
 

 

 

Abstract—In this paper, we solve the bi-objective scheduling 

problem on two dedicated processors with an evolutionary 

algorithm. The algorithm incorporates a look-ahead-based 

path-relinking as a learning strategy. The designed algorithm 

first determines a starting archive set by applying a knapsack 

procedure tailored for the scheduling.  Second, an adaptation of 

the dominating local search, combined with exchange operators, 

is considered for generating a series of new non-dominated 

solutions that enrich the reference archive set. Third, a look-

ahead strategy-based path-relinking is added to the algorithm 

for iteratively highlighting the final Pareto front. A preliminary 

experimental part is given, where the performance of the 

method is evaluated on a set of benchmark instances extracted 

from the literature.  Its results are compared to those achieved 

by the best methods of the literature. New results are obtained. 

 
Index Terms—Bi-objective, evolutionary, look-ahead, 

scheduling.  

 

I. INTRODUCTION 

In this paper, we focus on approximately solving the Bi-

Objective Scheduling Multiprocessor Tasks on Two 

Dedicated Processors (Bi-ST2P), where two-objective 

functions are considered. This problem is NP-hard (cf. 

Hoogeveen et al. [1]), and its goal is to schedule all tasks to 

either a single processor or simultaneously two different 

processors.  As observed in real-world applications, more 

scheduling problems may consider different objective 

functions, like minimizing the makespan, minimizing the 

summation of the delays of all tasks, minimizing both delays 

and makespan, and others. Further, there exist some 

scheduling problems in which some constraints are necessary, 

like the number of available processors, assigning some tasks 

to specified processors, etc.  

Herein, we are interested in optimizing both makespan and 

total tardiness. This problem has a direct application in 

production and data transfer (cf. Manna and Chu [2]). 

Graham et al.[3] provided a classification of scheduling 

problems, where an instance of  Bi-ST2P is classified as 

𝑃2|𝑓𝑖𝑥𝑗 , 𝑟𝑗|𝐶𝑚𝑎𝑥, ∑ 𝑇𝑗, such that 𝑃2 represents two processors 

on which all 𝑁 tasks must be executed, 𝑓𝑖𝑥𝑗, means that each 

task 𝑗 is assigned and its assignment is fixed (either to a single 

processor or to both processors), 𝑟𝑗 denotes the release date of 

task 𝑗, 𝑝𝑗is the processing time without preemption of task 𝑗

 

when executed on the processors, 𝐶𝑚𝑎𝑥 denotes the 
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makespan (completion time) of the last assigned/executed 

task, and ∑ 𝑇𝑗 is the total tardiness, representing the sum of 

the tardiness of task 𝑗  such that 𝑇𝑗 = 𝑚𝑎𝑥{𝐶𝑗 − 𝑑𝑗 , 0}  (𝑑𝑗

 

denotes the due date of task 𝑗 and 𝐶𝑗  its completion time). 

𝐶𝑚𝑎𝑥 and ∑ 𝑇𝑗 denote both objective functions to minimize. 

The paper is organized as follows. Section II reviews the 

relevant literature on some scheduling problems. Section III

 

provides a mathematical model. Section V-D discusses the 

dominated local search used to approximately solve Bi-ST2P. 

A starting archive of diversified solutions is described in

 

Section V-A. Section V-B presents local operators used and 

the look-ahead operator (Section V-C) used as a learning 

strategy for highlighting the archive set. The performance of 

the method is exposed in Section VI.

 

Finally, Section VII

 

concludes the paper.

 

 

II.

 

BACKGROUND

 

The majority of the problems belonging to the scheduling 

family are often NP-hard in the strong sense (cf., Drozdowski 

[4]). Because of their NP-hardness, any exact method may be 

applied for solving only small-sized instances or some 

particular instances. Hence, the availability of effective 

methods is of paramount importance. 

Among other scheduling with two processors, Blazewicz 

et al.

