
  

 

Abstract—The rapid progress of convolutional neural 

networks (CNNs) in multiple applications of practical 

implementation is generally hindered by an upsurge in network 

size and computational complexity. Currently, engineers focus 

on reducing these problems through compressing the CNNs by 

pruning filters and their weights. In this paper, we present a 

fresh and easy-to-use pruning approach that reduces the model 

size by eliminating complete filters and filter weights based on 

the sparse group LASSO (Least Absolute Shrinkage and 

Selection Operator) method across the convolutional layers. 

More precisely, it regulates the sparsity at the feature level and 

the group level. During the process of pruning, the unnecessary 

filters with their weights eliminate directly without sacrificing 

accuracy in the test, resulting in much compact and slimmer 

architectures. We experimentally compute the effectiveness of 

our methodology with various state-of-art CNN models on 

various benchmark data sets. Mainly, CIFAR-10 data sets 

applied on VGG-16 model and reduce the parameters approx. 

96.1% and saved approx. 83.55% float-point-operations 

(FLOPs) without sacrificing accuracy and have obtained 

development in state-of-art. 

 

Index Terms—Convolutional neural networks, filter pruning, 

FLOPs, sparse group LASSO.  

 

I. INTRODUCTION 

Deep convolutional neural networks (CNNs) have been 

effective in several computer vision problems including 

image generation [1], object detection [2], [3], image 

segmentation [4], [5], natural language processing [6], image 

processing [3], and robotic control [7] due to the 

effectiveness of graphics processing units (GPUs) in the last 

few years. CNN's have a wide and deep structure; therefore, it 

requires a huge parameter storage memory and 

computational cost. Thus, a process of reducing the size of 

CNN's is needed to embed CNNs into embedded hardware. 

Amongst several approaches of compressing CNN's 

including knowledge distilling [8], matrix decomposition [9], 

[10], weight quantization [11], and pruning [12], [13]. 

Currently, the pruning approach that selects and removes 

redundant parameters without considerably corrupting the 

model performance has been progressively researched. Early 

approaches for pruning are generally for fully connected 
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layers (FC), for instance, second-order derivatives [14] and 

optimal brain damage [15]. The Second Order Derivatives 

presented applying the second derivative as a process for 

calculating the significance of units in the FC layer. Mariet 

[16] presented an approach of the searching subset of distinct 

units that do not require to be fine-turned and outcome in 

shrinkage in model redundancy. The main deficiency of the 

above-mentioned approach is that pruning units do not 

significantly reduce the computation time, as we know that 

most of the unnecessary units are not from deeper layers 

where the cost of computation is reasonably high.   

Pruning approaches can be sorted out into two groups: filter 

pruning [17] and weight pruning [18]. The filter pruning 

approach chooses unnecessary filters and deletes them 

entirely, on the other hand, the weight pruning approach 

straightly deletes redundant weights of the layer. However, 

the weight level pruning approach suffers the non-structured 

sparsity in the weight matrix, which is not saving memory 

and computational cost, because it needed separate Basic 

Linear Algebra Subprograms (BLAS) libraries. In contrast, 

the filter pruning permits the model without damaging 

structured sparsity and vital to save memory than weight 

pruning, thus, it does not require separate BLAS libraries or 

hardware. As pruning often guides the network to be sparse, 

it is normal to include penalty term on the objective functions, 

and it is known as penalty induced sparsity [19]. The 

mathematics behind LASSO (the least absolute shrinkage 

and select in operator) is to build an L1-penalty norm for 

achieving a sparse network, where many parameters are 

forced to be 0 for sake of feature selection [20], [21]. Past 

methods [22] have highlighted L1-norm-based methods for 

model pruning. In contrast with other approaches for 

structure pruning, the penalty-induced method can induce the 

number of filters towards zero and then prunes filters with 

zero values naturally [23]. Considering group LASSO as a 

selection function, the author [24] considers filters or 

channels in each convolutional layer as separate ‘’group’’, 

which have to be penalized. Better to mention, L2-norm is 

generally accepted for regularization on vectors of group 

weight. While the network approaches converge, it is broadly 

adopted that the methods like LASSO should penalize many 

filters to keep penalizing until they approach zero and not 

letting their values increase. 

