

Abstract—The rapid progress of convolutional neural

networks (CNNs) in multiple applications of practical

implementation is generally hindered by an upsurge in network

size and computational complexity. Currently, engineers focus

on reducing these problems through compressing the CNNs by

pruning filters and their weights. In this paper, we present a

fresh and easy-to-use pruning approach that reduces the model

size by eliminating complete filters and filter weights based on

the sparse group LASSO (Least Absolute Shrinkage and

Selection Operator) method across the convolutional layers.

More precisely, it regulates the sparsity at the feature level and

the group level. During the process of pruning, the unnecessary

filters with their weights eliminate directly without sacrificing

accuracy in the test, resulting in much compact and slimmer

architectures. We experimentally compute the effectiveness of

our methodology with various state-of-art CNN models on

various benchmark data sets. Mainly, CIFAR-10 data sets

applied on VGG-16 model and reduce the parameters approx.

96.1% and saved approx. 83.55% float-point-operations

(FLOPs) without sacrificing accuracy and have obtained

development in state-of-art.

Index Terms—Convolutional neural networks, filter pruning,

FLOPs, sparse group LASSO.

I. INTRODUCTION

Deep convolutional neural networks (CNNs) have been

effective in several computer vision problems including

image generation [1], object detection [2], [3], image

segmentation [4], [5], natural language processing [6], image

processing [3], and robotic control [7] due to the

effectiveness of graphics processing units (GPUs) in the last

few years. CNN's have a wide and deep structure; therefore, it

requires a huge parameter storage memory and

computational cost. Thus, a process of reducing the size of

CNN's is needed to embed CNNs into embedded hardware.

Amongst several approaches of compressing CNN's

including knowledge distilling [8], matrix decomposition [9],

[10], weight quantization [11], and pruning [12], [13].

Currently, the pruning approach that selects and removes

redundant parameters without considerably corrupting the

model performance has been progressively researched. Early

approaches for pruning are generally for fully connected

Manuscript received November 2021; revised April 4, 2022.

Aakash Kumar and Baoqun Yin are with the University of Science and
Technology of China, Hefei 2300026, P.R. China (e-mail:

akb@mail.ustc.edu.cn, bqyin@ustc.edu.cn).

Ajeet Kumar Bhatia and Avinash Rohra are with Nanjing University of
Aeronautics and Astronautics, Nanjing, P.R. China (e-mail:

ajeet@nuaa.edu.cn, avinashrohra5@gmail.com).

Aneel Kumar Bhatia is with the University of Sindh, Jamshoro, Pakistan
(e-mail: akumar.bhatia@usindh.edu.pk).

layers (FC), for instance, second-order derivatives [14] and

optimal brain damage [15]. The Second Order Derivatives

presented applying the second derivative as a process for

calculating the significance of units in the FC layer. Mariet

[16] presented an approach of the searching subset of distinct

units that do not require to be fine-turned and outcome in

shrinkage in model redundancy. The main deficiency of the

above-mentioned approach is that pruning units do not

significantly reduce the computation time, as we know that

most of the unnecessary units are not from deeper layers

where the cost of computation is reasonably high.

Pruning approaches can be sorted out into two groups: filter

pruning [17] and weight pruning [18]. The filter pruning

approach chooses unnecessary filters and deletes them

entirely, on the other hand, the weight pruning approach

straightly deletes redundant weights of the layer. However,

the weight level pruning approach suffers the non-structured

sparsity in the weight matrix, which is not saving memory

and computational cost, because it needed separate Basic

Linear Algebra Subprograms (BLAS) libraries. In contrast,

the filter pruning permits the model without damaging

structured sparsity and vital to save memory than weight

pruning, thus, it does not require separate BLAS libraries or

hardware. As pruning often guides the network to be sparse,

it is normal to include penalty term on the objective functions,

and it is known as penalty induced sparsity [19]. The

mathematics behind LASSO (the least absolute shrinkage

and select in operator) is to build an L1-penalty norm for

achieving a sparse network, where many parameters are

forced to be 0 for sake of feature selection [20], [21]. Past

methods [22] have highlighted L1-norm-based methods for

model pruning. In contrast with other approaches for

structure pruning, the penalty-induced method can induce the

number of filters towards zero and then prunes filters with

zero values naturally [23]. Considering group LASSO as a

selection function, the author [24] considers filters or

channels in each convolutional layer as separate ‘’group’’,

which have to be penalized. Better to mention, L2-norm is

generally accepted for regularization on vectors of group

weight. While the network approaches converge, it is broadly

adopted that the methods like LASSO should penalize many

filters to keep penalizing until they approach zero and not

letting their values increase.

