet-level models varied as the distributions

that traffic characteristics should follow were not defined nor

was the number of characteristics to be considered [5].

A wide range of traffic generation tools have been

developed and used for generating traffic tailored to different

application protocol traffic. The NS-2 Simulator

(subsequently NS-3 and NS-4) provided the function Tmix

that was used to generate TCP application workload [15].

Iperf was used to test the performance of network parameters

and report bandwidth, delay jitter and packet loss [5]. TCP

trace replay used the open-access C/C++ library libpcap [17]

to capture packet traces, analyse extracted link delays, packet

losses, bottleneck bandwidth, packet MTUs and HTTP event

timings [16]. Dummynet, in [18], was implemented to

generate traffic conditions with response times and network

delays that mimicked real TCP traces. Surge [19] and Geist

[20] used ON/OFF processes [22] to generate traffic for

testing Web Server pressure and realizing HTTP traffic

aggregation, whereas Gismo [22] applied a similar modelling

philosophy to streaming media access. Thus, application

protocol-based traffic generation methods have produced

network traffic that was close to original network traffic, but

only for particular (specified) application protocols and in a

more general sense [5].

Learning tools have been developed and used on network

traffic but largely for the statistical classification of network

traffic flows relying on meta-data payloads. This is unlike

protocol-based classification that uses derived heuristics or

knowledge of information about IP, port numbers and

signature protocols [23], [24]. Bayesian methods (particularly

neural networks), modified Association algorithms, Support

Vector Machines, Venn Probability Machines, k-Nearest

Neighbour and k-means clustering algorithms are among

several methods implemented for generating class probability

distributions [23], [24]. While most of these methods are

vulnerable to overfitting with low spatial, temporal stability

and poor data collection even though achieving high

classification accuracy [23], neural networks (especially

multi-layered or deep neural networks) have shown great

promise when implemented for generation and classification

tasks [25].

GANs, a category of deep generative neural networks,

have shown great potential in their ability to learn intricate

data distributions (up to packet-level) and reproduce the same

(with subtle variants) within an application domain. This

provides the motivation to study and review existing methods

implemented for network traffic generation while identifying

areas for further research.

II. GANS

The basis of GAN operation is the use of signal

backpropagation to train two models, the Generator and the

Discriminator, simultaneously pitting them against each other

such that both models competitively strive to outdo the other

in proving that the generated data is real or fake [26]. They

have continued to gain increased attention due to their

versatility and dynamic applicability. Several improvements

have been made to the initial model of Goodfellow et al.

(Vanilla GAN) [26], shown generically in Fig. 1 [28]. These

include adding class conditions to enhance data generation

representations, the incorporation of convolutional layers to

enhance better data generation and regeneration, inference

network extensions, and adversarial training for enhanced

robustness and model training convergence speed [27]. With

increasing and evolving applications, GANs have shown

highly significant untapped potential in network traffic

generation [28], [29] as well as a scalable hybrid architecture

which is able to incorporate other model components (both

supervised and unsupervised) while providing a network

training platform.

Fig. 1. GAN objective functions and training procedure [[28]].

A. The Vanilla GAN [26]

The Vanilla GAN incorporates two models in a

corresponding minimax two-player game framework where

the Generator (𝐺) models a transform function that strives to

fool the Discriminator (𝐷) into mistaking generated data

samples for real samples while 𝐷 models a discriminative

function that estimates the probability that the sample data is

from generated data or from the true data distribution. The

input to 𝐺 is a low dimensional noise vector (𝑃𝑧(𝑧)), which it

transforms into a data vector (𝐺(𝑧; 𝜃𝑔)) that is presented to

𝐷 as a potential data sample. The input to 𝐷 comprises 𝐺(𝑧)

and samples of real data (𝑃𝑑𝑎𝑡𝑎(𝑥)), and it produces an output

that is a single scalar (𝐷(𝑥; 𝜃𝑑)) with a score that shows the

likelihood of 𝐺(𝑧) being from the original data distribution.

The minimax objective function is:

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥 ~ 𝑃𝑑𝑎𝑡𝑎(𝑥)
[log 𝐷(𝑥)]

+ 𝐸𝑧~ 𝑃𝑧(𝑧) [log(1 − 𝐷 (𝐺(𝑧)))]

𝐺 targets the minimization of log 𝐷(𝑥) + log (1 −

𝐷(𝐺(𝑧))), aiming to make both 𝐺(𝑧) and 𝑃𝑑𝑎𝑡𝑎(𝑥) equal to

0.5 to confuse 𝐷 . At the same time, 𝐷 strives to correctly

classify the fake versus the real data samples by maximizing

International Journal of Machine Learning and Computing, Vol. 12, No. 6, November 2022

334

log 𝐷(𝑥) + log (1 − 𝐷(𝐺(𝑧))) and forcing 𝐷(𝑥) to equal 1.

Goodfellow et al. [26] optimized the model training using

Stochastic Gradient Descent (SDG) and the minimax loss

function in equation (1).

B. Conditional GAN (CGAN) [29]

The Vanilla GAN model was extended by Mirza and

Osindero [29] by the inclusion of extra (auxiliary)

information to condition the model. This extra information, 𝑦,

which is data from class labels or other modalities is

combined as additional input layer and fed as input for 𝐺 and

𝐷. CGAN, modified from (1), is represented in the two-player

minimax objective function by:

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥 ~ 𝑃𝑑𝑎𝑡𝑎(𝑥)
[log 𝐷(𝑥|𝑦)]

+ 𝐸𝑧~ 𝑃𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧|𝑦)))]

here, 𝑃𝑧(𝑧) and 𝑦 are combined in a joint hidden

representation as inputs for 𝐺 whilst 𝑃𝑑𝑎𝑡𝑎(𝑥) and 𝑦 are

presented as explicit inputs for 𝐷 . CGAN also optimizes

model training using the SDG method.

C. Deep Convolutional GAN (DCGAN) [30]

To enhance stable GAN training, Radford et al. [30]

incorporated Convolutional Neural Network (CNN)

components into the GAN architecture by introducing

constraints on its topology. To perform its convolutions, a

CNN shifts a number of pixels, say 𝑛, over the input matrix

and 𝑛 is known as the stride [31].

DCGAN introduced fractional-strided convolutions, where

a coarser output is connected to denser pixels by interpolation

(that can be described as a fractional input stride, producing

the name used) [32]. These allowed 𝐺 to learn its own spatial

upsampling, and strided convolutions for 𝐷 to learn

downsampling. G also uses batch normalization and rectified

linear unit (ReLU) activation [33] (at all layers except a

hyperbolic tangent function for output) while 𝐷 applies batch

normalization and LeakyReLU [34] (for all layers). Fully

connected hidden layers are also removed from deeper

architectures, and models are trained with mini-batch SDG.

D. Wasserstein GAN (WGAN) [35]

The Wasserstein GAN, proposed in by Arjovsky et al. [35],

made fundamental architectural changes to the Vanilla GAN

which included replacing the Discriminator with a Critic (𝐶)

that does not have to output the Sigmoid function and

replaced the Minimax (BCE) loss function with the

Wasserstein loss (W-Loss) [36] that approximates the

distance between 𝑃𝑑𝑎𝑡𝑎(𝑥) and G(z), and the amount moved.

