
 

Abstract—Generating network traffic flows remains a critical 

aspect of developing cyber and network security systems. In this 

survey, we first consider the history of network traffic 

generation methods and identify the weaknesses of these. We 

then proceed to introduce more recent approaches based on 

machine learning (ML) models. In particular, we focus on 

Generative Adversarial Network (GAN) models, which have 

developed from their initial form to encompass many variants 

in today’s ML landscape. The use of GANs for generating traffic 

flows that have appeared in the literature are then presented. 

For each instance, we present the architecture, training methods, 

generated results, identified limitations and prospects for 

further research. We thus demonstrate that GANs are key to 

future developments in network traffic generation and secure 

cyber and network systems. 

Index Terms—Generative adversarial networks, network 

traffic, network traffic generation, neural networks.  

I. INTRODUCTION

In developing, analyzing, and appraising secured networks 

and cyber monitoring systems, network traffic flows play a 

crucial role. Accessing sufficient real network traffic that is 

appropriate for this purpose has remained a challenge due to 

existing and increased privacy and security concerns. 

Publicly available real traffic is largely inconsistent, 

insufficient, or incomplete thus limiting how much is 

achieved relying on it. This drives a need to generate 

synthetic traffic, especially for research and analytical 

purposes. 

The process of generating synthetic traffic involves 

extracting key characteristics of real network traffic and using 

these to generate similar network traffic flows. Although a 

very complex process, research has shown that this is possible. 

Several generation techniques have been implemented over 

time with each successive method attaining improved 

generation levels over previous approaches, albeit with 

associated limitations. This has recently culminated in the use 

of Deep Learning models, particularly Generative 

Adversarial Networks (GANs), which are the particular focus 

in this survey. 

In this study, we consider the range of existing network 

traffic generation methods, and further make the following 

key contributions: 

 We highlight various evolutionary methods developed

 We discuss the limitations encountered by the various

approaches and show how each successive method 

overcomes these limitations. 

 We show how Deep Learning techniques, particularly

GANs, have surpassed previous state-of-the-art methods, 

delivering enhanced results culminating in packet byte level 

generation. This is despite their implementation the network 

traffic generation domain and has suggests further research is 

needed on the application of GANs in this area. 

To this end, the paper is divided into sections as follows. 

Section I.A surveys earlier traffic generation methods and 

their shortfalls, Section I.B introduces GANs and highlights 

seven key models that form the basic architecture of most 

evolving models. Five GAN models trained for network 

traffic generation are presented in Section II, and further 

discussed in detail showing their architecture, training 

process and results. The survey concludes in Section III with 

discussion of several observations and conclusions 

highlighting the prospects for GANs is this area. 

A. The Evolution of Traffic Generation

Early traffic generation methods adapted the established 

Erlang telephony model [1] to attempt to reproduce traffic 

that was observed. This method used the Poisson distribution 

for packet arrivals [2], [3] and allowed configuration of a 

transfer probability matrix that could transfer protocol and 

port [4]. The method worked well if the network application 

was simple, but the performance became inconsistent with 

complex network traffic (particularly the assumptions 

concerning the packet arrival process and the Poisson 

distribution) [5], giving rise to Self-Similar models [6]. The 

ON/OFF traffic self-similar model generated traffic by 

aggregating multiple sub-streams and each sub-stream cycle 

(either ON or OFF) was seen to follow the Pareto distribution 

[7]. Multi Fractal measure, another self-similar model, 

applied a continuous spectrum to generate non-uniform 

fractal traffic [8], while the Fractal Gaussian Noise (FGN) 

model used the Fast Fourier Transform to generate 

asymptotic self-similar traffic [9]. Self-similar models 

showed good consistency in results but did not reflect the true 

characteristics, particularly for packets and network flows [5]. 

To capture traffic characteristics during generation, various 

methods were implemented for flow-level and packet-level 

generation. Harpoon [10], [11] was used to generate 

representative packet traffic based on empirical distributions 

(file size, inter-connection times, and number of active 

sessions) to match byte, packet, and flow volumes of the 

original data at the Internet Protocol (IP) flow-level, this did, 

however, exclude packet loss and flow duration. Flow-level 
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matrices combined a random number generator of a Poisson 

distribution, a Pareto distribution for flow duration, and a 

Weibull distribution for flow size, to generate traffic that 

reflected flow attributes such as occurrence rate, ratio, 

duration, and size at the flow-level and not the packet level 

[12]. Multi threads and interdomain traffic simulation were 

other methods used for generating network traffic at the flow-

level that were also not implemented at the packet-level [5] 

but several tools were proposed to generate network traffic 

that level. A packet-level traffic generator was incorporated 

in the ON/OFF model that enabled it to generate traffic 

corresponding to the user’s configuration with Inter-

Departure Time (IDT) and Packet Size (PS) distributions [13]. 

Plab captured Hypertext Transfer Protocol (HTTP) traffic 

and determined that Inter-Packet Time (IPT) followed a 

Weibull distribution and PS followed a Lognormal 

distribution [5]. Swing [14] could extract the characteristics 

of each HTTP session from real flows such as source IP and 

destination IP, PS, packet arrival distributions, request size 

and response size, although it could only achieve generation 

for Transmission Control Protocol (TCP). Generated traffic 

accuracy for packet-level models varied as the distributions 

that traffic characteristics should follow were not defined nor 

was the number of characteristics to be considered [5]. 

A wide range of traffic generation tools have been 

developed and used for generating traffic tailored to different 

application protocol traffic. The NS-2 Simulator 

(subsequently NS-3 and NS-4) provided the function Tmix 

that was used to generate TCP application workload [15]. 

Iperf was used to test the performance of network parameters 

and report bandwidth, delay jitter and packet loss [5]. TCP 

trace replay used the open-access C/C++ library libpcap [17] 

to capture packet traces, analyse extracted link delays, packet 

losses, bottleneck bandwidth, packet MTUs and HTTP event 

timings [16]. Dummynet, in [18], was implemented to 

generate traffic conditions with response times and network 

delays that mimicked real TCP traces. Surge  [19] and Geist  

[20] used ON/OFF processes [22] to generate traffic for 

testing Web Server pressure and realizing HTTP traffic 

aggregation, whereas Gismo [22] applied a similar modelling 

philosophy to streaming media access. Thus, application 

protocol-based traffic generation methods have produced 

network traffic that was close to original network traffic, but 

only for particular (specified) application protocols and in a 

more general sense [5]. 