In the last few years, the hype of using sparse group lasso

(SGL) has been increased. The sparse group lasso method is

presented by [25]. The sparse group LASSO is pool of

regularization approaches, combination of the group LASSO

and the LASSO. The sparse group LASSO penalty produces

a results that obtains the between- and within- group sparsity

concurrently. It allows to powers sparsity at the features level

and groups level concurrently. The platform is given by the

Structure Level Pruning of Efficient Convolutional Neural

Networks with Sparse Group LASSO

Aakash Kumar, Baoqun Yin, Ajeet Kumar Bhatia, Aneel Kumar Bhatia, and Avinash Rohra

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

272doi: 10.18178/ijmlc.2022.12.5.1111

mailto:akb@mail.ustc.edu.cn
mailto:ajeet@nuaa.edu.cn
mailto:akumar.bhatia@usindh.edu.pk

SGL, as in group lasso and lasso, always have the number of

sparse predictor weights, however, several parameters in the

solution are precisely zero. The fact is that SGL is more

advantageous over lasso when the predictor weights are

grouped, as lasso regularizes all the parameters of the

solution evenly. On the other hand, SGL decides amongst

groups and, it can also calculate the sparsity within each

group, unlike group lasso. It can be considered, that SGL can

contribute a vital part in covering up the problem of model

compression in CNNs, where one filter can be considered as

one group, and weights of the filter as group members.

Furthermore, sparsity methods are proven to be very

significant in feature selection, regression learning, and

classification, also for ensemble pruning [26]. In this article,

we present a sparse group lasso-based approach which is a

combination of group lasso and lasso [27] The general idea of

the method is illustrated in the Fig. 1. This approach aids to

achieve filter selection as a group as well as produce a

solution that obtains between filters and within filters sparsity

concurrently. This method is advantageous for the filter

selection of CNN models and each filter highlighted with a

collection of scores is considered as a group. Moreover, our

work is also concerned with recognizing vital filter groups

along with vital scores within the chosen filters.

The article is structured as: Section II contains the current

related work considering structure pruning, section III gives

the deep insight of the methodology used in the article, in

section IV, the complete experiment is described with all the

settings been used in experiments and the pruned models and

their results shown with graphs. Finally, the last section

concludes the article with future work in detail.

Fig. 1. A general idea of the introduced approach: in the initial step, the L1-norm is computed of each filter of each layer, after that the sparse group LASSO is

applied on selected filters and weights of the filters, next all the filter values cascaded from all the layers. Finally, we prune weights of the filters according to

the values of 𝜆1and 𝜆2

II. RELATED WORK

Pruning based on weight removes needless weight

connections with a low score between neural network layers.

Numerous methods based on weight pruning have been

presented to prune unnecessary connections. Presently, the

author in [28] proposed a method of pruning to eliminate

connections whose entire scores are smaller than the

predefined par score. The par score is measured by applying

the standard deviation of weights of the layer. The model is,

afterward, fine-tuned to overcome the accuracy loss.

Furthermore, a compression approach is introduced by

Louizos [29], which uses L-0 sparsity regularization.

However, due to the uneven model structure of these

approaches after pruning unable to achieve real speed gain

without dedicated libraries or hardware.

Meanwhile, several filter level pruning approaches for

eliminating the complete filter have been presented to

maximize the real speed of CNN models. The initial filter

level pruning is based on norm approaches to remove the

filters with a small value of norm. He et al. [30] presented an

approach to choose a filter with an L2 norm function with

softly pruning the chosen filters, while Li et al. [17] presented

an approach for pruning filter with a small value of L1 norm.

In [31], the author presented an approach that measures the

filter value in the batch normalization layer by the L1 norm

criterion. Molchanov [32] calculated the significance of the

feature maps by applying them to perform the square of the

multiplication on the weight value and calculate the filter

gradients as the vital value and measured global filter pruning

in the descending order using First-Order Taylor Expansion.

Aketi [19] calculated the feature-related value, then perform

backpropagation on it, and finally, apply filter pruning

globally with minimum related values.

In [33], the sparse deep neural network was introduced.