The objective function, which is modified from the standard

GAN in (1), is thus represented by [37]

min
𝐺

max
𝐶

{ E
𝑥 ~ 𝑃𝑟

[𝐶(𝑥)] −

E
𝑥 ~ 𝑃𝑔

[𝐶(𝐺(𝑥̂))], E
𝑥 ~ 𝑃

𝑥̂̂

[(‖∇𝑥𝐶(𝑥̂)‖2 − 1)2]} (3)

where 𝑃𝑟 is the real distribution, 𝑃𝑔 is the generated

distribution, and 𝑃𝑥 are uniformly sampled data points (𝑥̂)

between 𝑃𝑟 and 𝑃𝑔. The 1 – Lipschitz continuous condition is

included for training to ensure that the W-Loss correctly

estimates the Earth Mover’s Distance (EMD) [38], which

measures the distance between two probability distributions

over a given region.

1) Wasserstein GAN with Gradient Penalty (WGAN-GP)

[39]

Gulrajani et al. [39] proposed an alternative method of

enforcing the Lipschitz constraint on 𝐶, which was based on

weight clipping for the WGAN model that resulted in

convergence failure or undesired behaviour. This approach,

modified from the default WGAN model (3), is represented

thus:

min
𝐺

max
𝐶

{𝐸[𝐶(𝑥)] − 𝐸[𝐶(𝐺(𝑧))] + 𝜆𝐸[(‖∇𝐶(𝑥̂)‖2 − 1)2]}

 (4)

WGAN with Gradient Penalty (WGAN-GP) performs

random interpolation between real and fake samples during

training while penalizing the C’s gradient norm with respect

to its input. This is represented with a penalty coefficient

parameter , that scales the gradient penalty.

2) Conditional Wasserstein GAN (CWGAN) [40]

In [40], Fabbri proposed the Conditional WGAN (CWGAN)

with improvements to the WGAN and WGAN-GP models

incorporating the DCGAN architecture. The model included

additional data as input for both 𝐺 and 𝐷 or 𝐶 while training

applied the W-Loss function and the established Adam

optimizer [41].

E. Bidirectional GAN (BiGAN) [42]

Donahue et al. [42] incorporated an Encoder (𝐴) into the

Vanilla GAN model that enabled it to learn the inverse of 𝐺.

The proposed model, Bidirectional GAN (BiGAN), learns

data mapping inversely for auxiliary supervised

discrimination tasks. The objective function, based on (1), is

given by:

min
𝐺,𝐴

max
𝐷

𝑉(𝐷, 𝐴, 𝐺)

= 𝐸𝑧~𝑝(𝑥) [𝐸𝑧~𝑝(𝐴(∙|𝑥))[log 𝐷(𝑥, 𝑧)]]

+ 𝐸𝑧~𝑝(𝑧) [𝐸𝑧~𝑝(𝐺(∙|𝑧))[log(1 − 𝐷(𝑥, 𝑧))]]

 (5)

𝐴 is included with 𝐺 for data mapping to latent

representations, while 𝐷 jointly discriminates in data and

latent space where the latent component is either the Encoder

output (𝐴(𝑥)) or the Generator input (𝐺(𝑧)). 𝐴 is a non-linear

parametric function, as are 𝐺 and 𝐷 , so is trained using

gradient descent; 𝐷, 𝐺 and 𝐴 are updated simultaneously at

each iteration in alternating Stochastic Gradient steps.

III. GANS FOR NETWORK TRAFFIC GENERATION

GANs have been extensively applied for data classification

and regression, image generation and synthesis, image-to-

image translation, text-to-image generation, and enhanced

image resolution generation [43]. Dewi et al. implemented

various GAN architectures for the generation of improved

and advanced traffic sign recognition [44], and synthetic

prohibitory sign images [45], [46]. When evaluated with real

data, results showed high resemblance and recognition

accuracy.

These and several other recent works show that GANs

have significant untapped potential in their ability to generate

International Journal of Machine Learning and Computing, Vol. 12, No. 6, November 2022

335

high quality network traffic flows, making them highly

relevant for network traffic analysis and synthesis [47]. This

section discusses models that have been trained to generate

network traffic flows, and to what extent generation has been

achieved.

A. Model Architectures

Although the use of GANs to generate and analyze network

traffic is a relatively new application, there have been several

architectures designed and applied with some success. We

now summarize these, concentrating mainly on their structure.

1) Imbalanced Traffic Classification (ITCGAN) [48]

This recent development in GANs addresses the problem

that typical Internet traffic has very different proportions of

traffic from different applications, leading machine learning

training to be dominated by the most commonly seen type.

ITCGAN, inspired by the triple-GAN [48] framework, is

structured to include three modules as shown in Fig. 2. These

are the Traffic Vectorization module that sorts and isolates a

vectorized representation of imbalanced traffic features

(training set), the Pre-training module that uses Net (a

superior network) to train on the vectorized set and stores the

pre-trained architecture parameters which are subsequently

used as initial states for the Formal Training module. The last

of these comprises the GAN framework that includes 𝐺, 𝐷

and a Classifier (𝐶𝑙).

Fig. 2. The ITCGAN Framework, illustrating its constituent parts (the

Traffic Vectorization module, the Pre-Training module and the Formal

Training module) [48].

𝐺 is designed with Weight Generation Units (𝑤𝐺𝑈) ,

which each correspond to a minority class and learn a latent

space’s conditional mapping 𝑔𝑖 to vector 𝑤𝑖 = 𝑔𝑖(𝑧/𝑖) of

weights 𝑁𝑖 [48]. Unlike [26] that trains so as to map a uniform

random distribution that is similar to 𝑃𝑑𝑎𝑡𝑎(𝑥) to target data,

𝐺 is trained to learn and synthesize minority samples that fit

the original distribution even though this differs from

𝑃𝑑𝑎𝑡𝑎(𝑥). This is optimized and represented thus:

min
𝐺

𝑉(𝐺) = (𝑉𝑖1 − 𝑉𝑖2 − 𝑉𝑖3) (6)

where,

𝑉𝑖1 =
𝑁𝑛− 𝑁𝑖

𝑁
𝐸𝐺(𝑧|𝑖)~𝑝𝑖

𝑔[log(1 − 𝐷(𝐺(𝑧|𝑖)))], (7)

𝑉𝑖2 =
𝑁𝑛− 𝑁𝑖

𝑁
𝐸𝐺(𝑧|𝑖)~𝑝𝑖

𝑔[log 𝐶𝑙𝑖(𝐺(𝑧|𝑖))], (8)

𝑉𝑖3 = ∑
𝑁𝑛− 𝑁𝑗

𝑁𝑗∈𝐿{𝑖} 𝐸𝐺(𝑧|𝑗)~𝑝𝑗
𝑔[log(1 − 𝐶𝑙𝑖(𝐺(𝑧|𝑗)))], (9)

𝑝𝑖
𝑑 and 𝑝𝑖

𝑔
 respectively indicate the real and synthetic

conditional probability distributions of class 𝑖, and 𝑁𝑛 − 𝑁𝑖

is the class size. ITCGAN attempts to minimize (7) to fool 𝐷,

and maximize (8) and (9) to enable 𝐶𝑙 predict the synthetic

samples as real labels [48].