 

[5] tackled scheduling multiprocessor tasks on two 

identical parallel processors. The authors discussed the 

complexity analysis for special cases, like considering the 

scheduling with unit execution time, the preemptable tasks 

with ready times and, due-dates, and precedence constraints. 

For the single-objective of the problem studied in this 

paper, Manaa and Chu [2] proposed an exact algorithm, 

where a branch and bound procedure was investigated. The 

internal nodes are bounded with special lower and upper 

bounds. In the experimental part, the authors underlined the 

ability of the method for efficiently solving instances up to 

thirty tasks. 

For the same problem, Kacem and Dammak [6] tailored an 

effective genetic algorithm. The algorithm used the classical 

operators related to the genetic algorithm reinforced with a 

constructive procedure able to provide feasible solutions.  

The experimental part showed that in some cases the method 

was able to achieve solution values closest to those provided 

by the tight lower bound proposed by Manaa and Chu [2].
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Aïder et al. [7] designed a reactive search-based method. 

From a starting solution, shaking operators were incorporated 

for intensifying the search.  These operators were embedded 

into an iterative search till converging toward the final 

solution. In the computational part, the authors underlined the 

superiority of the method when compared to other methods.  

Aïder et al. [8] investigated the use of the look-ahead 

strategy combined with an evolutionary path relinking. The 

method starts with a greedy solution and submitted to a series 

of perturbations. A look-ahead strategy was used for the 

evaluation of a favorable path to investigate. Throughout an 

experimental part, the designed method provided better 

results when compared to those achieved by recent methods. 

For the bi-objective version, in which both makespan and 

total tardiness are minimized, Kacem and Damak [9] 

investigated the use of three bi-objective genetic algorithms:  

non-sorting genetic algorithm, Pareto genetic algorithm, and 

the so-called aggregative genetic algorithm. The authors 

studied their behavior on a set of benchmark instances. 

Because any solver, like Cplex or Gurobi, is not able to solve 

these hard instances in an amount of time, the authors 

compared their provided results to two tights lower bounds 

characterizing both makespan and total tardiness bounds. The 

authors underlined the superiority of NSGA-II when 

compared to other ones. 

 

III. THE BI-OBJECTIVE SCHEDULING PROBLEM  

We assume that any task cannot be interrupted once a 

processor starts processing it, each processor can only process 

one task at a time, for the tasks being processed by one 

processor at a time and, the processors do not breakdown, no 

maintenance operations are considered between the 

production operations. We then have the following formal 

description: 

𝑧1 = min  𝐶𝑚𝑎𝑥 (1) 

𝑧2 = 𝑚𝑖𝑛   ∑ 𝑇𝑗

𝑛

𝑗=0
 

(2) 

𝐶𝑗 ≥ 𝐶𝑖 + 𝑝𝑗 + (𝑥𝑖,𝑗 − 1) × 𝑀,  ∀(𝑖, 𝑗)

∈ (𝑃1 ∪ 𝑃12)2 

(3) 

𝐶𝑗 ≥ 𝐶𝑖 + 𝑝𝑗 + (𝑥𝑖,𝑗 − 1) × 𝑀,  ∀(𝑖, 𝑗)

∈ (𝑃2 ∪ 𝑃12)2 

(4) 

𝑥𝑖,𝑗 + 𝑥𝑗,𝑖 = 1,  ∀(𝑖, 𝑗) ∈ (𝑃1 ∪ 𝑃12)2  (5) 

𝑥𝑖,𝑗 + 𝑥𝑗,𝑖 = 1,  ∀(𝑖, 𝑗) ∈ (𝑃2 ∪ 𝑃12)2 (6) 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖 ,  ∀𝑖 ∈ (𝑃1, 𝑃2, 𝑃12) (7) 

𝐶𝑖 ≥ 𝑟𝑖 + 𝑝𝑖 ,  ∀𝑖 ∈ (𝑃1, 𝑃2, 𝑃12) (8) 