This proposed method induced sparsity-induced constraints

to penalize sparsity in network parameters while the network

being trained. After the training, the basic model is pruned

after applying some set of par scores to analyze insignificant

weight values. Unfortunately, the compression results in

unstructured pruning, and therefore despite good reported

results are not applicable as mentioned earlier. On the other

hand, group LASSO is applied for learning structured

sparsity in convolutional neural networks, surprisingly,

outcomes are suggested that they significantly obtain

network speed up for the duration of inference without any

alternative convention algorithms [24]. In a similar kind of

work [22], sparse group sparsity was introduced. The work is

the same in contrast with [33], which is, penalizing

unstructured pruning among network parameters. Once more,

the complete outcome suffers from unstructured sparsity and

therefore, leads to the above-mentioned disadvantages.

Furthermore, in [34], the LASSO penalizing is applied for

CNN channel selection and then consequent pruning. This

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

273

method produced slim architecture with speedup inference

and compacted model size.

In this article, we emphasized a modified version of the

LASSO penalty, also known as group LASSO penalty in the

linear regression task [35], which is significantly applicable

to this end. A formula of group LASSO can be applied to

enforce sparsity on a group level, for instance, all the

members in a group are either all set to 0, or none of them are

set. An additional modification, known as the sparse group

LASSO, can also be applied to enforce further sparsity on the

group of non-sparse variables [36]. In this article, we use this

method by assuming a single feature map as a single group

and weights in a feature map as group members. In this way,

the optimization method can be used to delete the complete

feature map as well as selected weights in the feature map.

Depending on the particular feature map, we achieve

different outcomes, such as feature selection when deleting a

feature map and pruning when deleting features. The method

of group L1 norm in machine learning is fairly well-known

including convex loss function, multi-kernel, and multitask

problems. However, as far as we know, this kind of general

formula was never backed in the CNNs literature, excluding

few particular cases. For instance, the author in [37], applied

a group sparse approach to choosing groups of features

co-occurring in a robotic control problem.

III. METHOD

The representation of our study is to produce a simple

structure to achieve filter pruning. Initially, we provide a

method to measure the feature maps and weights of feature

maps. After that, we introduce tactics for feature map

selection with filter pruning. Recently, filter pruning has been

in the attention of researchers [13] that calculates the

importance of the filter by capped L1- norm, scale factors, or

Shannon entropy. The L1- norm regularization assists two

tasks: 1. It penalizes sparsity for filter selection, 2. It controls

the overfitting as well. Additionally, the L1-regularization

can be applied directly in most current software libraries, and

as compared to the classical weight decay method, it does not

grow the computational cost.

Generally, CNN is considered a feedforward architecture

made of several convolutional layers. We apply 𝐹𝑙 and 𝑀𝑙 to

illustrate the number of filters and channels for 𝑙 − 𝑡ℎ

convolution layer weights 𝑊(𝑙) ∈ ℝ𝑀𝑙×𝐹𝑙×𝐾×𝐾 , where 𝑊

shows the set of all weights in the CNN (𝑊 =
{𝑊1, 𝑊2, … , 𝑊𝐿}), and 𝐾 represent the kernel size in the

architecture. Furthermore, 𝐿 is the number of CNN layers.

For suitability, 𝑊𝑖,𝑗
𝑙 denotes a 2D kernel in the 𝑖 − 𝑡ℎ channel

of the 𝑗 − 𝑡ℎ filter for the 𝑙 − 𝑡ℎ convolutional layer. Finally,

The 𝑖 − 𝑡ℎ layer of architecture 𝑊𝑙 should be denoted for

channels as {𝑊𝑖,:
𝑙 : 1 ≤ 𝑖 ≤ 𝑀𝑙}, and for filters as {𝑊:𝑖

𝑙: 1 ≤

𝑖 ≤ 𝐹𝑙}. When a pruning filter is taking place, its related

feature maps are pruned too, and compression is done in the

𝑖 − 𝑡ℎ layer. The filters in the coming convolutional layer are

pruned too due to the kernels has used in pruned feature maps

in the last layer, and it also saves an extra computation

operation in the 𝑖 + 1 − 𝑡ℎ layer.