Learning tools have been developed and used on network 

traffic but largely for the statistical classification of network 

traffic flows relying on meta-data payloads. This is unlike 

protocol-based classification that uses derived heuristics or 

knowledge of information about IP, port numbers and 

signature protocols [23], [24]. Bayesian methods (particularly 

neural networks), modified Association algorithms, Support 

Vector Machines, Venn Probability Machines, k-Nearest 

Neighbour and k-means clustering algorithms are among 

several methods implemented for generating class probability 

distributions [23], [24]. While most of these methods are 

vulnerable to overfitting with low spatial, temporal stability 

and poor data collection even though achieving high 

classification accuracy [23], neural networks (especially 

multi-layered or deep neural networks) have shown great 

promise when implemented for generation and classification 

tasks [25]. 

GANs, a category of deep generative neural networks, 

have shown great potential in their ability to learn intricate 

data distributions (up to packet-level) and reproduce the same 

(with subtle variants) within an application domain.  This 

provides the motivation to study and review existing methods 

implemented for network traffic generation while identifying 

areas for further research. 

 

II. GANS 

The basis of GAN operation is the use of signal 

backpropagation to train two models, the Generator and the 

Discriminator, simultaneously pitting them against each other 

such that both models competitively strive to outdo the other 

in proving that the generated data is real or fake [26]. They 

have continued to gain increased attention due to their 

versatility and dynamic applicability. Several improvements 

have been made to the initial model of Goodfellow et al. 

(Vanilla GAN) [26], shown generically in Fig. 1 [28]. These 

include adding class conditions to enhance data generation 

representations, the incorporation of convolutional layers to 

enhance better data generation and regeneration, inference 

network extensions, and adversarial training for enhanced 

robustness and model training convergence speed [27]. With 

increasing and evolving applications, GANs have shown 

highly significant untapped potential in network traffic 

generation [28], [29] as well as a scalable hybrid architecture 

which is able to incorporate other model components (both 

supervised and unsupervised) while providing a network 

training platform. 

 

 
Fig. 1. GAN objective functions and training procedure [[28]]. 

 

A. The Vanilla GAN [26] 

The Vanilla GAN incorporates two models in a 

corresponding minimax two-player game framework where 

the Generator (𝐺) models a transform function that strives to 

fool the Discriminator (𝐷 ) into mistaking generated data 

samples for real samples while 𝐷  models a discriminative 

function that estimates the probability that the sample data is 

from generated data or from the true data distribution. The 

input to 𝐺 is a low dimensional noise vector (𝑃𝑧(𝑧)), which it 

transforms into a data vector (𝐺(𝑧;  𝜃𝑔)) that is presented to 

𝐷 as a potential data sample. The input to 𝐷 comprises 𝐺(𝑧)  

and samples of real data (𝑃𝑑𝑎𝑡𝑎(𝑥)), and it produces an output 

that is a single scalar (𝐷(𝑥;  𝜃𝑑)) with a score that shows the 

likelihood of 𝐺(𝑧) being from the original data distribution. 

The minimax objective function is: 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥 ~ 𝑃𝑑𝑎𝑡𝑎(𝑥)
[log 𝐷(𝑥)]

+ 𝐸𝑧~ 𝑃𝑧(𝑧) [log(1 − 𝐷 (𝐺(𝑧)))]

𝐺  targets the minimization of log 𝐷(𝑥) + log (1 −

𝐷(𝐺(𝑧))), aiming to make both  𝐺(𝑧) and 𝑃𝑑𝑎𝑡𝑎(𝑥) equal to 

0.5 to confuse 𝐷 . At the same time, 𝐷  strives to correctly 

classify the fake versus the real data samples by maximizing  
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log 𝐷(𝑥) + log (1 − 𝐷(𝐺(𝑧))) and forcing 𝐷(𝑥) to equal 1.  

Goodfellow et al. [26] optimized the model training using 

Stochastic Gradient Descent (SDG) and the minimax loss 

function in equation (1). 

B. Conditional GAN (CGAN) [29] 

The Vanilla GAN model was extended by Mirza and 

Osindero [29] by the inclusion of extra (auxiliary) 

information to condition the model. This extra information, 𝑦, 

which is data from class labels or other modalities is 

combined as additional input layer and fed as input for 𝐺 and 

𝐷. CGAN, modified from (1), is represented in the two-player 

minimax objective function by: 
 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥 ~ 𝑃𝑑𝑎𝑡𝑎(𝑥)
[log 𝐷(𝑥|𝑦)]

+ 𝐸𝑧~ 𝑃𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧|𝑦)))]
 

here, 𝑃𝑧(𝑧)  and 𝑦  are combined in a joint hidden 

representation as inputs for 𝐺  whilst  𝑃𝑑𝑎𝑡𝑎(𝑥)  and  𝑦  are 

presented as explicit inputs for 𝐷 . CGAN also optimizes 

model training using the SDG method. 

C. Deep Convolutional GAN (DCGAN) [30] 

To enhance stable GAN training, Radford et al. [30] 

incorporated Convolutional Neural Network (CNN) 

components into the GAN architecture by introducing 

constraints on its topology. To perform its convolutions, a 

CNN shifts a number of pixels, say 𝑛, over the input matrix 

and 𝑛 is known as the stride [31].  

DCGAN introduced fractional-strided convolutions, where 

a coarser output is connected to denser pixels by interpolation 

(that can be described as a fractional input stride, producing 

the name used) [32]. These allowed 𝐺 to learn its own spatial 

upsampling, and strided convolutions for 𝐷  to learn 

downsampling. G also uses batch normalization and rectified 

linear unit (ReLU) activation [33] (at all layers except a 

hyperbolic tangent function for output) while 𝐷 applies batch 

normalization and LeakyReLU [34] (for all layers). Fully 

connected hidden layers are also removed from deeper 

architectures, and models are trained with mini-batch SDG. 

