
1 Abstract—An advanced convolutional recurrent neural 

network architecture for forecasting blood glucose is proposed 

in this paper. To improve the competitiveness of the suggested 

model, several merits of WaveNet, a deep learning model that 

performs well on processing audio waveforms, are adapted and 

implemented. To be more specific, a multi-layer dilated causal 

convolutional neural network (CNN) with residual blocks 

followed by a modified recurrent neural network (RNN) with 

GRU cells is the architecture of our model. 10 virtual adult 

patients from the UVA/Padova T1D simulator provide the 10 

simulated datasets for in-silico experiment, and each dataset 

consists of 6 channels of time series data, including glucose 

levels, insulin dosages, carbohydrate intake, the rate of 

glucose appearance,  plasma insulin and the time index. After 

preprocessing, the data is fed into the network with the aim to 

forecast the blood glucose level in the next 30 minutes. The 

obtained prediction results are evaluated by the root mean 

squared error (RMSE). The average of the best RMSE among 

the 10 subjects is 8.3050. This RMSE result is better than that 

of many current algorithms using the same datasets, which 

shows the superior performance of our proposed model. 

 
Index Terms—dilated causal CNN, residual learning, 

gated recurrent unit (GRU), glucose prediction 

 

I. INTRODUCTION 

Blood glucose (BG) has historically been an essential in- 

dicator of diagnosis of diabetes, and for patients with 

Type 1 diabetes which is widely thought to be 

precipitated by the destruction of pancreatic β cell that is 

responsible for producing insulin, lifelong glucose 

management is required [1]. With the rapid development of 

Artificial Intelligence, machine learning algorithms such as 

support vector regression [2] and artificial neural networks 

(ANN) [3], [4] have been used to help predict glucose for 

patients with Type 1 diabetes. However, the performance of 

support vector regression degrades when handling a large 

training dataset. And because there are typically less than 3 

layers in ANN according to literature, it is hard to process 

a large and complex dataset as well. To enhance the model 

complexity and hence improve the ability to representation, 

deep learning networks, composed of multiple hidden layers 

and neurons, have been explored recently and shown 

outstanding performance [5]-[8]. 

In this work, a novel deep learning model for glucose 

prediction is developed. This model is designed by incor- 

porating the merits of both a convolutional recurrent neural 

network (CRNN) and a deep neural network (DNN) 

model called WaveNet. The CRNN architecture is proposed 

to solve BG prediction problems in 2019 [9] and the 
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DNN model is firstly introduced by the company DeepMind 

to generate raw audio waveforms [10]. The input datasets 

are collected from 10 virtual adult patients with diabetes, 

and each of them is composed of 6 fields, which are glucose 

levels, insulin dosages, meals intake, the rate of glucose 

appearance, plasma insulin, and the time index. After 

preprocessing, the data is fed into the proposed model for 

training with the aim to predict the BG level in the next 

30 minutes. There are two parts in the architecture of this 

modified CRNN: a 20-layer dilated causal CNN with 

residual blocks to capture patterns, followed by an RNN 

including Gated Recurrent Unit (GRU) cells and fully 

connected layers. Those residual blocks can effectively 

solve the degradation problem of accuracy in a deep-layer 

architecture [11]. 

As far as we know, it is the first time that residual 

blocks have been added into a CRNN architecture to realize 

glucose prediction. And our method shows competitiveness 

when comparing the RMSE with that of another three ma- 

chine learning algorithms, which are support vector 

regression (SVR) [2], neural network predictive glucose 

(NNPG) [3], and bidirectional recurrent neural network [12]. 

The result section illustrates the superior performance of the 

proposed model in detail. 

 

II. DATABASE AND PRE-PROCESSING 

A. Database 

The data used for this paper is generated from the 

UVA/Padova T1D simulator, which is the only emulator for 

glucose level simulation approved by the Food and Drug 

Administration (FDA). 10 virtual adult subjects are included 

to pretend patients with Type 1 diabetes. We created data for 

360 days with three meals per day. And the data is sampled 

every 5 minutes, therefore, 288 time-series points are 

collected per day. The virtual glucose dataset is composed 

of 6 channels of inputs: the glucose levels, the insulin 

dosages, carbohydrate intake, the time index and another 

two fields—the rate of glucose appearance and plasma 

insulin. The plasma insulin controls the production of 

glucose, and the rate of glucose appearance is a direct 

indicator for BG prediction [13]. It is noticed that the insulin 

entries vary from 1 to 5 in each day with the meal, which 

suggests that meal and insulin injection are given at almost 

the same time. Besides, the target labels in our model are 

the changes of the current BG level x(t) and the BG level 

after 30 minutes x(t+6). The temporary output of the 

proposed model is the change of BG level ∆x between x(t) 

and x(t+6), therefore, the real prediction of BG level at time 

t+6 can be obtained as x(t + 6) = x(t) + ∆x(t). 
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B. Filtering and Normalization 

Before being fed into the CRNN model, the time series 

data experiences some preprocessing. A median filtering is 

applied to the glucose data to remove outliers in the dataset. 