As we are aware that the LASSO cannot accept the group

information and chooses a subgroup of features from all

groups. Further, the Correlated variables are selected by the

elastic net. On the other hand, the subset of the groups is

selected by group LASSO. In filters, 𝐹𝑖𝑗 is defined by values

of 𝑠. Each filter 𝐹𝑖 have 𝑑 feature maps. Hence, the feature

maps of the filter shape have a natural group structure. Every

feature map links to a group and every group has 𝑠

sub-feature maps. While we want to select feature maps for a

filter, it is necessary to handle each feature map with 𝑠

sub-feature maps as a unit when picking an significant filter.

And we desire to delete some redundant feature maps in each

filter.

According to the above-mentioned explanation, we have

chosen sparse group LASSO to solve the filter selection

problem. If we consider the weights 𝑤 = {𝑤1 , 𝑤2, … , 𝑤𝑑} as

feature maps of filter 𝑑, and 𝑤𝑖 have 𝑠 values. Then we have

𝑤𝑖 = {𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑠}. Hence, sparse group LASSO can be

described as:

𝐿 = 𝑚𝑖𝑛
𝑤

 
1

2
∥ 𝑋𝑤 − 𝑌 ∥2

2+ 𝜆1 ∥ 𝑤 ∥1+ 𝜆2 ∑  

𝑑

𝑖=1

∥∥𝑤𝑖∥∥2

 s.t. 𝜆1 > 0, 𝜆2 > 0

 (1)

Whereas L is represented to be the squared loss, and 𝑋, 𝑌

shows train input and output, while 𝑤 is trainable parameters.

The second expression regulates the sparsity in the feature

level, finally, the last expression regulates the sparsity in the

group level. For instance, if the value of 𝜆1is set to zero, then

the expression should be called group LASSO, and when the

value of 𝜆2 is set to zero, the expression should be known as

LASSO.

Afterward the weights 𝑤 of feature maps and sub-feature

maps are achieved, the most naive approach is that only

feature maps and sub-feature maps with non-zero weights are

picked. Now we apply �̂� to define that the feature is picked

or not. Further, the size of �̂� is the similar as that of 𝑤. �̂�

achieved by:

�̂�𝑖𝑗 = {
0 if 𝑤𝑖𝑗 = 0

1 others
 (2)

whereas 𝑖 = 1,2, … , 𝑑 and 𝑗 = 1,2, … , 𝑠 . Once the sum of

absolute of 𝑤𝑖 is equivalent to 0, then the weights of the 𝑖 −
𝑡ℎ feature map are completely 0. Thus, the 𝑖 − 𝑡ℎ feature has

to be detached. On the other hand, some sub-feature maps

approach zero weights should also be detached in each filter.

after selection of feature map, the feature maps 𝑋 are

converted into 𝑋�̂�.

We describe two terms; the number of feature maps with

ratio as follows:

 FNum = 𝑑 − ∑  

𝑑

𝑖=1

 ceil (
∑  𝑠

𝑗=1 𝑤𝑖�̂�

𝑠
)

 ratio =
∑  𝑑

𝑖=1 ∑  𝑠
𝑗=1 𝑤𝑖�̂�

𝑑 ∗ 𝑠

 (3)

whereas 𝑐𝑒𝑖𝑙(𝑥) pushes the members of 𝑥 to the near

integers to infinity. Next, FNum illustrates the related

number of feature maps in the filter. At that point, FNum

shows the degree of sparsity between filters. The higher

FNum is, the higher the related number is, and the lower the

sparsity degree between filters is. The ratio represents the

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

274

degree of sparsity in the filters. The minimum ratio is, higher

than the sparsity degree in the filters. For feature map

selection, we want to obtain better accuracy with less ratio

and FNum.

In equation 1, the optimal problem of group LASSO, we

can observe that the optimization problem is the sum of

convex functions [38]. The first term is considered as squared

loss which is smooth. Further, the last two terms show the

non-smooth regularized. This algorithm is based on the

sub-gradient method. It calculates the gradient update

iteratively. The first-order black-box approach is applied at

each iteration. Therefore, only the gradient and function

value is required to estimate and the rate of convergence is

optimal for smooth convex optimization. Moreover, the

projection of Euclidean can be evaluated either linear time or

analytically. Thus, this method can be used on big CNN

architecture such as LeNet, AlexNet, VGGNet, and ResNet.

These features of the algorithm make it reliable to choose the

feature maps of the CNN models.

(a) Accuracy loss comparison with same sparsity in the first

convolutional layers

(b) Accuracy loss comparison with same sparsity in the second convolutional

layer

Fig. 2. Comparision of loss of accuracy with similar sparsity for each convolutional layer of LeNet-5 Model.