D. Wasserstein GAN (WGAN) [35] 

The Wasserstein GAN, proposed in by Arjovsky et al.  [35], 

made fundamental architectural changes to the Vanilla GAN 

which included replacing the Discriminator with a Critic (𝐶) 

that does not have to output the Sigmoid function and 

replaced the Minimax (BCE) loss function with the 

Wasserstein loss (W-Loss) [36] that approximates the 

distance between 𝑃𝑑𝑎𝑡𝑎(𝑥) and G(z), and the amount moved. 

The objective function, which is modified from the standard 

GAN in (1), is thus represented by [37] 

min
𝐺

max
𝐶

{ E
𝑥 ~ 𝑃𝑟

[𝐶(𝑥)] −

E
𝑥 ~ 𝑃𝑔

[𝐶(𝐺(�̂�))], E
𝑥 ~ 𝑃

�̂̂�

[(‖∇𝑥𝐶(�̂�)‖2 − 1)2]}     (3) 

where 𝑃𝑟  is the real distribution, 𝑃𝑔  is the generated 

distribution, and 𝑃𝑥  are uniformly sampled data points (�̂�) 

between 𝑃𝑟 and 𝑃𝑔. The 1 – Lipschitz continuous condition is 

included for training to ensure that the W-Loss correctly 

estimates the Earth Mover’s Distance (EMD) [38], which 

measures the distance between two probability distributions 

over a given region. 

1) Wasserstein GAN with Gradient Penalty (WGAN-GP) 

[39] 

Gulrajani et al. [39] proposed an alternative method of 

enforcing the Lipschitz constraint on 𝐶, which was based on 

weight clipping for the WGAN model that resulted in 

convergence failure or undesired behaviour. This approach, 

modified from the default WGAN model (3), is represented 

thus: 

 

min
𝐺

max
𝐶

{𝐸[𝐶(𝑥)] − 𝐸[𝐶(𝐺(𝑧))] + 𝜆𝐸[(‖∇𝐶(�̂�)‖2 − 1)2]}

 (4) 

 

WGAN with Gradient Penalty (WGAN-GP) performs 

random interpolation between real and fake samples during 

training while penalizing the C’s gradient norm with respect 

to its input. This is represented with a penalty coefficient 

parameter , that scales the gradient penalty. 

2) Conditional Wasserstein GAN (CWGAN) [40] 

In [40], Fabbri proposed the Conditional WGAN (CWGAN) 

with improvements to the WGAN and WGAN-GP models 

incorporating the DCGAN architecture. The model included 

additional data as input for both 𝐺 and 𝐷 or 𝐶 while training 

applied the W-Loss function and the established Adam 

optimizer [41]. 

E. Bidirectional GAN (BiGAN) [42] 

Donahue et al. [42] incorporated an Encoder (𝐴) into the 

Vanilla GAN model that enabled it to learn the inverse of 𝐺. 

The proposed model, Bidirectional GAN (BiGAN), learns 

data mapping inversely for auxiliary supervised 

discrimination tasks. The objective function, based on (1), is 

given by: 
 

min
𝐺,𝐴

max
𝐷

𝑉(𝐷, 𝐴, 𝐺)

= 𝐸𝑧~𝑝(𝑥) [𝐸𝑧~𝑝(𝐴(∙|𝑥))[log 𝐷(𝑥, 𝑧)]]

+ 𝐸𝑧~𝑝(𝑧) [𝐸𝑧~𝑝(𝐺(∙|𝑧))[log(1 − 𝐷(𝑥, 𝑧))]] 

                      (5) 

𝐴  is included with 𝐺  for data mapping to latent 

representations, while 𝐷  jointly discriminates in data and 

latent space where the latent component is either the Encoder 

output (𝐴(𝑥)) or the Generator input (𝐺(𝑧)). 𝐴 is a non-linear 

parametric function, as are 𝐺  and 𝐷 , so is trained using 

gradient descent; 𝐷, 𝐺 and 𝐴 are updated simultaneously at 

each iteration in alternating Stochastic Gradient steps. 

 

III. GANS FOR NETWORK TRAFFIC GENERATION 

GANs have been extensively applied for data classification 

and regression, image generation and synthesis, image-to-

image translation, text-to-image generation, and enhanced 

image resolution generation [43]. Dewi et al. implemented 

various GAN architectures for the generation of improved 

and advanced traffic sign recognition [44], and synthetic 

prohibitory sign images [45], [46]. When evaluated with real 

data, results showed high resemblance and recognition 

accuracy. 

These and several other recent works show that GANs 

have significant untapped potential in their ability to generate 
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high quality network traffic flows, making them highly 

relevant for network traffic analysis and synthesis [47]. This 

section discusses models that have been trained to generate 

network traffic flows, and to what extent generation has been 

achieved. 

A. Model Architectures 

Although the use of GANs to generate and analyze network 

traffic is a relatively new application, there have been several 

architectures designed and applied with some success. We 

now summarize these, concentrating mainly on their structure. 

1) Imbalanced Traffic Classification (ITCGAN) [48] 

This recent development in GANs addresses the problem 

that typical Internet traffic has very different proportions of 

traffic from different applications, leading machine learning 

training to be dominated by the most commonly seen type.  

ITCGAN, inspired by the triple-GAN [48] framework, is 

structured to include three modules as shown in Fig. 2. These 

are the Traffic Vectorization module that sorts and isolates a 

vectorized representation of imbalanced traffic features 

(training set), the Pre-training module that uses Net (a 

superior network) to train on the vectorized set and stores the 

pre-trained architecture parameters which are subsequently 

used as initial states for the Formal Training module. The last 

of these comprises the GAN framework that includes 𝐺, 𝐷 

and a Classifier (𝐶𝑙). 

 

 
Fig. 2. The ITCGAN Framework, illustrating its constituent parts (the 

Traffic Vectorization module, the Pre-Training module and the Formal 

Training module) [48]. 