𝐷 is designed similarly to the Vanilla GAN [26] and

expressed thus:

max
𝐷

𝑉(𝐷) = ∑ (𝑉𝑖1 + 𝑉𝑖4)𝑖∈𝐿 (10)

where, 𝑉𝑖4 =
𝑁𝑖

𝑁
𝐸

𝑥~𝑝𝑖
𝑑[log 𝐷(𝑥)], (11)

 𝐶𝑙 is obtained from the Pre-training module and is

represented thus:

max
𝐶𝑙

𝑉(𝐶𝑙) = ∑ (𝑉𝑖1 + 𝑉𝑖2 + 𝑉𝑖5 + 𝑉𝑖6)𝑖∈𝐿 (12)

where, 𝑉𝑖5 =
𝑁𝑖

𝑁
𝐸

𝑥~𝑝𝑖
𝑑[log 𝐶𝑙𝑖(𝑥)], (13)

𝑉𝑖6 = ∑
𝑁𝑗

𝑁𝑗∈𝐿{𝑖} 𝐸
𝑥~𝑝𝑖

𝑑[log(1 − 𝐶𝑙𝑖(𝑥))] (14)

The GAN architecture incorporates facilitation of correct

classification of the imbalanced set while serving as a

constraint to guide 𝐺 during training, and also providing an

indication of successful generation thereby eliminating the

need to focus on training convergence [48].

2) Packet generation of network traffic GAN (PAC-

GAN) [28]

An improvement to the CGAN framework and a hybrid of

CNN with the GAN architecture [28], PAC-GAN implements

an inverse CNN architecture for 𝐺 , while 𝐷 uses the

conventional CNN architecture usually employed for

supervised classification. Network traffic packets are

encoded by 𝐺 after first converting individual packet byte

values for representation by subranges of sequential values

and then duplicating the converted values for one-to-multi

mapping (see Fig. 3 [28]).

Fig. 3: PAC-GAN framework for network traffic generation and

testing/deployment [[28]].

The conversion process is:

𝑌 = 𝑓𝑐(𝑋) (15)

where 𝑌 = (𝑦n, … , 𝑦1, 𝑦0) is the tuple containing the

converted string of byte value digits and 𝑋 =
(𝑥n, … , 𝑥1, 𝑥0) is the length 𝑛 string of packet byte value

digits. The reverse operation 𝑓𝑐
−1(𝑋) is performed on 𝐺 ’s

output to extract the actual packet byte values. 𝐺 is further

decoupled and deployed for generation of traffic to be

transmitted through the Internet. Fig. 4 shows the PAC-GAN

architecture [28].

International Journal of Machine Learning and Computing, Vol. 12, No. 6, November 2022

336

Fig. 4. PAC-GAN Conversion and Map encoding process [28].

3) Flow-Based network traffic generation GAN [49]

Ring et al. [49] proposed three approaches to generate and

transform flow-based traffic into continuous attributes, pre-

processed and regenerated into new flow-based network data

using WGAN-GP with a Two Time-Scale Update Rule

(TTUR). These accepted network attributes as numerical

values, created binary attributes from categorical attributes,

and used a new similarity measure (IP2Vec) to learn vector

representations from categorical attributes as shown in Fig. 5

[49]. Flow-based network traffic features comprising IP

addresses, Destination Ports and Transport Protocols were

extracted and served as input vocabulary with each value

representing a one-hot vector, i.e., a group of bits containing

only one logical one with all other bits set to logic zero [50].

Input and output layer neurons were each assigned specific

values of the vocabulary and these layers (having the same

number of neurons) were equal to the vocabulary size. The

hidden layer neurons were fewer in number than the input

layer neurons. The output layer used a Softmax Classifier that

normalized the sum of all output neurons ensuring that it was

1, thus predicting the probability for each value of the

vocabulary shown in the same flow as the input value.

Fig. 5. IP2Vec neural network architecture [49].

4) Zipper network (ZipNet-GAN) [51]

ZipNet-GAN, proposed in [51], combined a new deep

network, the Zipper Network, and GAN architectures tailored

towards Mobile Traffic Super-Resolution (MTSR) to infer

narrowly localized fine-grained mobile traffic patterns

collected from aggregate coarse data measurements by a

limited number of network probes with arbitrary granularity.

𝐺 is constructed using a deep ZipNet architecture (see Fig. 6

[51]) and comprises 3D Upscaling Blocks for extracting

spatial and temporal features specific to the mobile traffic,

Zipper Convolutional Blocks as the core and Convolutional

Blocks that predict the decision after summarizing distilled

features received from the core. The 3D upscaling blocks are

input and consist of a 3D deconvolutional layer, three 3D

convolutional layers, a batch normalization layer and a Leaky

ReLU activation layer. The core, which has 24 convolutional

layers, a batch normalization layer and a Leaky ReLU

activation layer, takes output from the 3D upscaling blocks.

The convolutional blocks consist of three convolutional

layers, a batch normalization layer and a Leaky ReLU layer

with no skip connections. 𝐷, which is based on a VGG-net

neural network, consists of 6 Convolutional Blocks with the

final layer employing a Sigmoid activation function that

constrains the output to a probability range. The

Convolutional Blocks include a convolutional layer, a batch

normalization layer and a Leaky ReLU activation layer.

Fig. 6. Architecture of G and D in ZipNet-GAN [48] showing the D

upscaling blocks and Convolutional blocks for G′s architecture, and D

based on the VGG-net framework [51].

Fig. 7. Framework for facebook chat network traffic GAN model [52].

5) Facebook chat network traffic GAN [52]

Rigaki and Garcia [52] proposed a GAN to imitate

Facebook chat network traffic and modify the network

behavior of real malware by mimicking the traffic of

legitimate users while evading detection. 𝐷 and 𝐺 for this

model were unidirectional and Recurrent Neural Networks

(RNNs) modelled using the Long Short-Term Memory

(LSTM) architecture. These used a Web Service (HTTP) to

communicate with malware by exposing two API calls. These

were get_params (that loads the saved 𝐺 model, produces

new traffic parameters, and sends the same as a JavaScript

Object Notation object to malware) and feedback (that loads

the saved 𝐺 and 𝐷 models, adds the parameters of the

previous time window to the current dataset based on

feedback received and proceeds to another training round).

The C2 channel is kept active and operational while HTTP

facilitates communication over the channel to the 𝐶2 Server,

and the Intrusion Prevention System (IPS) serves to secure

the channel from non-Facebook chat traffic. The model

framework is illustrated in Fig. 7 [52].