𝑇𝑖 ≥ 𝐶𝑖 − 𝑑𝑖 ,  ∀𝑖 ∈ (𝑃1, 𝑃2, 𝑃12) (9) 

𝑇𝑖 ≥ 0,  ∀𝑖 ∈ (𝑃1, 𝑃2, 𝑃12) (10) 

𝑥𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗)

∈ (𝑃1 ∪ 𝑃12)2

∪ (𝑃2 ∪ 𝑃12)2, 

(11) 

where 𝑥𝑖𝑗 = 0, (𝑖, 𝑗) ∈ 𝑁 × 𝑁 , if task 𝑗   completes before 

task 𝑖  starts, 1 otherwise. Equation (1) represents the 

makespan 𝐶𝑚𝑎𝑥  to minimize, and Equation (2) denotes the 

sum of tardiness ∑ 𝑇𝑗  to minimize. Constraints (3) and (4) 

refer to the sequencing such that if task 𝑗 is sequenced after 

task 𝑖 then it is completed, where the completion time 𝐶𝑗 of 

task 𝑗 is greater than or equal to the sum of the completion 

time 𝐶𝑗 and the processing time 𝑝𝑗  of task 𝑖 (𝑀 denotes a big 

non-negative penalty constant). Constraints (5) and (6) 

express that ∀{𝑖, 𝑗} of sequenced tasks on the same processor, 

one has to be completed before the other start. Inequality (7) 

ensures that the makespan 𝐶𝑚𝑎𝑥 remains greater than or equal 

to the completion time 𝐶𝑗 for each task 𝑗. Inequality (8) means 

that the completion time 𝐶𝑗 of task 𝑗 is greater than or equal 

to its release date 𝑟𝑗 augmented with its processing time 𝑃𝑗. 

Inequalities (9) ensure the computation of the variable 𝑇𝑗 

tardiness of task  𝑗 , where 𝑇𝑗 = 𝑚𝑎𝑥{𝐶𝑗 − 𝑑𝑗 , 0}  such that 

𝑑𝑗denotes the due date of task 𝑗,𝑗 ∈ 𝑁. Finally, constraints 

(11) are related to the decision variables domain. 

 

IV. DOMINATING LOCAL SEARCH FOR BI-ST2P 

 Adaptation of the Bi-objective Local Search 

Local search-based methods are simple and often induces 

efficient methods when tailored to the specific problem. They 

have been already designed for mono-objective 

combinatorial optimization problems. By introducing the 

dominance criteria related to the problems with multiple 

objective functions, these methods can be tailored for tackling 

several multi-objective combinatorial optimization problems. 

A classical local search is often based on an iterative search, 

where enhancing the quality of solutions is realized 

throughout an optimization process. In this case, the search 

procedure iteratively explores one or several neighborhoods 

related to a current solution hoping to converge toward local 

optimum. Thus, each neighborhood structure should be 

defined for better exploring the whole search space of feasible 

solutions. In order to adapt such a search process to a problem 

with many objective functions, the following Pareto 

dominance rule is considered.  

Dominance rule: For a given minimization problem with 

𝑚  objective functions: 𝑧1, 𝑧2, … , 𝑧𝑚 , a solution 𝑥(1) 

dominates another solution 𝑥(2) (𝑥(1) ≺ 𝑥(2)) if: 

1. ∀𝑘 ∈ {1, . . . , 𝑚}: zk(x(1)) ≤  𝑧𝑘(𝑥(2)), 

2. ∃𝑘 ∈ {1, . . . , 𝑚}: 𝑧𝑘(𝑥(1)) <  𝑧𝑘(𝑥(2)). 
By applying the dominance rule, we then establish the set 

of Pareto optimal solutions  of non-dominated solutions.  