 

𝐺  is designed with Weight Generation Units (𝑤𝐺𝑈) , 

which each correspond to a minority class and learn a latent 

space’s conditional mapping 𝑔𝑖  to vector 𝑤𝑖 =  𝑔𝑖(𝑧/𝑖)  of 

weights 𝑁𝑖 [48]. Unlike [26] that trains so as to map a uniform 

random distribution that is similar to 𝑃𝑑𝑎𝑡𝑎(𝑥) to target data, 

𝐺 is trained to learn and synthesize minority samples that fit 

the original distribution even though this differs from 

𝑃𝑑𝑎𝑡𝑎(𝑥). This is optimized and represented thus: 

 

min 
𝐺

𝑉(𝐺) = (𝑉𝑖1 − 𝑉𝑖2 − 𝑉𝑖3)                         (6) 

where, 

𝑉𝑖1 =  
𝑁𝑛− 𝑁𝑖

𝑁
𝐸𝐺(𝑧|𝑖)~𝑝𝑖

𝑔[log(1 − 𝐷(𝐺(𝑧|𝑖)))],    (7) 

𝑉𝑖2 =  
𝑁𝑛− 𝑁𝑖

𝑁
𝐸𝐺(𝑧|𝑖)~𝑝𝑖

𝑔[log 𝐶𝑙𝑖(𝐺(𝑧|𝑖))],    (8) 

𝑉𝑖3 = ∑
𝑁𝑛− 𝑁𝑗

𝑁𝑗∈𝐿{𝑖}  𝐸𝐺(𝑧|𝑗)~𝑝𝑗
𝑔[log(1 − 𝐶𝑙𝑖(𝐺(𝑧|𝑗)))],   (9) 

𝑝𝑖
𝑑  and 𝑝𝑖

𝑔
 respectively indicate the real and synthetic 

conditional probability distributions of class 𝑖, and 𝑁𝑛 − 𝑁𝑖 

is the class size. ITCGAN attempts to minimize (7) to fool 𝐷, 

and maximize (8) and (9) to enable 𝐶𝑙 predict the synthetic 

samples as real labels [48]. 

𝐷  is designed similarly to the Vanilla GAN [26] and 

expressed thus: 

max 
𝐷

𝑉(𝐷) = ∑ (𝑉𝑖1 + 𝑉𝑖4)𝑖∈𝐿      (10) 

where,     𝑉𝑖4 =  
𝑁𝑖

𝑁
𝐸

𝑥~𝑝𝑖
𝑑[log 𝐷(𝑥)],     (11) 

 𝐶𝑙  is obtained from the Pre-training module and is 

represented thus: 

max 
𝐶𝑙

𝑉(𝐶𝑙) = ∑ (𝑉𝑖1 + 𝑉𝑖2 + 𝑉𝑖5 + 𝑉𝑖6)𝑖∈𝐿      (12) 

where,     𝑉𝑖5 =  
𝑁𝑖

𝑁
𝐸

𝑥~𝑝𝑖
𝑑[log 𝐶𝑙𝑖(𝑥)],     (13) 

𝑉𝑖6 = ∑
𝑁𝑗

𝑁𝑗∈𝐿{𝑖} 𝐸
𝑥~𝑝𝑖

𝑑[log(1 − 𝐶𝑙𝑖(𝑥))]   (14) 

The GAN architecture incorporates facilitation of correct 

classification of the imbalanced set while serving as a 

constraint to guide 𝐺 during training, and also providing an 

indication of successful generation thereby eliminating the 

need to focus on training convergence [48]. 

2) Packet generation of network traffic GAN (PAC-

GAN) [28] 

An improvement to the CGAN framework and a hybrid of 

CNN with the GAN architecture [28], PAC-GAN implements 

an inverse CNN architecture for 𝐺 , while 𝐷  uses the 

conventional CNN architecture usually employed for 

supervised classification. Network traffic packets are 

encoded by 𝐺 after first converting individual packet byte 

values for representation by subranges of sequential values 

and then duplicating the converted values for one-to-multi 

mapping (see Fig. 3 [28]). 
 

 
Fig. 3: PAC-GAN framework for network traffic generation and 

testing/deployment [[28]]. 

 

The conversion process is:  

𝑌 = 𝑓𝑐(𝑋)                                            (15) 

where 𝑌 = (𝑦n, … , 𝑦1, 𝑦0)  is the tuple containing the 

converted string of byte value digits and 𝑋 =
(𝑥n, … , 𝑥1, 𝑥0) is the length 𝑛  string of packet byte value 

digits. The reverse operation 𝑓𝑐
−1(𝑋)  is performed on 𝐺 ’s 

output to extract the actual packet byte values. 𝐺 is further 

decoupled and deployed for generation of traffic to be 

transmitted through the Internet. Fig. 4 shows the PAC-GAN 

architecture  [28]. 
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Fig. 4. PAC-GAN Conversion and Map encoding process  [28]. 

 

3) Flow-Based network traffic generation GAN [49] 

Ring et al. [49] proposed three approaches to generate and 

transform flow-based traffic into continuous attributes, pre-

processed and regenerated into new flow-based network data 

using WGAN-GP with a Two Time-Scale Update Rule 

(TTUR). These accepted network attributes as numerical 

values, created binary attributes from categorical attributes, 

and used a new similarity measure (IP2Vec) to learn vector 

representations from categorical attributes as shown in Fig. 5 

[49]. Flow-based network traffic features comprising IP 

addresses, Destination Ports and Transport Protocols were 

extracted and served as input vocabulary with each value 

representing a one-hot vector, i.e., a group of bits containing 

only one logical one with all other bits set to logic zero [50]. 

Input and output layer neurons were each assigned specific 

values of the vocabulary and these layers (having the same 

number of neurons) were equal to the vocabulary size. The 

hidden layer neurons were fewer in number than the input 

layer neurons. The output layer used a Softmax Classifier that 

normalized the sum of all output neurons ensuring that it was 

1, thus predicting the probability for each value of the 

vocabulary shown in the same flow as the input value. 

 

 
Fig. 5. IP2Vec neural network architecture [49]. 

 

4) Zipper network (ZipNet-GAN) [51] 

ZipNet-GAN, proposed in [51], combined a new deep 

network, the Zipper Network, and GAN architectures tailored 

towards Mobile Traffic Super-Resolution (MTSR) to infer 

narrowly localized fine-grained mobile traffic patterns 

collected from aggregate coarse data measurements by a 

limited number of network probes with arbitrary granularity. 