And normalization is used to constrict large values within 

(0,1) to avoid that the prediction results are determined 

significantly by these large values. 

 

III. METHODOLOGY 

CRNN architecture is such a piece of pioneering work in 

glucose prediction that was firstly proposed in 2019 [9]. It 

combines the strengths of both CNN and RNN and 

primarily consists of two modules: a multi-layer CNN, and 

an RNN block with long short-term memory (LSTM) cells 

and fully connected layers. Our suggested model retains the 

basic structure of the original CRNN while modifying the 

specific algorithms applied in both CNN and RNN parts 

after being enlightened by WaveNet. The changes in the 

novel CRNN model can be summarized into three aspects: 

extracting patterns using dilated causal convolutional layers, 

solving the degradation problem of deep CNN using 

residual blocks, and forecasting time series using GRU. 

These approaches are explained in detail as following and 

the complete model structure is demonstrated at the end of 

this section. 

A. Dilated Causal Convolutional layers 

Convolutional neural networks (CNN) as essential 

algorithms of deep learning, witness promising advantages 

of detecting time series data features [14]. Instead of the 

conventional convolutional neural network, dilated causal 

CNN is employed in this work. Causal convolutional 

layers are the main ingredients in WaveNet [10]. By using a 

causal convolutional network, a model with time-series 

data such as the proposed model can acquire predictions 

from a few correlated inputs instead of solely one input. 
 

 
Fig. 1. Causal convolutional neural network with 3 layers [10]. 

 

 
Fig. 2. Dilated causal CNN with 3 layers [10]. 

 

A dilation convolution, which is also called convolution 

with holes, refers to a convolution with a larger filter 

obtained by dilating the original filter with zeros [10]. By 

adding the dilated convolutions into the causal 

convolutional layers, networks with larger receptive fields 

can be achieved without significantly increasing the 

computation. To be more specific, as shown in Fig. 1 and 

Fig. 2, the receptive field increases to 8 after including 

dilations at various layers while it is only 4 (= #layers + 

kernel size - 1) before including dilations. 

In this work, motivated by the idea of involving more 

previous inputs to enhance the efficiency and accuracy of 

the predictive model, 1, 2 and 4 dilations are respectively 

employed into the hidden layers within each residual block 

(refers to Fig. 7). And after being processed by the dilated 

causal convolutional layers, the filtered input signals are 

transformed into vectors with certain features for further 

being fed into the followed recurrent layers. 

B. Residual Blocks 

The depth of neural networks can greatly influence their 

performance. Intuitively, the deeper the network, the 

more accurate the model can be since more complex pattern 

extractions are performed. However, it is found that 

excessive layers added into the network can cause the 

accuracy to degrade promptly when it has already become 

saturated. To solve this degradation problem, residual 

blocks are proposed by applying the idea of “shortcut 

connection”, which can be easily interpreted as skipping 

several convolutional layers in the network and directly 

adding the inputs into the outputs of the stacked layers [11]. 

The structure on the left-hand side of Fig. 3 represents a 

building block of residual learning with a shortcut 

connection. This residual configuration eases the learning 

process and makes deep neural networks are relatively simple 

to train. 
 

 
Fig. 3. Two different configurations of a residual block. 

 

In the proposed model, there are 20 one-dimensional con- 

volutional layers including 6 residual blocks (6 shortcut 

connections). The details of our CNN are shown in 

Appendix (Fig. 7). It is noticed that a modified block with 

three layers is used instead of the original two. Fig. 3 

compares the two different configurations. The three layers 

witness different filter length, which is 1×1, 3×3, and 1×1 

respectively, and the output dimensions at first two layers 

are reduced to 1/4 of the original while at the last layer is 

recovered to the original. This bottleneck design enables the 

CNN to extract enough features while decreasing the 

computational cost. By our experiment, it is verified that the 

suggested model with these residual blocks outperforms the 

one without them: the RMSE of the former is 8.31 

whereas of the latter is 18.56. The evaluation indicator 

RMSE is defined explicitly in the results section. 

C. A Recurrent Layer with GRU Cells 

Recurrent neural networks (RNN) are good at processing 

and predicting time series data. By passing the partial 

International Journal of Machine Learning and Computing, Vol. 12, No. 6, November 2022

296



× 

resultant at time t to the next time t+1, the internal 

correlation of the time series can be considered while 

forecasting. For example, a certain word can refer to 

different meanings due to different contexts. Therefore, to 

obtain the correct information in time-series data, RNN 

should be employed. 