TABLE I: ILLUSTRATING OUTCOMES FOR THE LENET-5 ARCHITECTURE ON

THE MNIST DATASET

Approach

Used

Number of Filters

in each layer
Error%

FLOPs

saved

Pruned

Ratio

Baseline
Layer1: 20,

Layer2: 50
0.83 4.40 × 106 -

NIPS’16 [24]
Layer1: 5,

Layer2: 19
0.80 5.97 × 105 86.42%

NIPS’17[39] - 0.86 2.89 × 105 90.47%

Singh[40]
Layer1: 3,

Layer2: 8
0.92 2.14 × 105 95.14%

Ours
Layer1: 2,

Layer2: 6
0.95 2.13 × 105 96.15%

IV. EXPERIMENT SETTINGS

We performed our technique on several standard

architectures and datasets. We have applied CIFAR family

datasets (CIFAR10) on VGGNet (VGG-16) and ImageNet on

AlexNet models, on the other hand, we have used MNIST

datasets (handwritten digits) on the LeNet-5 model. Datasets

are pre-split, for the CIFAR family, datasets are distributed

for 50,000 for train images and 10,000 for test images with 10

classes, and the MNIST dataset is split into 60,000 examples

for the train set and 10,000 examples for the test set with 10

different classes of handwritten numbers. The NVIDIA GTX

TITAN Xp GPU is used for experiments with a Python

framework known as Pytroch. The initial models are trained

from scratch for sake of calculating baseline accuracies in the

test set. The data augmentation is used all through the training

time, which cropped every image arbitrarily into a shape of

32 by 32 with padding set to four and applies a horizontal flip.

Further, we fix the mini-batch size to 100 for the training set

and 1000 for the test set for the VGGNet model. The LeNet

model comparatively is small and takes input 28 by 28 image

size, therefore, we cropped every image randomly into the

shape of 28 by 28, with padding of two and a flip through data

augmentation method. The Stochastic Gradient Descent

(SGD) is used for both models during the trained and

fine-tuned process for about 150 iterations. During this

process, the initial learning rate is set to 0.001 to 0.1 for all

number of iterations. Furthermore, we have also used weight

initialization and different appropriate scores for 𝜆1 and 𝜆2 in

equation 2 are applied to penalize the required sparsity

regularization and grouping influence respectively in the

network. Lastly, we set all extra parameters the same as used

in baseline training.

A. LeNet-5 on MNIST dataset

This section describes the usefulness of our approach on

traditional CNN architecture, known as LeNet-5 using

MNIST datasets. The LeNet-5, here number five shows the

number of layers in the network, the input layer with two

convolutional layers and two fully connected (FC) layers

with a total of 431K parameters. This network has a baseline

accuracy of 99.13% on the MNIST datasets. We apply our

sparse group lasso method that measures the filter and filter

weight importance layer-wise and apply fine-tuning process

iteratively. We adjust the value of 𝜆1 = 0.0001 in equation

D(2) to compute the filter importance in each iteration of

pruning. The initial learning rate is set to 0.001 to 0.1 for all

number of iterations for this experiment. Comparing with the

past methods given in Table I, we have a considerably greater

pruned ratio with Flop’s compression is the higher and

negligible loss in the accuracy. This shows the greatness of

our introduced approach for measuring filter importance

against the past approaches. It could be seen in the Fig. 2(a)

that the accuracy of the three approaches would decrease with

the rise in pruning ratio in the first convolutional layer.

Additionally, there is no deceptive dissimilarity among these

algorithms. It can be seen that the proposed method`s

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

275

accuracy has minor enhancement when the pruning ratio is

dropped illustrated in Fig. 2(b). This might be due to our

method neglect over-fitting to some degree under that kind of

situation.

TABLE II: PRUNING RESULTS OF THE ALEXNET MODEL PERFORMED ON IMAGENET.