6) Packet capture file generator style-based GAN

(PcapGAN) [53]

Proposed to generate and augment Pcap data (Packet

Capture data for analysis), PcapGAN comprises an Encoder

International Journal of Machine Learning and Computing, Vol. 12, No. 6, November 2022

337

(𝐸) with four network data parts, 𝐺 that generates new data

for each part of 𝐸, and a Decoder that replaces 𝐷. Information

from Pcap data is extracted by 𝐸 and converted into features

such as a graph (IP source → IP destination), an image (time

interval), and a layer sequence structured from network data.

Style (a vector value) is used to represent relationships

between hosts (Server – Client and command and control

Server – Botnet). Each data sample generated by 𝐸 is labelled

by the edge style (that is, the style value of the relationship

between hosts) and used in designing 𝐺, which operates in a

hybrid structured manner to generate new data which are

combined with the reconstructed valid Pcap file by the

Decoder. Figure 8 shows the PcapGAN architecture [53].

PcapGAN uses a version of (1) modified by the addition of

parameters to represent its objective function to produce:

min
𝜃𝐺

max
𝜃𝐷

𝑉(𝐺, 𝐷) =

∑ {𝐸𝑣~𝑃𝑡𝑟𝑢𝑒(∙|𝑣𝑐)[log 𝐷(𝑣, 𝑣𝑐; 𝜃𝐷)] +𝑉
𝑐=1

𝐸𝑣~𝐺(∙|𝑣𝑐; 𝜃𝐺)
[log{1𝐷(𝑣, 𝑣𝑐; 𝜃𝐷)}]} (16)

𝑃𝑡𝑟𝑢𝑒(𝑣|𝑣𝑐) is the probability of connecting a given node

(𝑣𝑐) to another, where 𝑐 = {1, … , 𝑉} . 𝐺(𝑣, 𝑣𝑐; 𝜃𝐺) and

𝐷(𝑣, 𝑣𝑐; 𝜃𝐷) represent the value function 𝑉(𝐺, 𝐷) in the

Vanilla GAN framework as originally given in (1) [53].

Fig. 8. PcapGAN Framework that implements a hybrid style-based

Generator, replaces the Discriminator with a Decoder and incorporates a

four-network-data-part Encoder [53].

B. Traffic Generation Results to Date

We now summarize the traffic generation results that have

been obtained using various GAN implementations in the

literature. In each case, we also summarize the structures and

parameters that have been employed in the instances cited.

1) ITCGAN

Unlike previous GAN models, ITCGAN focused on

solving the network traffic data imbalance problem. The Pre-

training module trained for 300 epochs and used idea of focal

loss, which is a method to place increased weight on rare

samples. The Formal training module set the batch sizes for

all models (𝐺, 𝐷 and 𝐶𝑙) to 512 and used 40000 training steps,

where the ITCGAN parameters were updated twice within a

batch for every training step. 𝐺 and 𝐷 had fully connected

layers and a learning rate of 10−3 with a decay of 10−4 while

𝐶𝑙 employed a learning rate of 3 × 10−4 and decay of 10−6.

ITCGAN used a ReLU activation function for hidden layers

in both the Pre-training and Formal training modules, with

optimization using the Adam optimizer [48].

To evaluate the results, baseline performance was

established by training a classifier without addressing

imbalance. Then, a range of metrics were considered to

compare ITCGAN with established techniques, namely

Random Over Sampling (ROS), Adaptive Synthetic

Algorithm (ADASYNC), Synthetic Minority Oversampling

Technique (SMOTE), SMOTE + Support Vector Machine

(SMOTE-SVM), SMOTE + Tomek Links (SMOTE-TL) and

a CGAN; the reader is referred to [48] and the references

therein for full details of these methods. Here we summarize

the global metric results for G-mean (GM) and Mean Area

Under Precision-Recall Curve (MAUC-PR) that show the

ICTGAN’s performance.

ITCGAN outperformed the other methods on GM and

MAUC-PR (Table I[48]). The authors also explored the

effects of the Pre-Training module, the constraint provided by

𝐶𝑙 to 𝐺 and changing the fully connected 𝐺 and 𝐷 layers to

convolutional layers. They found that the Pre-Training

module enabled faster convergence, the 𝐶𝑙 constraint was

essential and convolutional layers increased training duration

and difficulty.

2) PAC-GAN

This was the first model to successfully generate and

manipulate network traffic data (that is, ICMP Pings, DNS

queries and HTTP Get Requests) at individual IP packet byte

level, which was also deployed to the Internet thereby

eliciting responses. Previous GAN traffic generating models

only produced traffic at metadata/flow-level. In the network,

𝐺 consisted of six layers; two fully connected layers, a

reshape layer, two deconvolution layers and an output

convolutional layer. 𝐷 had two 2D convolutional layers, a

fully connected layer, and an output linear layer for

classification. Both 𝐷 and 𝐺 used 𝐿2 regularization (with a

weight decay value of 2.5 × 10-5), a ReLU activation function,

Adam Optimization (with a learning rate of 10−4 and beta1

exponential decay of 0.5), and the W-Loss function (with a

gradient penalty of 1.0).

The success rate in generating individual traffic types is

shown in Table II [[28]]. Although this was as high as 99%

for some traffic types and 87.7% averaged over all tasks, the

model could not achieve the same success rate for generating

multi serial network packets from greater variety of network

traffic types.

3) Flow-Based network traffic generation GAN

Five training samples were generated by IP2Vec (an input

and an expected output value for each sample) from each of

Source IP Address, Destination IP Address, Destination Port

and Transport Protocol flows. The neural network was

trained with captured flow-based network traffic, taking the

value generated by IP2Vec as its input and producing the

probability for each input vocabulary value, using

backpropagation for learning. To reduce the backpropagation

training time, IP2Vec used Negative Sampling to modify a

small percentage of the weights. After training, IP2Vec

ceased using the neural network and switched to employing

the weights of the hidden layers as m-dimensional vector

representations of the IP Addresses. The network attributes

were dealt with in three ways to investigate which method

produced the most realistic values.

First, network attributes were interpreted as numbers (even

though they were in fact categorical). Each octet of IP

addresses was transformed to continuous attributes within the

interval [0, 1]. Ports were divided by the highest port number

International Journal of Machine Learning and Computing, Vol. 12, No. 6, November 2022

338

and transformed to continuous attributes while other

attributes (duration, bytes, and packets) were normalized to

the interval [0, 1]. This approach was termed the Numeric-

based Improved WGAN (N-WGAN-GP).

TABLE I: ITCGAN OUTPERFORMS ALL METHODS IN THE GLOBAL METRICS EVALUATION WITH REMARKABLE GM AND MAUC-PR IMPROVEMENTS [48].