 A Dominance-Based Multi-objective Local Search 

A class of Dominance-based Multi-Objective Local Search 

(DMLS) consists in maintaining an archive of non-dominated 

solutions. Its objective is to explore the neighborhood of the 

archive members and to enhance or diversify the archive 

contents. This strategy may be iterated till exploring all 
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solutions of the archive set. Several variants of that method 

have been used in the literature, like the Pareto Local Search 

(cf. Paquete et al. [10]), the Pareto archived evolution 

strategy (cf., Knowles and Corne [11]), etc. 

Often these variants consider some common concepts to 

design DMLS: (i) representation of all solutions belonging to 

the population, (ii) designing a starting strategy for providing 

a series of diversified solutions, (iii) designing suitable 

neighborhoods structures, (iv) introducing a selection 

strategy to explore the diversified solutions belonging to the 

archive, (v) managing the archive of the non-dominated 

solutions throughout the exploration, and (vi) fixing the final 

stopping condition. 

 

V. A POPULATION-BASED METHOD 

The main principle of the population-based method is 

presented, where the look-ahead operator is used for 

highlighting the archive set.   

Its key features may be summarized as follows:  

 Starting the search process with the so-called basic 

knapsack procedure (cf. Section V-A). An initial archive 

set is obtained by applying remove and rebuild strategy. 

 Making a series of perturbations on the current solution 

using the principle of the reactive dominated-based local 

search (cf. Sections V-B1, V-B2, and V-B3). 

 Using a deep search with a look-ahead to highlight the 

non-dominated solutions (cf. Section V-C). 

 A Starting Archive/Reference Set 

Building any solution for the studied problem is equivalent 

to provide a sequence of positions related to the tasks on the 

processors. In this case, an initial greedy solution can be 

designed by using a standard scheduling's greedy procedure 

adapted for Bi-ST2P. It needs two main steps: (i) reordering 

the tasks according to the ratios 𝑝𝑗 𝑟𝑗 , 𝑗 ∈ 𝑁⁄ , where  

𝑟𝑗denotes the release date of task 𝑗 and 𝑝𝑗 its processing time, 

(ii) selecting step by step a non-affected task by ranking all 

tasks according to the non-increasing order of their ratios and 

assigning it to a processor (bin). The second step is iterated 

till assigning all tasks on their corresponding processor(s). 

 

Algorithm 1 – A Random Basic Procedure 

Input. An instance of Bi-ST2P. 

Output. An archive set 𝒜 of starting solutions. 

1. Apply the standard scheduling’s greedy procedure to Bi-

ST2P, and let 𝑆 be the provided solution. 

2. Set the starting reference set 𝒜 = {𝑆}. 
3. repeat 

4. Randomly drop 𝛽%, 𝛽 ∈]0, 100[, of tasks from 𝑆 according 

to the current order of the sequence 

5. Let 𝑆̂1 be a partial solution built with the rest of the tasks 

(according to step 4). 

6. Recall the knapsack procedure on the rest of the sequence and 

let 𝑆̂ be the new solution. 

7. Update 𝒜 with 𝑆̂. 
8. until (a predefined condition is performed) 

9. return 𝒜. 

 

Algorithm describes the main steps of the generational 

method that build the reference set 𝒜. 

A. Enhancing Operators 

The classical operators used in local search are mainly 

based upon k-opt procedures. More simplistic operators are 

those using 2-opt and 3-opt operators. Herein, we adapt these 

operators to improve the set of non-dominated solutions even 

if it is based upon simple shakings/moves. 

Operator 1 (OP1): For a given solution 𝑥̂, 2-opt operator 

(OP1) repeatedly makes some swaps as long as the 

dominance criterion is satisfied. Two randomly positions 𝑖 
and 𝑗 are swapped. Next, a new sequence is reached and a 

feasible solution is built with the greedy assignment 

procedure. Iterating such a process induces the first 

neighborhood around the solution 𝑥̂.  