To achieve better information dissemination, Gated 

Recurrent Unit (GRU) as one of the variants of RNN is 

applied in our work. The structure of GRU [15] is shown 

in Fig. 4. 
 

 
Fig. 4. Structure of Gated Recurrent Unit (GRU). 

 

In the diagram, ℎ𝑡−1 represents the data passed from 

the last layer while ℎ𝑡 represents the data passes to the next 

layer. 𝑥𝑡  is the input and 𝑦𝑡  is the output of this layer. r 

refers to the reset gate, and z refers to the update gate. 

Both gates receive 𝑥𝑡  and ℎ𝑡−1 to be the inputs, and the 

mathematical forms can be written as 

𝑟𝑡  =  𝜎(𝑊𝑟𝑥𝑡  + 𝑈𝑟ℎ𝑡−1
)            (1) 

𝑧𝑡  =  𝜎(𝑊𝑧𝑥𝑡  + 𝑈𝑍ℎ𝑡−1
)             (2) 

ℎ�̅�  
=  𝑡𝑎𝑛ℎ(𝑊𝑥𝑡  +  𝑈 (𝑟𝑡  ×  ℎ𝑡−1

))          (3) 

where σ is the sigmoid activation function, and W and U are 

the corresponding optimal weights through training. ℎ𝑡 ̅̅ ̅ 

stands for a candidate activation that acts as an intermediate 

variable, and it receives 𝑥𝑡 , ht−1 and rt as the inputs. 

tanh is the tanh activation function. X  is the matrix 

multiplication. The final output can be expressed as 

    ℎ𝑡
 =  (1 − 𝑧𝑡)  × ℎ𝑡−1

 + 𝑧𝑡 × ℎ𝑡̅̅ ̅        (4) 

The form above implies the update gate can perform 

remembering and forgetting information at the same time, 

and the remembering and forgetting process at each layer 

can be controlled more flexibly. This also explains the 

reason why GRU is adopted in the proposed model instead 

of LSTM which is also a recurrent layer that has been 

widely used: the calculation cost of GRU is cheaper than 

that of LSTM since the number of gates in GRU is less than 

LSTM (3 gates included); and because of the reset gate, 

its actual accuracy          can be higher than LSTM [16]. 

In this work, it is manifested that the recurrent 

network with 64 GRU cells experiences a faster speed, and 

the result of RMSE of it surpasses the one with 64 LSTM 

cells. The discussion section shows the comparison 

explicitly. 

D. System Architecture 

The complete architecture of the proposed predictive 

model is shown in Fig. 5. The data at the left in the diagram 

is concatenated into time series data of 6 fields, which are 

the glucose levels, the insulin dosages, carbohydrate intake, 

the time index, the rate of glucose appearance and plasma 

insulin. After preprocessing (filtering and normalization), 

these data are fed into the modified multi-layer CNN. The 

details such as the dimension of data in each layer in the 

CNN have been discussed and shown in Fig. 7. Then the 

time-series resultant of CNN with the concatenation of 

features is sent to the modified RNN, which consists of 64 

GRU cells and three fully connected layers. After processing 

by RNN, the predictive glucose level in predictive horizon 

(PH) = 30 minutes is obtained. 

To be more specific, a max pooling is utilized after every 

three residual blocks of CNN to remove trivial but remain 

important features to decrease the computational cost. And a 

dropout is applied after the GRU layer and after the first two 

fully connected layers to avoid over-fitting issues by 

randomly dropping units from the neural network during the 

training process [17]. Besides, RMSprop as an optimizer 

that is widely applied to deep learning is used in the 

proposed model [18]. The learning rate of it is set to 0.002. 

 

 
Fig. 5. The complete architecture of the proposed model. 

 

TABLE I. THE RMSE FOR THE 10 SUBJECTS IN PH=30 MINUTES 
Patient Adult1 Adult2 Adult3 Adult4 Adult5 Adult6 Adult7 Adult8 Adult9 Adult10 

Best 8.15 7.85 9.17 8.27 7.68 8.40 9.77 8.04 7.66 8.06 

Best Avg 8.3050±0.64 
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IV. RESULTS 

The root mean squared error (RMSE) between the 

predicted and given glucose results in PH=30 minutes is 

used to evaluate the performance of our model. The 

calculation of this assessment indicator can be expressed as 

  𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥(𝑚) − �̂�(𝑚|𝑚 − 𝑃𝐻))2𝑁

𝑚=1      (5) 

where N denotes the data size, x refers to the given value 

and �̂�(𝑚|𝑚 − 𝑃𝐻) refers to the prediction by the model. 