 Baseline ROS ADASYNC SMOTE SMOTE-SVM SMOTE-TL CGAN ITCGAN

Global

Metric

GM 86.89 90.06 90.82 89.75 90.08 86.24 86.84 91.19

MAUC 91.90 91.00 91.31 93.17 93.08 91.80 91.52 94.17

TABLE II: RESULTS FROM PAC-GAN NETWORK TRAFFIC GENERATION [[28]]

 Ping DNS HTTP Ping/DNS Ping/HTTP DNS/HTTP Ping/DNS/HTTP

Success Rate 76%-90% 95%-99% 76%-79% 75% - 86% 71% - 85% 70% - 88% 66% - 88%

Byte Error 24 0.1 0.4 P:36 D:0.6 P:36 H:1.1 D:0.6 H:0.9 P:12 D:0.2 H:1.9

Training Steps 12800 19200 19200 20000 22000 24000 28000

Training Time 258mins 313mins 313mins 300mins 369mins 377mins 400mins

Second, each octet of an IP address was mapped to an 8-

bit binary representation producing a 32-bit binary

representation. Similarly, ports were transformed to 16-bit

binary representations, while bytes and packets were

transformed to binary representations limited to a length of

32-bits. The duration attribute remained normalized in [0, 1].

The technique was named the Binary-based Improved

WGAN (B-WGAN-GP).

In the third approach, the Embedding-based Improved

WGAN (E-WGAN-GP) involved the embedding of IP

addresses, ports, duration, bytes, and packets into an m-

dimensional continuous feature space R. Here, each flow

generated 13 training samples consisting of an input and an

output value for each. Flows were then mapped to

embeddings, which were re-transformed to the original space

after generation. IP2Vec was used to replace values by their

closest generated embeddings.

For training, Ring et al. [49] used the opensource

unidirectional flow-based network traffic dataset (CIDDS-

001) [54], G and D for all three methods (N-WGAN-GP,

B_WGAN-GP and E-WGAN-GP) were configured to use

feed-forward neural networks and trained for five Epochs.

Euclidean distance was used to avoid calculation errors,

especially where the probability of generated data is zero.

Results using N-WGAN-GP showed unwanted similarities

between categorical values with significant errors (such as

similarities in IP addresses that should be ranked as

dissimilar) making it unsuitable for generating realistic flow-

based network traffic. However, as shown in Table III [49],

both B-WGAN-GP and E-WGAN-GP successfully generated

high-quality flow-based network traffic with E-WGAN-GP

achieving better evaluation results (an average of 99.83%

over seven heuristic domain knowledge sanity checks) while

B-WGAN-GP was able to generate previously unseen values

(such as IP addresses or ports) which was not possible with

E-WGAN-GP.

4) ZipNet-GAN

Here, the model was trained with Telecom Italia’s Big Data

Challenge publicly available real-world mobile traffic dataset,

the SDG approach, and optimized using the Adam Optimizer

for faster convergence, while the loss was calculated based

on Euclidean distance. D and G progressed in training

synchronously and the learning rate was 10−4. ZipNet-GAN

outperformed existing Super Resolution methods for all

MTSR instances as shown in Fig. 9 [51] it was evaluated for

Peak Signal-to-Noise Ratio (PSNR), Normalised Root Mean

Squared Error (NRMSE) and Structural Similarity Index

(SSIM) and achieved 40% higher PSNR, smaller NRMSE (up

to 78%) and 36.4 times higher SSIM when compared with

existing SR techniques.

Fig. 9. ZipNet-GAN inference accuracy comparison with existing SR

techniques [51].

5) Facebook chat network traffic GAN

This GAN was tested by 𝐺 taking in Facebook chat flow

parameters (𝑧), which the GAN used to train for a predefined

number of epochs and then sent output to malware via Web

Services. Malware traffic remained continuously active in the

network and adapted its nature based on detection status and

data from additional GAN training. Both 𝐷 and 𝐺 had depths

of one, 128 hidden units and a sequence length of 6. Model

training was via Batch Gradient Descent and the Adam

optimizer with a learning rate of 10−3 . 𝐷 trained for three

epochs for every one epoch of 𝐺. The dataset used for training

were network captures (text, images, links, and documents)

of Facebook chat between two users over 24 hours, converted

to time series (features included network flow duration, total

number of bytes in flow, calculated inter-flow time from

timestamp of each flow) and used as the variable 𝑥.

International Journal of Machine Learning and Computing, Vol. 12, No. 6, November 2022

339

TABLE III: RESULTS FROM HEURISTIC DOMAIN KNOWLEDGE CHECKS [49]

 BASELINE N-WGAN-GP B-WGAN-GP E-WGAN-GP WEEK1

TEST 1 14.08 96.46 97.88 99.77 100.0

TEST 2 81.26 0.61 98.90 99.98 100.0

TEST 3 86.90 95.45 99.97 99.97 100.0

TEST 4 15.08 7.14 99.90 99.84 100.0

TEST 5 100.0 25.79 47.13 99.80 100.0

TEST 6 0.07 0.00 40.19 92.57 100.0

TEST 7 71.26 100.0 85.32 99.49 100.0

The first objective of the model was to determine if a GAN

could mimic the traffic profile of Facebook chat. The

Detector was used to determine at the end of each time

window if the traffic flow should be logged (fewer than three

flows in the threshold), unblocked (due to no decision) or

blocked (more than three flows in the threshold). As shown

in Fig. 10 [52], increasing the number of epochs eventually

led to no blocked flows.

Fig. 10. Facebook GAN traffic detection results [52].

6) PcapGAN

Here, the style-based 𝐺 took IP graph (a sparse matrix in

the form 𝑉 × 𝑉 × 𝑆 – style vector’s batch size) as its input

and generated a synthetic version of this as network flow data.

To generate the time image, 𝐺 performed a mapping of a

concatenation of style vector (instead of latent space) and the

intermediate vector (𝜔). The layer sequence was encoded as

sequential data using the SeqGAN model [55] which also

customized the model to create the sequential data labelled

with the style vector (for example, the input style vector).

Option data (a sequence of identical numbers) was

augmented to both sequential data (using SeqGAN) and

labelled sequential data (using any simple model). The

Decoder received the generated IP graph and time image, the

layer sequence, and the option data and used them to create a

Pcap file in three steps. Layer sequences were converted into

combinations of protocols and then, packet data was created

for each protocol using the option data. The final step was

randomly setting the start time for the first packet of each

edge, using the time interval information of the time image to

set the reception time of the other packets, then

chronologically sort the generated packets at each edge of the

IP graph before transforming it into a Pcap file.

PcapGAN augmented a cyber-attack dataset (GTISC) [56]

with a model pre-trained with a normal dataset (MACCDC

2012) [57], then converted the initial datasets (original

GTISK and MACCDC 2012) and the generated (augmented)

data into KDD format via the KDD99 extractor [58] for

applying to an Intrusion Detection Algorithm (IDA).

Converted MACCDC data, GTISC data and generated data

were labelled data A, data B and data C, respectively. The

datasets were experimented on by transforming string data

into integers, normalizing them, and then using sklearn

algorithms [59] to calculate accuracy, precision, recall and 𝑓𝑖

score values (a weighted average of the precision and recall).

The results showed consistent accuracy for similarity at 0.5

(showing that the IDA was not able to distinguish between

original data and distinguished data). A further test using a

classification model was conducted to distinguish between

the original data and the generated data and showed that the

performance of each IDA improved by 2% to 4% as shown

in Fig. 11 [53].