Operator 2 (OP2): Instead of using a couple of positions 

(two positions), we extend the moves to three positions (noted 

OP2). Indeed, for positions 𝑖, 𝑗 and 𝑘, the first permutation 

between 𝑖  and 𝑗  generate a new sequence, and the second 

permutation between 𝑗 and 𝑘 induces a new sequence. 

Avoid cycling: The goal of OP1 and OP2 is to build a series 

of solutions iteratively reached throughout searching on 

several neighborhoods. In order to avoid cycling and 

stagnation, we introduce the tabu list to temporarily store 

some inverse-moves (inverse-swaps) instead of storing all 

visited solutions. A tabu list is then added such that for each 

explored solution, the size of the tabu list was fixed to the 

number of tasks, where a FIFO strategy is applied. 

 A Learning Operator: LO 

Because both OP1 and OP2 may quickly stagnate on local 

optima, we then propose a more sophisticated operator 

considered as a learning strategy; that is able to enhance the 

quality of the solutions for a target objective function. Such 

an operator has been first introduced in Al-douri et al. [12] 

and adapted for the scheduling problem in Aïder et al. [8]. 

The principle of the learning operator (noted LO) resembles 

to the hybridization between the evolutionary path-relinking 

and a greedy search (cf. Laguna and Marti [13]). Its goal is to 

reach new diversified solutions and adding them to the 

reference set. Thus, they will be combined with the current 

solutions for exploring new regions.  

Often, the path-relinking starts with a feasible solution 𝑥 

and repeatedly perturbs that solution till converging toward 

the so-called guiding solution 𝑦 . Converging toward  𝑦  is 

realized throughout a series of moves/exchanges forming a 

series of neighbors to explore. The used process follows: 

 
- Set 𝑦𝐵𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑥, 𝑦}. 

- Set 𝑘 = 0,  𝑥 = 𝑃𝑎𝑡ℎ𝑘(𝑥; 𝑦)  and 𝑦 = 𝑃𝑎𝑡ℎ𝑟(𝑥; 𝑦),  where 1 ≤ 𝑟 ≤ 𝑛 

(𝑛 denotes the size of the Hamming distance between both 𝑥 and 𝑦). 

- Let 𝑂𝑥   (resp. 𝑂𝑦 ) be a sequence of tasks assigned to processors 

according to 𝑥 (resp.𝑦). 

Iterate 

- Let 𝑂(𝑃) = 𝑂𝑥 ∩ 𝑂𝑦  and 𝑂(𝑅𝑒𝑠𝑡) = 𝐼 ∖ 𝑂(𝑃) , where 𝑂(𝑅𝑒𝑠𝑡)  denotes the 

set of different components between 𝑂𝑥  and 𝑂𝑦  (|𝑂(𝑅𝑒𝑠𝑡) | denotes the 

Hamming distance). 

- New neighbour 𝑦′: ∀𝑙 ∈ 𝑂(𝑃), set 𝑦𝑙
′ = 𝑥𝑙.  

- For each task, 𝑙 ∈ 𝑂(𝑅𝑒𝑠𝑡) do 

a) Set 𝑦𝑙 = 𝑥𝑙  and let 𝑠 be the 𝑠-th position of 𝑦 : 𝑦(𝑠) = 𝑥𝑙, set 𝑦𝑠 =

𝑥𝑙 .  
b) Apply the knapsack procedure to repair the partial solution 𝑦 ’ 

(following tasks of 𝑂(𝑃)). 

c) Update the best solution, namely 𝑦𝐵𝑒𝑠𝑡.  

Let 𝑦 be the best solution reached: 
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a) Enhance 𝑦 by calling the intensification strategy (cf., Sections V-

B1 and V-B2) and update 𝑦𝐵𝑒𝑠𝑡, 

b) Increment 𝑘 and set 𝑥 = 𝑃𝑎𝑡ℎ𝑘(𝑥; 𝑦). 