Method Accuracy Param-baseline Parameters Pruned FLOPs Saved

Weight sum[17] 54.99% 6.0 x 106 5.4 x 106 73.3% 43.8%

Slimming[31] 53.87% - - 70.5% 46.9%

Group Lasso[24] 54.31% 6.0 × 106 3.5 × 105 67.4% 51.4%

ThiNet[41] 53.67% - - 75.6% 55.9%

Jiang[42] 54.63% - 76.1% 63.7%

Ours 54.91% 6.0 × 106 3.1 x 105 75.9% 67.8%

B. AlexNet on ImageNet Dataset

The ImageNet dataset splits into 1.2 million training sets

and 50 thousand test sets, respectively, with 1000 different

classes. Moreover, AlexNet contains around 61 million

parameters that are distributed into five convolutional layers

with 3 fully connected (FC) layers and a softmax layer. We

set the 𝜆1 = 5 × 10−6 and 𝜆2 = 10−4 and trained the model

for 80 iterations. Table II shows the result of compressing

AlexNet with our proposed method. It is clear that according

to obtained accuracy, our method pruned 75.9% of

parameters with no loss of accuracy, comparing to the group

LASSO which achieved around 66.7% parameters pruned

and Jiang et al [42] has pruned 63.7% parameters and suffer a

loss in accuracy of 0.17% and 0.28% respectively. It is

confirmed that if more compression rates applied using EGL

or group LASSO, it may lead to greater loss in performance.

Fig. 3 illustrates the accuracy of different classification

problems over pruned FLOPs, achieved by distinguishing the

structured regularization. Our Sparse Group Lasso is an

effective structure regularization that generally does well

than other state-of-art methods.

C. VGG16 on CIFAR10 dataset

The VGG16 model, here 16 shows the number of layers, in

which it has 1 input layer, 13 convolutional layers with 2

fully connected (FC) layers, there are about 138 million

parameters across these layers. We use our method on

VGG16 for 180 iterations applying the 𝜆1 = 1 × 10−5 and

𝜆2 = 10−6. Detailed outcomes are presented in table. III for

VGG16 pruning through our model. Our approach has

performed well on parameters pruning contrary to work

presented in table. II by pruning 96.1% parameters, whereas

in [17] it only prunes 64.0% of parameters. Moreover, we

have achieved FLOPs reduction of about 83.55% against the

work in [17] achieved 34.2% of FLOPs reduction. Moreover,

Fig. 4 illustrates the results of filter pruning with SGL

pruning rate starts from 10 to 100%. The pruning outcomes

show that data distribution shares among different

convolutional layers. With some convolutional layers,

pruning only 10% of information can achieve over 70%

reduction in filters.

Fig. 3. Comparison between Sparse Group Lasso (ours) and other state-of-art

methods.

TABLE III: PRUNING RESULTS OF THE VGG-16 MODEL PERFORMED ON CIFAR-10

Method Baseline Accuracy Param-baseline Parameters Pruned

Li [41] 93.25% 93.30% 1.5 x 107 5.4 x 106 64.0%

Slimming[31] 93.66% 93.80% - - 88.5%

Entropy[43] 93.72% 93.97% 1.5 × 107 3.5 × 105 76.4%

Aketi[19] 93.75% 93.80% - - 90.5%

Kumar[13] 93.77% 93.81% 1.5 x 107 3.0 x 105 92.7%

Ours 93.76% 93.80% - 3.1 x 105 96.1%

Fig. 4. The VGG16 pruning results on the CIFAR-10 dataset with a sparse

group lasso pruning rate from 10 to 100%.

V. CONCLUSION

In this article, we presented a fresh new methodology to

measure the impact of the filters, which computes the

valuation of filters and weight of the filters based on the

effectiveness driven by these filters. We proposed a sparse

group lasso approach for filter level pruning, by assuming a

single feature map as a single group and weights in a feature

map as group members. In this way, the optimization method

can be used to delete the complete feature map as well as

select weights in the feature map according to importance

valuation. Hence, generated to formulate the method of

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

276

pruning. Moreover, the effectiveness of the filters in each

layer of CNNs is also mentioned and the results illustrated

that in various layers. The large range of filters have a slight

impact on the performance of the model therefore, it is

necessary to remove those filters from the layer.

Considerable study shows the benefit of our proposed

approach by comparing the present methods. Particularly,

VGG-16 architecture used on CIFAR-10 datasets, our

introduced methodology can effectively prune 96.1%

parameters with FLOPs saved approx. 83.55%, and a slight

accuracy gain, these results show that our method has the

upper hand against some benchmark approaches. In future,

we will try to implement this method to more complex

architectures such as ResNet and GoogLeNet with huge

datasets like ImageNet.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Aakash Kumar devised the project, the main conceptual

ideas and proof outline. Baoqun YIN worked out almost all of

the technical details, and performed the numerical

calculations for the suggested experiment. Both Ajeet Kumar

Bhatia and Aneel Kumar Bhatia contributed to the final

version of the manuscript. And Avinash Rohra wrote the

article.