𝐺 is constructed using a deep ZipNet architecture (see Fig. 6 

[51]) and comprises 3D Upscaling Blocks for extracting 

spatial and temporal features specific to the mobile traffic, 

Zipper Convolutional Blocks as the core and Convolutional 

Blocks that predict the decision after summarizing distilled 

features received from the core. The 3D upscaling blocks are 

input and consist of a 3D deconvolutional layer, three 3D 

convolutional layers, a batch normalization layer and a Leaky 

ReLU activation layer. The core, which has 24 convolutional 

layers, a batch normalization layer and a Leaky ReLU 

activation layer, takes output from the 3D upscaling blocks. 

The convolutional blocks consist of three convolutional 

layers, a batch normalization layer and a Leaky ReLU layer 

with no skip connections. 𝐷, which is based on a VGG-net 

neural network, consists of 6 Convolutional Blocks with the 

final layer employing a Sigmoid activation function that 

constrains the output to a probability range. The 

Convolutional Blocks include a convolutional layer, a batch 

normalization layer and a Leaky ReLU activation layer. 

 

 
Fig. 6. Architecture of G and D in ZipNet-GAN [48] showing the D 

upscaling blocks and Convolutional blocks for G′s  architecture, and D 

based on the VGG-net framework [51]. 

 

 
Fig. 7. Framework for facebook chat network traffic GAN model [52]. 

 

5) Facebook chat network traffic GAN [52] 

Rigaki and Garcia [52] proposed a GAN to imitate 

Facebook chat network traffic and modify the network 

behavior of real malware by mimicking the traffic of 

legitimate users while evading detection. 𝐷  and 𝐺  for this 

model were unidirectional and Recurrent Neural Networks 

(RNNs) modelled using the Long Short-Term Memory 

(LSTM) architecture. These used a Web Service (HTTP) to 

communicate with malware by exposing two API calls. These 

were get_params (that loads the saved 𝐺  model, produces 

new traffic parameters, and sends the same as a JavaScript 

Object Notation object to malware) and feedback (that loads 

the saved 𝐺  and 𝐷  models, adds the parameters of the 

previous time window to the current dataset based on 

feedback received and proceeds to another training round). 

The C2 channel is kept active and operational while HTTP 

facilitates communication over the channel to the 𝐶2 Server, 

and the Intrusion Prevention System (IPS) serves to secure 

the channel from non-Facebook chat traffic. The model 

framework is illustrated in Fig. 7 [52]. 

6) Packet capture file generator style-based GAN 

(PcapGAN) [53] 

Proposed to generate and augment Pcap data (Packet 

Capture data for analysis), PcapGAN comprises an Encoder 
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(𝐸) with four network data parts, 𝐺 that generates new data 

for each part of 𝐸, and a Decoder that replaces 𝐷. Information 

from Pcap data is extracted by  𝐸 and converted into features 

such as a graph (IP source → IP destination), an image (time 

interval), and a layer sequence structured from network data. 

Style (a vector value) is used to represent relationships 

between hosts (Server – Client and command and control 

Server – Botnet). Each data sample generated by 𝐸 is labelled 

by the edge style (that is, the style value of the relationship 

between hosts) and used in designing 𝐺, which operates in a 

hybrid structured manner to generate new data which are 

combined with the reconstructed valid Pcap file by the 

Decoder. Figure 8 shows the PcapGAN architecture [53]. 

PcapGAN uses a version of (1) modified by the addition of 

parameters to represent its objective function to produce:  

 

min
𝜃𝐺

max
𝜃𝐷

𝑉(𝐺, 𝐷) =

∑ {𝐸𝑣~𝑃𝑡𝑟𝑢𝑒(∙|𝑣𝑐)[log 𝐷(𝑣, 𝑣𝑐; 𝜃𝐷)] +𝑉
𝑐=1

𝐸𝑣~𝐺(∙|𝑣𝑐; 𝜃𝐺)
[log{1𝐷(𝑣, 𝑣𝑐; 𝜃𝐷)}]}                                        (16) 

𝑃𝑡𝑟𝑢𝑒(𝑣|𝑣𝑐) is the probability of connecting a given node 

(𝑣𝑐)  to another, where 𝑐  = {1, … , 𝑉} . 𝐺(𝑣, 𝑣𝑐; 𝜃𝐺)  and 

𝐷(𝑣, 𝑣𝑐; 𝜃𝐷)  represent the value function 𝑉(𝐺, 𝐷)  in the 

Vanilla GAN framework as originally given in (1) [53]. 

 

 
Fig. 8. PcapGAN Framework that implements a hybrid style-based 

Generator, replaces the Discriminator with a Decoder and incorporates a 

four-network-data-part Encoder [53]. 

 

B. Traffic Generation Results to Date 

We now summarize the traffic generation results that have 

been obtained using various GAN implementations in the 

literature. In each case, we also summarize the structures and 

parameters that have been employed in the instances cited. 

1) ITCGAN 

Unlike previous GAN models, ITCGAN focused on 

solving the network traffic data imbalance problem. The Pre-

training module trained for 300 epochs and used idea of focal 

loss, which is a method to place increased weight on rare 

samples. The Formal training module set the batch sizes for 

all models (𝐺, 𝐷 and 𝐶𝑙) to 512 and used 40000 training steps, 

where the ITCGAN parameters were updated twice within a 

batch for every training step. 𝐺  and 𝐷 had fully connected 

layers and a learning rate of 10−3 with a decay of 10−4 while 

𝐶𝑙 employed a learning rate of 3 × 10−4 and decay of 10−6. 

ITCGAN used a ReLU activation function for hidden layers 

in both the Pre-training and Formal training modules, with 

optimization using the Adam optimizer [48]. 