 

 An overview of the Population-Based Method 

Algorithm 2 describes the main steps of the population-

based algorithm (PBA). Its input is an instance of Bi-SP2P 

and its output is a (near Pareto) solution 𝑆⋆ with its objective 

values 𝐶𝑚𝑎𝑥
⋆  and 𝑇𝑚𝑎𝑥

⋆ . It starts with a feasible solution (line 

1) provided by the knapsack procedure (Section V-A). 

The method contains three loops: a global loop and two 

internal loops. The global loop “repeat” (line 3 to line 25) 

explores a subset of non-dominated solutions of the archive 

set 𝒜  (generated with Algorithm 1: line 1). The second 

internal loop “repeat” (lines from 8 to 13) intensifies the 

search by using a random 2-opt operator, which mimics a 

descent method. The 3-opt operator is called whenever the 

solution stagnates (or a number of local iterations are 

performed). Thus, the first local loop (line 6 to line 21) is 

restarted whenever a new solution (improving either 𝑧1or 𝑧2) 

is reached. Next, the second local loop applies the learning 

strategy after positioning the 3-opt operator; it introduces new 

solutions to the archive set for further combinations. The 

algorithm stops with an approximate Pareto set. 

 

 
 

VI. EXPERIMENTAL PART 

In this section, a preliminary experimentation is provided 

to assess the performance of the proposed Population-Based 

Algorithm (PBA) by comparing its achieved results to the 

best solutions available in the literature (all methods were 

coded in C++ and performed on a computer with an Intel 

Pentium Core i5 with 2.10 GHz). A subset of instances used 

as benchmarks are extracted from Aïder et al. [7] (using 

Manaa and Chu's [2] generator), where 300 medium instances 

are considered with n=10 and n=20 (tasks). The density 𝛼 of 

each instance varies in the interval {0.5, 1, 1.5} and there are 

5 types for each group related to 𝑛 . Further, in order to 

analyze the quality of the solutions achieved by PBA, we 

compared its results to those achieved by Kacem and 

Dammak's [9] algorithm and to two tight lower bounds (as 

used in Kacem and Dammak [14]) the bound LBC related to 

𝐶𝑚𝑎𝑥 proposed by Manaa and Chu's [2], and the bound LBT 

related to ∑ 𝑇𝑗 proposed in Kacem and Dammak [14]. 

 Qualitative Study 

In order to evaluate the performance of PBA, its provided 

results are compared to those reached by the multi-objective 

algorithm of Kacem and Dammak [9] (noted NSGA-II) and 

the specialized mono-objective algorithm of Aïder et al. [8] 

(noted LH-BM: A Look-Ahead Strategy-Based Method). 

Table I shows the solutions reached by LH-BM, the best 

method NSGA-II and those achieved by the proposed PBA. 

Columns 1 and 2 report the data information, column 3 (resp. 

column 4) displays the tight lower bound LBC (resp; LBT) 

related to 𝑧1 = 𝐶𝑚𝑎𝑥  (resp. 𝑧2 = 𝑇𝑚𝑎𝑥 ), column~5 displays 

the best objective value 𝑧1 achieved by LH-BM, columns 6 

and 7 report the couple of bounds 𝑧1, 𝑧2 for NSGA-II while 

columns 8 and 9 tally those reached by PBA. The value in 

``boldface" refers to the best bound reached by the 

corresponding algorithm while the ``italic" value refers to the 

multi-objective algorithm achieving the best bounds. 
 