REFERENCES

[1] M. Park, “JGAN: A joint formulation of GAN for synthesizing images

and labels,” IEEE Access, vol. 8, pp. 188883–188888, 2020, doi:
10.1109/ACCESS.2020.3031292.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: unified, real-time object detection,” in Proc. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las

Vegas, NV, USA, Jun. 2016, pp. 779–788. doi:

10.1109/CVPR.2016.91.
[3] M. J. Norval, Z. Wang, and Y. Sun, “Evaluation of image processing

technologies for pulmonary tuberculosis detection based on deep

learning convolutional neural networks,” JAIT, vol. 12, no. 3, 2021, doi:
10.12720/jait.12.3.253-259.

[4] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,

“Encoder-decoder with ATROUS separable convolution for semantic
image segmentation,” in Proc. Computer Vision – ECCV 2018, vol.

11211.

[5] S. Bunrit, N. Kerdprasop, and K. Kerdprasop, “Improving the
representation of CNN based features by Autoencoder for a task of

construction material image classification,” Journal of Advances in

Information Technology, vol. 11, pp. 192–199, Jan. 2020, doi:
10.12720/jait.11.4.192-199.

[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence

Learning with Neural Networks,” arXiv:1409.3215 [cs], Dec. 2014.

[7] V. Mnih et al., “Playing ATARI with deep reinforcement learning,”

arXiv:1312.5602 [cs], Dec. 2013.

[8] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a
Neural Network,” arXiv:1503.02531 [cs, stat], Mar. 2015.

[9] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep

convolutional networks for classification and detection,”
arXiv:1505.06798 [cs], Nov. 2015.

[10] M. Ali, B. Yin, A. Kumar, A. M. Sheikh, and H. Bilal, “Reduction of

Multiplications in Convolutional Neural Networks,” in Proc. 2020
39th Chinese Control Conference (CCC), Jul. 2020, pp. 7406–7411,

doi: 10.23919/CCC50068.2020.9188843.

[11] M. Nagel, M. V. Baalen, T. Blankevoort, and M. Welling, “Data-Free
Quantization Through Weight Equalization and Bias Correction,” in

Proc. 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), Seoul, Korea (South), Oct. 2019, pp. 1325–1334, doi:

10.1109/ICCV.2019.00141.

[12] Y. Li et al., “Weight-dependent Gates for Differentiable Neural
Network Pruning,” arXiv:2007.02066 [cs], Aug. 2020.

[13] A. Kumar, A. M. Shaikh, Y. Li, H. Bilal, and B. Yin, “Pruning filters

with L1-norm and capped L1-norm for CNN compression,” Appl Intell,

vol. 51, no. 2, pp. 1152–1160, Feb. 2021, doi:
10.1007/s10489-020-01894-y.

[14] B. Hassibi and D. Stork, “Second order derivatives for network pruning:

Optimal Brain Surgeon,” Advances in Neural Information Processing
Systems, vol. 5, 1992.

[15] [15] Y. LeCun, J. S. Denker, and S. A. Solla, Optimal Brain Damage,

p. 8.
[16] Z. Mariet and S. Sra, “Diversity networks: neural network compression

using determinantal point processes,” arXiv:1511.05077 [cs], Apr.

2017.
[17] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning

Filters for Efficient ConvNets,” arXiv:1608.08710 [cs], Mar. 2017.

[18] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman

coding,” arXiv:1510.00149 [cs], Feb. 2016.

[19] S. A. Aketi, S. Roy, A. Raghunathan, and K. Roy, “Gradual channel
pruning while training using feature relevance scores for convolutional

neural networks,” IEEE Access, vol. 8, pp. 171924–171932, 2020.

[20] L. Jacob, G. Obozinski, and J.-P. Vert, “Group lasso with overlap and
graph lasso,” in Proc. the 26th Annual International Conference on

Machine Learning, New York, NY, USA, Jun. 2009, pp. 433–440.

[21] J. A. Villaruz, “Deep convolutional neural network feature extraction
for berry trees classification,” JAIT, vol. 12, no. 3, 2021, doi:

10.12720/jait.12.3.226-233.

[22] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group
sparse regularization for deep neural networks,” Neurocomputing, vol.