To evaluate the results, baseline performance was 

established by training a classifier without addressing 

imbalance. Then, a range of metrics were considered to 

compare ITCGAN with established techniques, namely 

Random Over Sampling (ROS), Adaptive Synthetic 

Algorithm (ADASYNC), Synthetic Minority Oversampling 

Technique (SMOTE), SMOTE + Support Vector Machine 

(SMOTE-SVM), SMOTE + Tomek Links (SMOTE-TL) and 

a CGAN; the reader is referred to [48] and the references 

therein for full details of these methods.  Here we summarize 

the global metric results for G-mean (GM) and Mean Area 

Under Precision-Recall Curve (MAUC-PR) that show the 

ICTGAN’s performance.  

ITCGAN outperformed the other methods on GM and 

MAUC-PR (Table I[48]). The authors also explored the 

effects of the Pre-Training module, the constraint provided by 

𝐶𝑙 to 𝐺 and changing the fully connected 𝐺 and 𝐷 layers to 

convolutional layers. They found that the Pre-Training 

module enabled faster convergence, the 𝐶𝑙  constraint was 

essential and convolutional layers increased training duration 

and difficulty. 

2) PAC-GAN 

This was the first model to successfully generate and 

manipulate network traffic data (that is, ICMP Pings, DNS 

queries and HTTP Get Requests) at individual IP packet byte 

level, which was also deployed to the Internet thereby 

eliciting responses. Previous GAN traffic generating models 

only produced traffic at metadata/flow-level. In the network, 

𝐺  consisted of six layers; two fully connected layers, a 

reshape layer, two deconvolution layers and an output 

convolutional layer. 𝐷  had two 2D convolutional layers, a 

fully connected layer, and an output linear layer for 

classification. Both 𝐷  and 𝐺  used 𝐿2  regularization (with a 

weight decay value of 2.5 × 10-5), a ReLU activation function, 

Adam Optimization (with a learning rate of 10−4 and beta1 

exponential decay of 0.5), and the W-Loss function (with a 

gradient penalty of 1.0).  

The success rate in generating individual traffic types is 

shown in Table II [[28]]. Although this was as high as 99% 

for some traffic types and 87.7% averaged over all tasks, the 

model could not achieve the same success rate for generating 

multi serial network packets from greater variety of network 

traffic types. 

3) Flow-Based network traffic generation GAN 

Five training samples were generated by IP2Vec (an input 

and an expected output value for each sample) from each of 

Source IP Address, Destination IP Address, Destination Port 

and Transport Protocol flows. The neural network was 

trained with captured flow-based network traffic, taking the 

value generated by IP2Vec as its input and producing the 

probability for each input vocabulary value, using 

backpropagation for learning. To reduce the backpropagation 

training time, IP2Vec used Negative Sampling to modify a 

small percentage of the weights. After training, IP2Vec 

ceased using the neural network and switched to employing 

the weights of the hidden layers as m-dimensional vector 

representations of the IP Addresses. The network attributes 

were dealt with in three ways to investigate which method 

produced the most realistic values. 

First, network attributes were interpreted as numbers (even 

though they were in fact categorical). Each octet of IP 

addresses was transformed to continuous attributes within the 

interval [0, 1]. Ports were divided by the highest port number 
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and transformed to continuous attributes while other 

attributes (duration, bytes, and packets) were normalized to 

the interval [0, 1]. This approach was termed the Numeric-

based Improved WGAN (N-WGAN-GP).   

 
TABLE I: ITCGAN OUTPERFORMS ALL METHODS IN THE GLOBAL METRICS EVALUATION WITH REMARKABLE GM AND MAUC-PR IMPROVEMENTS [48].

 Baseline ROS ADASYNC SMOTE SMOTE-SVM SMOTE-TL CGAN ITCGAN 

Global 

Metric 

GM 86.89 90.06 90.82 89.75 90.08 86.24 86.84 91.19 

MAUC 91.90 91.00 91.31 93.17 93.08 91.80 91.52 94.17 

TABLE II: RESULTS FROM PAC-GAN NETWORK TRAFFIC GENERATION [[28]] 

 Ping DNS HTTP Ping/DNS Ping/HTTP DNS/HTTP Ping/DNS/HTTP 

Success Rate 76%-90% 95%-99% 76%-79% 75% - 86% 71% - 85% 70% - 88% 66% - 88% 

Byte Error 24 0.1 0.4 P:36 D:0.6 P:36 H:1.1 D:0.6 H:0.9 P:12 D:0.2 H:1.9 

Training Steps 12800 19200 19200 20000 22000 24000 28000 

Training Time 258mins 313mins 313mins 300mins 369mins 377mins 400mins 

Second, each octet of an IP address was mapped to an 8-

bit binary representation producing a 32-bit binary 

representation. Similarly, ports were transformed to 16-bit 

binary representations, while bytes and packets were 

transformed to binary representations limited to a length of 

32-bits. The duration attribute remained normalized in [0, 1]. 

The technique was named the Binary-based Improved 

WGAN (B-WGAN-GP). 

In the third approach, the Embedding-based Improved 

WGAN (E-WGAN-GP) involved the embedding of IP 

addresses, ports, duration, bytes, and packets into an m-

dimensional continuous feature space R. Here, each flow 

generated 13 training samples consisting of an input and an 

output value for each. Flows were then mapped to 

embeddings, which were re-transformed to the original space 

after generation. IP2Vec was used to replace values by their 

closest generated embeddings. 

For training, Ring et al. [49] used the opensource 

unidirectional flow-based network traffic dataset (CIDDS-

001) [54], G and D for all three methods (N-WGAN-GP, 

B_WGAN-GP and E-WGAN-GP) were configured to use 

feed-forward neural networks and trained for five Epochs. 

Euclidean distance was used to avoid calculation errors, 

especially where the probability of generated data is zero.  

Results using N-WGAN-GP showed unwanted similarities 

between categorical values with significant errors (such as 

similarities in IP addresses that should be ranked as 

dissimilar) making it unsuitable for generating realistic flow-

based network traffic. However, as shown in Table III [49], 

both B-WGAN-GP and E-WGAN-GP successfully generated 

high-quality flow-based network traffic with E-WGAN-GP 

achieving better evaluation results (an average of 99.83% 

over seven heuristic domain knowledge sanity checks) while 

B-WGAN-GP was able to generate previously unseen values 

(such as IP addresses or ports) which was not possible with 

E-WGAN-GP. 