TABLE I: BEHAVIOR OF PBA VERSUS MONO AND BI ALGORITHMS 

n=10   LB LH-BM NSGA II PBA 

  LBC LBT z1 z1 z2 z1  z2 

Type1 

α=0,5 400,9 23,67 400,9 511,6 1566 400,9 70 

α=1 478,7 3,84 478,7 577,9 1053 478,7 69,4 

α=1,5 789,3 25,82 789,3 957,8 1551 789,3 29,6 

Type2 

α=0,5 402,4 0,3 402,8 550,5 2241 402,9 105,8 

α=1 651 2,2 651,1 828 2677 651,1 51,7 

α=1,5 914,8 0 914,8 1060 2938 914,8 179,2 

Type3 

α=0,5 494,9 48,01 494,9 649,8 3240 495 281,6 

α=1 664 6,3 664,1 878,4 2595 665,9 91 

α=1,5 924,8 0 924,8 1121 2562 924,8 85,8 

Type4 

α=0,5 547,6 0 548,7 819,9 5917 548,7 164,1 

α=1 732,2 0 732,2 1035 4143 733,9 410,8 

α=1,5 674,5 0,5 674,5 847,7 3913 674,5 167,7 

Type5 

α=0,5 373 21,1 373,6 488 1905 373,5 98,3 

α=1 545 0 545 741,5 2106 545 183,3 

α=1,5 595,5 7,02 595,5 740,1 1623 595,5 20,5 

  Av 612,6 9,25 612,7 787,1 2669 613 133,9 

n=20   LB LH-BM NSGA II PBA 

  LBC LBT z1 z1 z2 z1  z2 

Type1 

α=0,5 354,5 142 354,5 445,8 3496 354,5 856 

α=1 411,6 15,68 411,6 573 3663 412,9 368,1 

α=1,5 536,3 3,73 536,3 685,3 3720 537,3 366,6 

Type2 

α=0,5 318,6 14,02 318,7 472,4 4709 322,3 488,8 

α=1 471,1 4,86 471,1 658,7 5505 473,5 618,9 

α=1,5 703,5 0 703,5 851,3 4896 703,8 848,6 

Type3 

α=0,5 392,8 75,75 392,8 533,7 5937 393,1 718,7 

α=1 491,8 0,27 491,8 717,5 5835 495,7 299,7 

α=1,5 670,7 1,43 671 853,2 4933 673 804 

Type4 

α=0,5 443,4 29,38 443,6 636,9 8738 446,5 1084 

α=1 568,5 0 568,5 852,6 9257 573,8 916,5 

α=1,5 843,3 15,63 843,3 1097 10558 845,4 2083 

Type5 

α=0,5 287,1 36,12 287,6 404,5 3579 288,5 482,6 

α=1 395,1 0 395,1 580 3430 403,5 856 

α=1,5 643 56,95 643,1 780,2 4115 643,3 20,5 

  Av 502,1 26,38 502,2 676,2 5491 504,5 133,9 

         

From Table I, we observe what follows. The specialized 

mono-objective algorithm LH-BM outperforms NSGA-II.  

PBA is competitive when compared to LH-BM since it is able 

to match the values of 𝑧1 of 10 sub-groups over the 30 ones. 

PBA provides a better average value for the sub-set Type 5, 
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𝛼 = 0.5, 𝑛 = 10, of value equals to 373.50 (it is better than 

that achieved by LH-BM). 

PBA performs better than NSGA-II since it provides better 

bounds for all the thirty sub-groups; in this case, PBA 

provides new dominated solutions. Fig. 1 illustrates all gaps 

between the bounds achieved by both NSGA-II and PBA: 𝑧1 

on the left-side of the figure and 𝑧2 are shown on the right-

side of the figure.  

 

 
Fig. 1. Variation of the gap between the three methods. 

 