Fig. 11. Result of IDA on classification models RES1 (distinguishing data

A and data B) and RES2 is result by IDA model 2 (distinguishing data A

and data C). RES2 performance shows that the generated GTISK dataset is

valid [53].

IV. DISCUSSION

Despite the progress recorded in other fields, GANs are

only just entering the realm of traffic generation. As

discussed in the previous sections and shown in Table IV, it

can be said that this process has met with successes in some

instances.

ZipNet-GAN was only tailored to mobile traffic inference

and pattern analysis, and not to generating traffic flows.

Although PcapGAN successfully generated high quality

cyber data (particularly pcap files), this was only for analysis

of network flow graph and timestamps. A rate of unblocking

actions greater than 63% using the Facebook Chat Network

Traffic GAN method showed that GANs could be

successfully deployed to mimic Facebook traffic flows.

Unlike the other GAN models reviewed, only limited data

are required for training the model, and it was successfully

implemented using the stratosphere behavioural IPS in a

router to block traffic that was not similar to Facebook chat

traffic. However, the framework involved separate

deployment of web services to facilitate communication and

other types of network traffic were not tested.

The Flow-Based Network Traffic Generation GAN

training was only implemented for single flow-based network

traffic. However, the model showed sufficient potential to

indicate that further studies could achieve training to generate

International Journal of Machine Learning and Computing, Vol. 12, No. 6, November 2022

340

sequences of traffic flows. The PAC-GAN model revealed

the potential that GANs have for network traffic flow

generation and the possibility of extending research to cover

multi-serial network packets for multi-variant traffic flow

types of generation especially for large scale traffic and when

incorporating RNNs as a hybrid with GANs. Imbalanced

traffic was addressed successfully by ITCGAN to emphasize

the true potential of GANs for realistic network traffic

generation.

We would thus contend that even though network traffic

generation using GANs has achieved mixed and varying

success levels as shown in Table IV, further research,

improvements on the model architectures and training can

produce results exceeding the successes recorded to date.

TABLE IV: A COMPARATIVE ANALYSIS OF THE VARIOUS GAN MODELS REVIEWED IN THIS SURVEY SHOWING THE TYPE OF TRAFFIC GENERATED,

EXTENT AND LIMITATION OF GENERATION, AND POSSIBLE IMPROVEMENT

 ITCGAN PAC-GAN PcapGAN Facebook Chat

Network Traffic

GAN

Flow-Based

Network Traffic

Generation GAN

ZipNet-

GAN

Flow

Parameters

used during

generation

Application layer traffic

flows containing

imbalanced data with

only the first 784 bytes

including IP addresses,

Port numbers and

transport layer protocol

Traffic flows at

IP Packet byte

level including

ICMP, Pings,

DNS queries and

HTTP Get

Requests.

Source IP to

Destination IP graph,

Time Interval image,

and Layer Structure

sequence, all extracted

from pcap data.

Meta-data statistics

of network captures

converted in Time-

Series features.

Meta-data statistics

of IP addresses, Port

numbers, flow

duration, number of

bytes and packets

sent and received.

Mobile traffic

super

resolution

graph

patterns.

Extent of

generation

Individual metrics

showed average

Precision and Recall

scores of 93.84 and

91.47 respectively, and

Global metrics of 91.19

(GM) and 94.17

(MAUC-PR

Average of

87.7% for all

tasks, and up to

99% for DNS.

Generated pcap file

was analysed by

Wireshark, generated

network flow graph

data was similar to the

real data, likewise the

patterns in the Time

Interval data

Determined by rate

of blocked and

unblocked actions;

up to 63.4%

unblocked actions

and 0% blocked

actions.

Average of 99.83%

for E-WGAN-GP,

and 81.33% for B-

WGAN-GP.

78% NRMSE

and 36.4

times higher

SSIM

Limitation Small noise dimension

worsens generation

diversity while large

dimension increases

model calculation thus

affecting performance

and convergence speed.

Was not able to

successfully

generate multi-

serial Network

Packets.

Limited to generating

flow graph and for

timestamp analysis.

Only targeted at

mimicking

Facebook chat

traffic and not

tested for other

types of network

traffic.

Generation

achieved only at

flow-level meta-

data statistics and

limited to single

flow-based traffic.

Focused on

network

infrastructure

and civil

applications.

Possible

Improvement

Can be improved to

eliminate the Pre-

Training module and

𝐺 ’s conditioning

without compromising

performance level.

Can be improved

to generate multi-

serial network

packets for multi-

variant traffic

flow types.

Improve the model to

be able to

quantitatively

evaluate the generated

pcap packet data for

total accuracy

assessment

Improvement can

only be tailored

towards blocking

and unblocking

mechanism which

is not relevant to

our survey

Can be improved to

generate sequence

of traffic flows

though still at the

meta-data level.

Could be

modified to

extend

applicability.

V. CONCLUSIONS

Network traffic generation methods, such as Poisson

models, only worked well for simple network applications but

were inconsistent with complex network traffic flows.

Generation models utilizing self-similar traffic solved the

consistency issues associated with Poisson models but were

not able to reflect the true characteristics of network flows.

Methods used to generate traffic based on characteristic

analysis such as Harpoon, flow-level matrix, Multi thread

simulation and interdomain traffic simulation were only able

to generate traffic at the flow-level. This gave rise to Plab and

Swing that achieved packet-level generation but could not

define traffic characteristics according to the distributions

that they should follow nor to the number of characteristics to

be considered.

Application protocol-based traffic generation models were

successfully implemented to generate and simulate network

traffic that resembled the original network traffic. This was a

significant achievement compared to previous generation

levels, even though they could only produce traffic for

particular application protocols. Efforts to produce more

realistic synthetic traffic flows have led to the employment of

GANs.

ITCGAN, PAC-GAN, Flow-based traffic generation GAN,

Facebook Chat GAN, ZipNet GAN and PcapGAN are among

the GAN models that have been used to generate traffic flows.

ZipNet GAN, PcapGAN and Facebook Chat GAN have been

implemented for different purposes. These are, respectively,

inferring and analysing traffic patterns; generating Pcap files,

and network flow graph and timestamp analysis; mimicking

traffic flow capture. The flow-based traffic generation GAN

achieved metadata level traffic generation for single flows

only. Nevertheless, PAC-GAN successfully generated

network traffic flows at the packet byte level thereby showing

that GANs can generate traffic flows beyond the flow-based

level. Further research is recommended into the generation of

a variety of traffic flows at the packet byte level, as well as

sequences of traffic flows. ITCGAN further introduced a new

direction to show the ability of GANs to address the common

data imbalance problem in network traffic flows while

generating high quality network traffic data. Thus, when

compared with previous methods, it is evident that GANs

have exceeded existing state-of-the-art in network traffic flow

generation hence inspiring further research in this area.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

T. J. A. conducted the literature search and drafted the

International Journal of Machine Learning and Computing, Vol. 12, No. 6, November 2022

341

paper; M. S. L. added material and edited the work to produce

the final version; both authors approved the final version.

REFERENCES

[1] V. S. Frost and B. Melamed, “Traffic modeling for telecommunications

networks,” IEEE Communications Magazine, vol. 32, pp. 70-81, Mar.