4) ZipNet-GAN 

Here, the model was trained with Telecom Italia’s Big Data 

Challenge publicly available real-world mobile traffic dataset, 

the SDG approach, and optimized using the Adam Optimizer 

for faster convergence, while the loss was calculated based 

on Euclidean distance. D and G progressed in training 

synchronously and the learning rate was 10−4. ZipNet-GAN 

outperformed existing Super Resolution methods for all 

MTSR instances as shown in Fig. 9 [51] it was evaluated for 

Peak Signal-to-Noise Ratio (PSNR), Normalised Root Mean 

Squared Error (NRMSE) and Structural Similarity Index 

(SSIM) and achieved 40% higher PSNR, smaller NRMSE (up 

to 78%) and 36.4 times higher SSIM when compared with 

existing SR techniques. 

 

 
Fig. 9. ZipNet-GAN inference accuracy comparison with existing SR 

techniques [51]. 

 

5) Facebook chat network traffic GAN 

This GAN was tested by 𝐺 taking in Facebook chat flow 

parameters (𝑧), which the GAN used to train for a predefined 

number of epochs and then sent output to malware via Web 

Services. Malware traffic remained continuously active in the 

network and adapted its nature based on detection status and 

data from additional GAN training. Both 𝐷 and 𝐺  had depths 

of one, 128 hidden units and a sequence length of 6. Model 

training was via Batch Gradient Descent and the Adam 

optimizer with a learning rate of 10−3 . 𝐷 trained for three 

epochs for every one epoch of 𝐺. The dataset used for training  

were network captures (text, images, links, and documents) 

of Facebook chat between two users over 24 hours, converted 

to time series (features included network flow duration, total 

number of bytes in flow, calculated inter-flow time from 

timestamp of each flow) and used as the variable 𝑥.
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TABLE III: RESULTS FROM HEURISTIC DOMAIN KNOWLEDGE CHECKS [49]  

 BASELINE N-WGAN-GP B-WGAN-GP E-WGAN-GP WEEK1 

TEST 1 14.08 96.46 97.88 99.77 100.0 

TEST 2 81.26 0.61 98.90 99.98 100.0 

TEST 3 86.90 95.45 99.97 99.97 100.0 

TEST 4 15.08 7.14 99.90 99.84 100.0 

TEST 5 100.0 25.79 47.13 99.80 100.0 

TEST 6 0.07 0.00 40.19 92.57 100.0 

TEST 7 71.26 100.0 85.32 99.49 100.0 

The first objective of the model was to determine if a GAN 

could mimic the traffic profile of Facebook chat. The 

Detector was used to determine at the end of each time 

window if the traffic flow should be logged (fewer than three 

flows in the threshold), unblocked (due to no decision) or 

blocked (more than three flows in the threshold). As shown 

in Fig. 10 [52], increasing the number of epochs eventually 

led to no blocked flows. 

 

 
Fig. 10. Facebook GAN traffic detection results [52]. 

 

6) PcapGAN 

Here, the style-based 𝐺 took IP graph (a sparse matrix in 

the form 𝑉 × 𝑉 × 𝑆 – style vector’s batch size) as its input 

and generated a synthetic version of this as network flow data. 

To generate the time image, 𝐺  performed a mapping of a 

concatenation of style vector (instead of latent space) and the 

intermediate vector (𝜔). The layer sequence was encoded as 

sequential data using the SeqGAN model [55] which also 

customized the model to create the sequential data labelled 

with the style vector (for example, the input style vector). 

Option data (a sequence of identical numbers) was 

augmented to both sequential data (using SeqGAN) and 

labelled sequential data (using any simple model). The 

Decoder received the generated IP graph and time image, the 

layer sequence, and the option data and used them to create a 

Pcap file in three steps. Layer sequences were converted into 

combinations of protocols and then, packet data was created 

for each protocol using the option data. The final step was 

randomly setting the start time for the first packet of each 

edge, using the time interval information of the time image to 

set the reception time of the other packets, then 

chronologically sort the generated packets at each edge of the 

IP graph before transforming it into a Pcap file. 

PcapGAN augmented a cyber-attack dataset (GTISC) [56] 

with a model pre-trained with a normal dataset (MACCDC 

2012) [57], then converted the initial datasets (original 

GTISK and MACCDC 2012) and the generated (augmented) 

data into KDD format via the KDD99 extractor [58] for 

applying to an Intrusion Detection Algorithm (IDA). 

Converted MACCDC data, GTISC data and generated data 

were labelled data A, data B and data C, respectively. The 

datasets were experimented on by transforming string data 

into integers, normalizing them, and then using sklearn 

algorithms [59] to calculate accuracy, precision, recall and 𝑓𝑖 

score values (a weighted average of the precision and recall). 

The results showed consistent accuracy for similarity at 0.5 

(showing that the IDA was not able to distinguish between 

original data and distinguished data). A further test using a 

classification model was conducted to distinguish between 

the original data and the generated data and showed that the 

performance of each IDA improved by 2% to 4% as shown 

in Fig. 11 [53]. 

 

 
Fig. 11. Result of IDA on classification models RES1 (distinguishing data 

A and data B) and RES2 is result by IDA model 2 (distinguishing data A 

and data C). RES2 performance shows that the generated GTISK dataset is 

valid [53]. 

 

IV. DISCUSSION 

Despite the progress recorded in other fields, GANs are 

only just entering the realm of traffic generation. As 

discussed in the previous sections and shown in Table IV, it 

can be said that this process has met with successes in some 

instances. 

ZipNet-GAN was only tailored to mobile traffic inference 

and pattern analysis, and not to generating traffic flows. 

Although PcapGAN successfully generated high quality 

cyber data (particularly pcap files), this was only for analysis 

of network flow graph and timestamps. A rate of unblocking 

actions greater than 63% using the Facebook Chat Network 

Traffic GAN method showed that GANs could be 

successfully deployed to mimic Facebook traffic flows. 

Unlike the other GAN models reviewed, only limited data 

are required for training the model, and it was successfully 

implemented using the stratosphere behavioural IPS in a 

router to block traffic that was not similar to Facebook chat 

traffic. However, the framework involved separate 

deployment of web services to facilitate communication and 

other types of network traffic were not tested.  