TABLE II: NORMALIZED HYPER-VOLUME FOR NSGA-II AND PBA 

n=10   NSGA-II PBA 

    AvNH
1  BestNH

1   AvNH
2  BestNH

2   

Type1 

α=0,5 0,3059 0,3825 1 1 

α=1 0,4069 0,5091 1 1 

α=1,5 0,3247 0,4085 1 1 

Type2 

α=0,5 0,3559 0,4191 1 1 

α=1 0,2972 0,3708 1 1 

α=1,5 0,3601 0,4651 1 1 

Type3 

α=0,5 0,283 0,3345 1 1 

α=1 0,2969 0,3918 1 1 

α=1,5 0,3449 0,427 1 1 

Type4 

α=0,5 0,1834 0,2223 1 1 

α=1 0,2211 0,3061 1 1 

α=1,5 0,2029 0,2553 1 1 

Type5 

α=0,5 0,2263 0,3161 1 1 

α=1 0,2689 0,3493 1 1 

α=1,5 0,2893 0,3903 1 1 

  Av 0,2912 0,3699 1 1 

n=20   NSGA-II PBA 

    AvNH
1  BestNH

1   AvNH
2  BestNH

2   

Type1 

α=0,5 0,278 0,362 1 1 

α=1 0,224 0,278 1 1 

α=1,5 0,222 0,272 1 1 

Type2 

α=0,5 0,238 0,313 1 1 

α=1 0,215 0,276 1 1 

α=1,5 0,268 0,373 1 1 

Type3 

α=0,5 0,215 0,275 1 1 

α=1 0,173 0,222 1 1 

α=1,5 0,249 0,334 1 1 

Type4 

α=0,5 0,207 0,272 1 1 

α=1 0,161 0,202 1 1 

α=1,5 0,18 0,233 1 1 

Type5 

α=0,5 0,201 0,273 1 1 

α=1 0,206 0,263 1 1 

α=1,5 0,345 0,422 1 1 

  Av 0,2255 0,2915 1 1 

 

 Quantitative Study 

Although there are several performance indicators 

dedicated to analyzing the behavior of a given method, herein, 

the Hyper-Volume Indicator is considered. Both NSGA-II 

and PBA average normalized hyper-volume indicators are 

reported in Table II columns 1 and 2 report the instance's label, 

column 2 (resp. column 3) tallies the global average 

normalized hyper-volume indicator and 𝐴𝑣𝑁𝐻
1   (resp. average 

best normalized hyper-volume indicator 𝐵𝑒𝑠𝑡𝑁𝐻
1 ) whereas 

columns 4 and 5 display those of PBA, respectively. From 

Table II, we observe that: (i) 𝐵𝑒𝑠𝑡𝑁𝐻
2  (PBA) is better than that 

of 𝐵𝑒𝑠𝑡𝑁𝐻
1  (NSGA-II) in all occasions over the 30 sub-groups, 

and 𝐴𝑣𝑁𝐻
2 's average hyper-volume indicator is also better 

than that of NSGA-II. Because Table II reports the average 

values related to ten instances for each subgroup, we then 

provide approximate Pareto fronts achieved by both NSGA-

II and PBA on two instances (one for each subgroup). 

Fig. 2 illustrates the approximate Pareto fronts of instance 

with n=10 (left-side) and with n=20 (right-side). One can 

observe that for both instances, PBAs' density of the Pareto 

fronts is much better than that provided by NSGA-II. 

 

Fig. 2. Representation of the approximate Pareto front of the instance n.10-

5-1(on the left-hand) and instance n.20-4-1 (on the right-hand). 

 

Indeed, for n=10, the value is between 600 and 650 (resp. 

less to 250) whereas that related to NSGA-II varies from 900 

and 1010 (resp. greater than 700). The same phenomenon 

happens for the instance with n=20. 

 

VII. CONCLUSION 

In this paper, we investigated the use of an evolutionary 

algorithm for solving the bi-objective scheduling tasks on two 

dedicated processors. The proposed algorithm is based upon 

the so-called non-dominating operator, where both the 

execution of the last assigned task and the total tardiness are 

minimized. First, a starting archive set of solutions was built 

by tailoring a constructive greedy knapsack procedure. 

Second, intensification operators with avoiding cycling were 

introduced for enriching the non-dominated archive set. Third, 

a learning strategy based upon a look-ahead strategy was 

added for highlighting the solutions of the archive set. The 

computational part showed that the method remains 

competitive when compared its results to those achieved by 

the best methods of the literature. For a future work, we are 

looking for the optimization strategy that can be used as a 

learning strategy for enhancing the approximate Pareto front. 
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