1994.

[2] T. Bonald, “The Erlang model with non-poisson call arrivals,” ACM

SIGMETRICS Performance Evaluation Review, vol. 34, pp. 276−286,

Jun. 2006.

[3] F. Gebali, Analysis of Computer and Communication Networks, 1st ed.

New York, NY: Springer, 2008, Ch. 11, pp. 383-428.

[4] A. Shawky, H. Bergheim, O. Ragnarsson, A. Wranty, and J. M.

Pedersen, “Characterization and modelling of network traffic,” in Proc.

International Computer Engineering Conference (ICENCO), 2010, pp.

72-76.

[5] J. Zhang, J. Tang, X. Zhang, W. Ouyang and D. Wang, “A survey of

network traffic generation,” in Proc. Third International Conference

on Cyberspace Technology (CCT 2015), 2015, pp. 1-6.

[6] K. Park and W. Willinger, “Self-Similar network traffic: An overview,”

in Self‐Similar Network Traffic and Performance Evaluation, K. Park

and W. Willinger Eds. Chichester, U. K.: Wiley, 2000, ch. 1, pp. 1-37.

[7] W. Willinger, M. S. Taqqu, R. M. Sherman, and D. V. Wilson, “Self-

similarity through high-variability: Statistical analysis of Ethernet LAN

traffic at the source level,” IEEE/ACM Transactions on Networking,

vol. 5, pp. 71-86, Feb. 1997.

[8] S. Wang and Z. Qiu, “A novel multifractal model of MPEG-4 video

traffic,” in Proc. IEEE International Symposium on Communications

and Information Technology, 2005 (ISCIT 2005), 2005, pp. 97-100.

[9] V. Paxson, “Fast, approximate synthesis of fractional gaussian noise

for generating self-similar network traffic,” ACM SIGCOMM

Computer Communication Review, vol. 27, pp. 5 -18, Oct. 1997.

[10] J. Sommers and P. Barford, “Self-configuring network traffic

generation,” in Proc. Fourth ACM SIGCOMM Conference on Internet

Measurement, 2004, pp. 68 – 81.

[11] J. Sommers R. Bowden, B. Eriksson, P. Barford, M. Roughan and N.

Duffield, “Efficient network-wide flow record generation,” in Proc.

IEEE INFOCOM, 2011, pp. 2363 – 2371.

[12] Y. Han, “Flow-level traffic matrix generation for various data center

networks” in Proc. IEEE Network Operations and Management

Symposium (NOMS), 2014, pp. 1-6.

[13] A. Hafsaoui, N. Nikaein and L. Wang, “OpenAirInterface Traffic

Generator (OTG): A realistic traffic generation tool for emerging

application scenarios,” in Proc. IEEE International Symposium on

Modeling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS), 2012, pp. 492 – 494.

[14] K. V. Vishwanath and A. Vahdat, “Swing: Realistic and responsive

network traffic generation,” IEEE/ACM Transactions on Networking,

vol. 17, pp. 712 – 725, Jun. 2009.

[15] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay and F.

Donelson, “Tmix: A tool for generating realistic TCP application

workloads in ns-2,” ACM SIGCOMM Computer Communication

Review, vol. 36, pp. 65 – 76, Jul. 2006.

[16] Y. Cheng U. Hölzle, N. Cardwell, S. Savage and G. M. Voelker,

“Monkey See, Monkey Do: A Tool for TCP Tracing and Replaying,”

in Proc. USENIC Annual Technical Conference, 2004, pp. 87–98.

[17] TCPDUMP. [Online]. Available: https://www.tcpdump.org/

[18] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM

Computer Communication Review, vol. 40, pp. 12 – 20, Apr. 2010.

[19] P. Barford and M. Crovella, “Generating representative web workloads

for network and server performance evaluation,” in Proc. Joint

International Conference on Measurement and Modelling of Computer

Systems, 1998, pp. 151 – 160.

[20] K. Kant, V. Tewari and R. Iyer, “Geist: A generator for ecommerce &

internet server traffic,” in Proc. IEEE International Symposium on

Performance Analysis of Systems and Software, 2001, pp. 49 – 56.

[21] J. Kolbusz, S. Paszczyński, and B. M. Wilamowski, “Network traffic

model for industrial environment,” IEEE Transactions on Industrial

Informatics, vol. 2, pp. 213- 220, Nov. 2006.

[22] S. Jin and A. Bestavros, “GISMO: Generator of streaming media

objects and workloads” Performance Evaluation Review, vol. 29, pp. 2

– 10, Dec. 2001.

[23] M. K. J. Ang, E. Valla, N. S. Neggatu and A. W. Moore, “Network

traffic classification via neural networks,” University of Cambridge

Computer Laboratory Technical Report, UCAM-CL-TR-912, 2017.

[24] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin and J. Aguilar,

“Towards the deployment of machine learning solutions in network

traffic classification: A systematic survey,” IEEE Communications

Surveys and Tutorials, vol. 21, pp. 1988-2014, Apr. 2018.

[25] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.

521, pp. 436-444, May 2015.

[26] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville and Y. Bengio, “Generative adversarial

networks,” Communications of the ACM, vol. 63, pp. 139-144, Nov.

2020.

[27] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,

and A. A. Bharath, “Generative adversarial networks: An overview,”

IEEE Signal Processing Magazine, vol. 35, pp. 53-65, Jan. 2018.

[28] A. Cheng, “PAC-GAN: Packet generation of network traffic using

generative adversarial networks,” in Proc. IEEE Annual Information

Technology, Electronics and Mobile Communication Conference, 2019,

pp. 728-734.

[29] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”

arXiv Preprint, arXiv:1411.1784v1, 2014.

[30] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation

learning with deep convolutional generative adversarial networks,”

arXiv Preprint, arXiv:1511.06434v2, 2016.

[31] A. Ajit, K. Acharya, and A. Samanta, “A review of convolutional

neural networks,” in Proc. International Conference on Emerging

Trends in Information Technology and Engineering, 2020, pp. 1-5.

[32] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks

for semantic segmentation,” in Proc. IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 3431-3440.

[33] V. Nair and G. E. Hinton, “Rectified linear units improve restricted

Boltzmann machines,” in Proc. 27th International Conference on

Machine Learning, 2010, pp. 807–814.

[34] L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities

improve neural network acoustic models,” in Proc. 30th International

Conference on Machine Learning, 2013, vol. 1, pp. 3-9.

[35] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein Generative

Adversarial Networks,” in Proc. 34th International Conference on

Machine Learning, 2017, pp. 214-223.

[36] C. Frogner, C. Zhang, H. Mobahi, M. Araya-Polo, and T. A. Poggio,

“Learning with a Wasserstein loss,” in Proc. 27th Conference on

Advances in Neural Information Processing Systems, 2014, pp. 2053–

2061.

[37] M. Hong and Y. Choe, “Wasserstein generative adversarial network

based de-blurring using perceptual similarity,” Applied Sciences, vol.

9, art. 2358, Jun. 2019.