The Flow-Based Network Traffic Generation GAN 

training was only implemented for single flow-based network 

traffic. However, the model showed sufficient potential to 

indicate that further studies could achieve training to generate 
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sequences of traffic flows. The PAC-GAN model revealed 

the potential that GANs have for network traffic flow 

generation and the possibility of extending research to cover 

multi-serial network packets for multi-variant traffic flow 

types of generation especially for large scale traffic and when 

incorporating RNNs as a hybrid with GANs. Imbalanced 

traffic was addressed successfully by ITCGAN to emphasize 

the true potential of GANs for realistic network traffic 

generation. 

We would thus contend that even though network traffic 

generation using GANs has achieved mixed and varying 

success levels as shown in Table IV, further research, 

improvements on the model architectures and training can 

produce results exceeding the successes recorded to date. 

TABLE IV: A COMPARATIVE ANALYSIS OF THE VARIOUS GAN MODELS REVIEWED IN THIS SURVEY SHOWING THE TYPE OF TRAFFIC GENERATED, 

EXTENT AND LIMITATION OF GENERATION, AND POSSIBLE IMPROVEMENT 

 ITCGAN PAC-GAN PcapGAN Facebook Chat 

Network Traffic 

GAN 

Flow-Based 

Network Traffic 

Generation GAN 

ZipNet-

GAN 

Flow 

Parameters 

used during 

generation 

Application layer traffic 

flows containing 

imbalanced data with 

only the first 784 bytes 

including IP addresses, 

Port numbers and 

transport layer protocol 

Traffic flows at 

IP Packet byte 

level including 

ICMP, Pings, 

DNS queries and 

HTTP Get 

Requests. 

Source IP to 

Destination IP graph, 

Time Interval image, 

and Layer Structure 

sequence, all extracted 

from pcap data. 

Meta-data statistics 

of network captures 

converted in Time-

Series features. 

Meta-data statistics 

of IP addresses, Port 

numbers, flow 

duration, number of 

bytes and packets 

sent and received. 

Mobile traffic 

super 

resolution 

graph 

patterns. 

Extent of 

generation 

Individual metrics 

showed average 

Precision and Recall 

scores of 93.84 and 

91.47 respectively, and 

Global metrics of 91.19 

(GM) and 94.17 

(MAUC-PR  

Average of 

87.7% for all 

tasks, and up to 

99% for DNS.  

Generated pcap file 

was analysed by 

Wireshark, generated 

network flow graph 

data was similar to the 

real data, likewise the 

patterns in the Time 

Interval data 

Determined by rate 

of blocked and 

unblocked actions; 

up to 63.4% 

unblocked actions 

and 0% blocked 

actions. 

Average of 99.83% 

for E-WGAN-GP, 

and 81.33% for B-

WGAN-GP. 

78% NRMSE 

and 36.4 

times higher 

SSIM 

Limitation Small noise dimension 

worsens generation 

diversity while large 

dimension increases 

model calculation thus 

affecting performance 

and convergence speed. 

Was not able to 

successfully 

generate multi-

serial Network 

Packets. 

Limited to generating 

flow graph and for 

timestamp analysis. 

Only targeted at 

mimicking 

Facebook chat 

traffic and not 

tested for other 

types of network 

traffic. 

Generation 

achieved only at 

flow-level meta-

data statistics and 

limited to single 

flow-based traffic. 

Focused on 

network 

infrastructure 

and civil 

applications. 

Possible 

Improvement 

Can be improved to 

eliminate the Pre-

Training module and 

𝐺 ’s conditioning 

without compromising 

performance level.  

Can be improved 

to generate multi-

serial network 

packets for multi-

variant traffic 

flow types. 

Improve the model to 

be able to 

quantitatively 

evaluate the generated 

pcap packet data for 

total accuracy 

assessment 

Improvement can 

only be tailored 

towards blocking 

and unblocking 

mechanism which 

is not relevant to 

our survey 

Can be improved to 

generate sequence 

of traffic flows 

though still at the 

meta-data level. 

Could be 

modified to 

extend 

applicability.  

 

V. CONCLUSIONS 

Network traffic generation methods, such as Poisson 

models, only worked well for simple network applications but 

were inconsistent with complex network traffic flows. 

Generation models utilizing self-similar traffic solved the 

consistency issues associated with Poisson models but were 

not able to reflect the true characteristics of network flows. 

Methods used to generate traffic based on characteristic 

analysis such as Harpoon, flow-level matrix, Multi thread 

simulation and interdomain traffic simulation were only able 

to generate traffic at the flow-level. This gave rise to Plab and 

Swing that achieved packet-level generation but could not 

define traffic characteristics according to the distributions 

that they should follow nor to the number of characteristics to 

be considered. 

Application protocol-based traffic generation models were 

successfully implemented to generate and simulate network 

traffic that resembled the original network traffic. This was a 

significant achievement compared to previous generation 

levels, even though they could only produce traffic for 

particular application protocols. Efforts to produce more 

realistic synthetic traffic flows have led to the employment of 

GANs. 

ITCGAN, PAC-GAN, Flow-based traffic generation GAN, 

Facebook Chat GAN, ZipNet GAN and PcapGAN are among 

the GAN models that have been used to generate traffic flows. 

ZipNet GAN, PcapGAN and Facebook Chat GAN have been 

implemented for different purposes. These are, respectively, 

inferring and analysing traffic patterns; generating Pcap files, 

and network flow graph and timestamp analysis; mimicking 

traffic flow capture. The flow-based traffic generation GAN 

achieved metadata level traffic generation for single flows 

only. Nevertheless, PAC-GAN successfully generated 

network traffic flows at the packet byte level thereby showing 

that GANs can generate traffic flows beyond the flow-based 

level. Further research is recommended into the generation of 

a variety of traffic flows at the packet byte level, as well as 

sequences of traffic flows. ITCGAN further introduced a new 

direction to show the ability of GANs to address the common 

data imbalance problem in network traffic flows while 

generating high quality network traffic data. Thus, when 

compared with previous methods, it is evident that GANs 

have exceeded existing state-of-the-art in network traffic flow 

generation hence inspiring further research in this area. 
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