241, pp. 81–89, Jun. 2017, doi: 10.1016/j.neucom.2017.02.029.

[23] J. M. Alvarez and M. Salzmann, “Learning the number of neurons in
deep networks,” arXiv:1611.06321 [cs], Oct. 2018.

[24] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning Structured

Sparsity in Deep Neural Networks,” arXiv:1608.03665 [cs, stat], Oct.
2016, Accessed: Jul. 15, 2021.

[25] J. Friedman, T. Hastie, and R. Tibshirani, “A note on the group lasso

and a sparse group lasso,” arXiv:1001.0736 [math, stat], Jan. 2010.
[26] A. K. Fletcher, S. Rangan, and V. K. Goyal, “Necessary and sufficient

conditions on sparsity pattern recovery,” IEEE Trans. Inform. Theory,

vol. 55, no. 12, Art. no. 12, Dec. 2009, doi:
10.1109/TIT.2009.2032726.

[27] J. Peng et al., “Regularized multivariate regression for identifying
master predictors with application to integrative genomics study of

breast cancer,” Ann Appl Stat, vol. 4, no. 1, Art. no. 1, Mar. 2010, doi:

10.1214/09-AOAS271SUPP.
[28] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both Weights And

Connections For Efficient Neural Networks,” arXiv:1506.02626 [cs],

Oct. 2015.
[29] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural

networks through L_0 regularization,” arXiv:1712.01312 [cs, stat],

Jun. 2018.
[30] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for

accelerating deep convolutional neural networks,” arXiv:1808.06866

[cs], Aug. 2018, Accessed: May 26, 2021.
[31] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning

efficient convolutional networks through network slimming,”

arXiv:1708.06519 [cs], Aug. 2017.
[32] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz,

“Importance estimation for neural network pruning,”

arXiv:1906.10771 [cs, stat], Jun. 2019.
[33] B. Y. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy, “Sparse

convolutional neural networks,” in Proc. 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,

Jun. 2015, pp. 806–814.

[34] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very

deep neural networks,” arXiv:1707.06168 [cs], Aug. 2017.
[35] M. Yuan and Y. Lin, “Model selection and estimation in regression

with grouped variables,” J Royal Statistical Soc B, vol. 68, no. 1, pp.

49–67, Feb. 2006.
[36] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group

lasso,” Journal of Computational and Graphical Statistics, vol. 22, no.

2, pp. 231–245, Apr. 2013, doi: 10.1080/10618600.2012.681250.
[37] W. Zhu et al., “Co-occurrence feature learning for skeleton based

action recognition using regularized deep LSTM networks,” AAAI, vol.

30, no. 1, Mar. 2016.
[38] Convex Analysis. (1997). [Online]. Available:

https://press.princeton.edu/books/paperback/9780691015866/convex-

analysis
[39] K. Neklyudov, D. Molchanov, A. Ashukha, and D. P. Vetrov,

“Structured Bayesian pruning via log-normal multiplicative noise,”

Advances in Neural Information Processing Systems, vol. 30, 2017.

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

277

[40] P. Singh, V. S. R. Kadi, N. Verma, and V. P. Namboodiri, “Stability

based filter pruning for accelerating Deep CNNs,” arXiv:1811.08321

[cs], Nov. 2018.
[41] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method

for deep neural network compression,” arXiv:1707.06342 [cs], Jul.

2017.
[42] C. Jiang, G. Li, C. Qian, and K. Tang, “Efficient DNN neuron

pruning by minimizing layer-wise nonlinear reconstruction error,” in

Proc. the Twenty-Seventh International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, Jul. 2018, pp. 2298–

2304.

[43] Y. Li, L. Wang, S. Peng, A. Kumar, and B. Yin, “Using feature
entropy to guide filter pruning for efficient convolutional networks,”

in Proc. Artificial Neural Networks and Machine Learning – ICANN

2019: Deep Learning, Cham, 2019, pp. 263–274.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

Aakash Kumar received the B.S. degree in electronic
engineering from the University of Sindh, Jamshoro,

Pakistan, in 2011, and the M.S degree in control science

and engineering from the University of Science and
Technology of China (USTC), China, in 2017, where he

is currently pursuing the Ph.D. degree with the

Department of Automation. His main interests include
deep learning, deep compression models, and reduction

of multiplications for CNNs.

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

278

https://creativecommons.org/licenses/by/4.0/