The RMSE for each subject has been recorded and 

show in Table I. The proposed model achieves the best 

performance on subject Adult9 with the lowest RMSE 

(7.66). The average of the best results for each subject is 

8.3050 and the standard deviation is 0.64. 

 
TABLE II: COMPARISONS OF THE PREDICTION PERFORMANCE BETWEEN 

DIFFERENT MODELS 
Model RMSE (best avg) 

The proposed CRNN 8.3050±0.64 

SVR [2] 20.3590±3.59 

NNPG [3] 15.6020±1.94 

Bidirectional RNN [12] 9.2360±0.86 

 

To make the prediction performance of our model more 

convincible, a comparison table (refers to Table II) is 

created to compare the different prediction results between 

various algorithms. 

V. DISCUSSION 

From Table I, it can be seen that except for the Adult3 

and Adult7 subjects, the best RMSEs for other subjects are 

about 8 and even smaller than 8. This suggests that the 

proposed predictive algorithm experiences decent fitting. 

From the comparison table (Table II), our model shows 

competitive performance among various models, such as 

SVR, NNPG and bidirectional RNN. It is worth mentioning 

that for comparability, the RMSE in the table is obtained by 

averaging the best results of 10 patients, and the 

parameters such as the dropout probability in the hidden 

layers are set to be the same for both bidirectional RNN and 

the suggested model. Since the mentioned parameters are 

not included in SVR and NNPG architecture, the results can 

be compared directly after running the codes. To be more 

specific, the RMSE result of our algorithm is about 60% 

better than that of SVR and around 47% better than that of 

NNPG. Even though the performance of bidirectional RNN 

is also prominent, our model is around 17ms/step faster than 

it in terms of training speed (our model: ≈48ms/step; 

bidirectional RNN: ≈65ms/step). 

To visualize the comparison results and show the fitting 

degree, the predictive curve and the reference data in PH=30 

minutes are plotted in Fig. 6. By looking at the plot, it is 

proved that the proposed CRNN model (the red curve) fits 

the true data (the orange curve) well. 

 

 
Fig. 6. Prediction comparisons of various models. 

 

The superior performance of our model confirms the fea- 

sibility and correctness of the method adopted for 

glucose prediction. To confirm the applicability of each 

component of the method separately, the effects of using 

a component and not using a component are compared on a 

certain dataset. Here, we use Adult1 as an example. Under 

the condition that parameters remain unchanged, the 

RMSE changes from 8.31 to 18.56 when residual blocks 

are removed. This change proves that the residual block can 

indeed solve the degradation problem of deeper networks 

and improve the accuracy of the model. When deleting the 

dilation in the CNN part, the RMSE is 8.40, which is 

approximately 0.25 higher than that of the original one. This 

also demonstrates that a dilated CNN with a larger receptive 

field is important for great performance. And the RMSE of 

the model increases to 8.62 after changing GRU to LSTM, 

which implies the advantage of GRU. These RMSE 

differences under various circumstances are also shown in a 

comparison table (refers to Table III). 

However, the proposed model can be improved in several 

aspects. For example, the architecture of our model is 

relatively simple with 20 convolutional layers, while the 

effect of residual can be more significant when the model 

gets much deeper. And since the data for training the model 

are generated from a simulator, more useful and valuable 

data such as real clinical data can be included to make the 

proposed predictive model more convincing. 

 
TABLE III: COMPARISONS OF RMSE RESULTS UNDER DIFFERENT 

CIRCUMSTANCES (FOR ADULT1) 
CRNN with residual blocks CRNN without residual blocks 

8.15 18.56 

CRNN with dilations CRNN without dilations 

8.15 8.40 

CRNN with GRU cells CRNN with LSTM cells 

8.15 8.62 
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VI. CONCLUSION 

In this paper, a novel deep learning model for glucose 

prediction is proposed. It is developed by combining both 

CNN and RNN: the multi-layer dilated causal CNN to 

extract patterns from the time series input, and the followed 

RNN including 64 GRU cells and 3 fully connected layers 

to predict the glucose level after 30 minutes by processing 

both the previous and current inputs. 10 virtual subjects with 

type 1 diabetes are employed to provide 10 simulated 

datasets with 6 fields of data, and the model is trained on 

these 10 datasets individually. 

The average of the best RMSE of the 10 subjects is 

8.3050 with a standard deviation of 0.64. This result shows 

the competitiveness of the suggested predictive algorithm 

among several common models. However, the work can be 

improved by involving much deeper layers and considering 

more clinical datasets in the future. 

APPENDIX 

Details of the 20-layer dilated causal CNN with 

residual blocks is shown in Fig. 7.  

 
Fig. 7. The multi-layer dilated causal CNN with residual blocks. 
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