[38] Y. Rubner, C. Tomasi, and L. J. Guibas, “A metric for distributions

with applications to image databases,” in Proc. 6th IEEE International

Conference on Computer Vision, 1998, pp. 59-66.

[39] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,

“Improved Training of Wasserstein GANs,” in Proc. 30th Conference

on Advances in Neural Information Processing Systems, 2017, pp.

5767-5777.

[40] C. Fabbri. Conditional wasserstein generative adversarial networks.

Github. [Online]. Available:

https://cameronfabbri.github.io/papers/conditionalWGAN.pdf

[41] D. P. Kingma and L. J. Ba, “Adam: A method for stochastic

optimization,” presented at the International Conference on Learning

Representations (ICLR), San Diego, NM, May 7-9, 2015.

[42] J. Donahue, P. Krähenbühl and T. Darrell, “Adversarial Feature

Learning,” arXiv Preprint, arXiv:1605.09782v7, 2017.

[43] S H. Alqahtani, M. Kavakli‑Thorne, and G. Kumar, “Applications of

Generative Adversarial Networks (GANs): An Updated Review,”

Archives of Computational Methods in Engineering, vol. 28, pp. 525–
552, Mar. 2021.

[44] C. Dewi, R.-C. Chen, Y.-T. Liu, X. Jiang, and K. D. Hartomo, “Yolo

V4 for advanced traffic sign recognition with synthetic training data

generated by various GAN,” IEEE Access, vol. 9, pp. 97228-97242, Jul.

2021.

[45] C. Dewi, R.-C. Chen, Y.-T. Liu, and H. Yu, “Various generative

adversarial networks model for synthetic prohibitory sign image

generation,” Applied Sciences, vol. 11, art. 2913, Apr. 2021.

[46] C. Dewi, R.-C. Chen, Y.-T. Liu, and S.–K. Tai, “Synthetic Data

generation using DCGAN for improved traffic sign recognition,”

Neural Computing and Applications, vol. 33, pp. 1–15, Apr. 2021.

[47] M. Shahid, G. Blanc, H. Jmila, Z. Zhang, and H. Debar, “Generative

Deep Learning for Internet of Things Network Traffic Generation,” in

Proc. 25th IEEE Pacific Rim International Symposium on Dependable

Computing, 2020, pp. 70-79.

[48] Y. Guo, G. Xiong, Z. Li, J. Shi, M. Cui, and G. Gou, “Combating

imbalance in network traffic classification using GAN based

Oversampling,” in Proc. 2021 IFIP Networking Conference (IFIP

Networking), 2021, pp. 1-9.

International Journal of Machine Learning and Computing, Vol. 12, No. 6, November 2022

342

https://www.tcpdump.org/
https://cameronfabbri.github.io/papers/conditionalWGAN.pdf

[49] M. Ring, D. Schlör, D. Landes, and A. Hotho, “Flow-based network

traffic generation using generative adversarial networks,” Computers

and Security, vol. 82, pp 156 – 172, May 2019.

[50] S. L. Harris and D. M. Harris, Digital Design and Computer

Architecture, ARM® Edition, Waltham, MA: Morgan Kaufmann, 2016,

pp. 129-130.

[51] C. Zhang, X. Ouyang, and P. Patras, “ZipNet-GAN: Inferring fine-

grained mobile traffic patterns via a generative adversarial neural

network,” in Proc. 13th International Conference on Emerging

Networking Experiments and Technologies, 2017, pp. 363–375.

[52] M. Rigaki and S. Garcia, “Bringing a GAN to a Knife-Fight: Adapting

malware communication to avoid detection,” in Proc. IEEE Security

and Privacy Workshops, 2018, pp. 70 - 75.

[53] B. Dowoo, Y. Jung and C. Choi, “PcapGAN: Packet capture file

generator by style-based generative adversarial networks,” in Proc. 8th

IEEE International Conference on Machine Learning and Applications,

2019, pp. 1149 – 1154.

[54] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, A. Hotho, “Flow-based

benchmark data sets for intrusion detection,” in Proc. European Conf.

on Cyber Warfare and Security (ECCWS), 2017, pp. 361-369.

[55] L. Yu, W. Zhang, J. Wang and Y. Yu. “SeqGAN: Sequence Generative

Adversarial Nets with Policy Gradient,” in Proc. 31st AAAI Conference

on Artificial Intelligence, 2017, pp. 2852-2858.

[56] G. Severi, T. Leek and B. Dolan-Gavitt, “Malrec: Compact full-trace

malware recording for retrospective deep analysis,” Lecture Notes in

Computer Science, vol. 10885, pp. 3–23, Jun. 2018.

[57] Mid-Atlantic Collegiate Cyber Defense Competition. [Online]

Available: https://maccdc.org/

[58] Third International Knowledge Discovery and Data Mining Tools

Competition dataset. [Online]. Available:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[59] scikit-learn. [Online]. Available: https://scikit-learn.org/stable/.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Tertsegha J. Anande was born in Bauchi, Nigeria on

November 4. He obtained his undergraduate degree

in information and communications technology at

Federal University of Technology, Yola, Adamawa

State, Nigeria in 2010, and a master of science degree

in communication systems from Swansea University,

Swansea, Wales, United Kingdom in 2014.

He is currently a PhD student researching the

application of deep learning methods on network

traffic against cyber and advanced persistent threats at the University of

Warwick, Coventry, United Kingdom. He also works as a senior graduate

teaching assistant in the Computer Science Department at the University of

Warwick. He is seconded from his role as a lecturer at the Federal University

of Agriculture, Makurdi, Nigeria, and previously worked as an executive

director at Nobel Heights Global Services Limited, Abuja, Nigeria. He has

several published works in the areas of cyber security, computer simulation

and data mining.

Mr. Anande’s research interests are deep learning, generative

adversarial networks (GANs), network systems and security, intrusion

detection systems (IDS), advanced and applied computing, cyber systems

and threats, and advanced persistent threats (APTs).

Mark S. Leeson was born in Rugby, England, and

received the degrees of BSc and BEng with first class

honors in electrical and electronic engineering from

the University of Nottingham, UK, in 1986. He then

obtained a PhD in Engineering from the University

of Cambridge, UK, in 1990.

He is a reader in the School of Engineering at

the University of Warwick, UK, which he joined in

2000. From 1990-92 he worked for NatWest Bank in

London then held academic posts at the University of East London from

1992-94, at Manchester Metropolitan University from 1994-1998 and at

Brunel University from 1998-2000. His major research interests are optical

communication systems and machine learning, with over 300 published

works.

Dr Leeson has been on the supervisory team of over 40 successful

research students. He is a senior member of the IEEE, and a fellow of both

the UK Institute of Physics and the UK Higher Education Academy. He is a

previous associate editor of IEEE Communications Letters and the IEEE

Communications Magazine. He is a regular reviewer for many academic

journals and has also examined over 40 PhDs to date.

International Journal of Machine Learning and Computing, Vol. 12, No. 6, November 2022

343

https://maccdc.org/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://scikit-learn.org/stable/
https://creativecommons.org/licenses/by/4.0/