In the last few years, the hype of using sparse group lasso 

(SGL) has been increased. The sparse group lasso method is 

presented by [25]. The sparse group LASSO is pool of 

regularization approaches, combination of the group LASSO 

and the LASSO. The sparse group LASSO penalty produces 

a results that obtains the between- and within- group sparsity 

concurrently. It allows to powers sparsity at the features level 

and groups level concurrently. The platform is given by the 
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SGL, as in group lasso and lasso, always have the number of 

sparse predictor weights, however, several parameters in the 

solution are precisely zero. The fact is that SGL is more 

advantageous over lasso when the predictor weights are 

grouped, as lasso regularizes all the parameters of the 

solution evenly. On the other hand, SGL decides amongst 

groups and, it can also calculate the sparsity within each 

group, unlike group lasso. It can be considered, that SGL can 

contribute a vital part in covering up the problem of model 

compression in CNNs, where one filter can be considered as 

one group, and weights of the filter as group members. 

Furthermore, sparsity methods are proven to be very 

significant in feature selection, regression learning, and 

classification, also for ensemble pruning [26]. In this article, 

we present a sparse group lasso-based approach which is a 

combination of group lasso and lasso [27] The general idea of 

the method is illustrated in the Fig. 1. This approach aids to 

achieve filter selection as a group as well as produce a 

solution that obtains between filters and within filters sparsity 

concurrently. This method is advantageous for the filter 

selection of CNN models and each filter highlighted with a 

collection of scores is considered as a group. Moreover, our 

work is also concerned with recognizing vital filter groups 

along with vital scores within the chosen filters. 

The article is structured as: Section II contains the current 

related work considering structure pruning, section III gives 

the deep insight of the methodology used in the article, in 

section IV, the complete experiment is described with all the 

settings been used in experiments and the pruned models and 

their results shown with graphs. Finally, the last section 

concludes the article with future work in detail. 

 

 
Fig. 1. A general idea of the introduced approach: in the initial step, the L1-norm is computed of each filter of each layer, after that the sparse group LASSO is 

applied on selected filters and weights of the filters, next all the filter values cascaded from all the layers. Finally, we prune weights of the filters according to 

the values of 𝜆1and 𝜆2 

 

II. RELATED WORK 

Pruning based on weight removes needless weight 

connections with a low score between neural network layers. 

Numerous methods based on weight pruning have been 

presented to prune unnecessary connections. Presently, the 

author in [28] proposed a method of pruning to eliminate 

connections whose entire scores are smaller than the 

predefined par score. The par score is measured by applying 

the standard deviation of weights of the layer. The model is, 

afterward, fine-tuned to overcome the accuracy loss. 

Furthermore, a compression approach is introduced by 

Louizos [29], which uses L-0 sparsity regularization. 

However, due to the uneven model structure of these 

approaches after pruning unable to achieve real speed gain 

without dedicated libraries or hardware. 

Meanwhile, several filter level pruning approaches for 

eliminating the complete filter have been presented to 

maximize the real speed of CNN models. The initial filter 

level pruning is based on norm approaches to remove the 

filters with a small value of norm. He et al. [30] presented an 

approach to choose a filter with an L2 norm function with 

softly pruning the chosen filters, while Li et al. [17] presented 

an approach for pruning filter with a small value of L1 norm. 

In [31], the author presented an approach that measures the 

filter value in the batch normalization layer by the L1 norm 

criterion. Molchanov [32] calculated the significance of the 

feature maps by applying them to perform the square of the 

multiplication on the weight value and calculate the filter 

gradients as the vital value and measured global filter pruning 

in the descending order using First-Order Taylor Expansion. 

Aketi [19] calculated the feature-related value, then perform 

backpropagation on it, and finally, apply filter pruning 

globally with minimum related values. 

In [33], the sparse deep neural network was introduced. 

This proposed method induced sparsity-induced constraints 

to penalize sparsity in network parameters while the network 

being trained. After the training, the basic model is pruned 

after applying some set of par scores to analyze insignificant 

weight values. Unfortunately, the compression results in 

unstructured pruning, and therefore despite good reported 

results are not applicable as mentioned earlier. On the other 

hand, group LASSO is applied for learning structured 

sparsity in convolutional neural networks, surprisingly, 

outcomes are suggested that they significantly obtain 

network speed up for the duration of inference without any 

alternative convention algorithms [24]. In a similar kind of 

work [22], sparse group sparsity was introduced. The work is 

the same in contrast with [33], which is, penalizing 

unstructured pruning among network parameters. Once more, 

the complete outcome suffers from unstructured sparsity and 

therefore, leads to the above-mentioned disadvantages. 

Furthermore, in [34], the LASSO penalizing is applied for 

CNN channel selection and then consequent pruning. This 
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method produced slim architecture with speedup inference 

and compacted model size. 

In this article, we emphasized a modified version of the 

LASSO penalty, also known as group LASSO penalty in the 

linear regression task [35], which is significantly applicable 

to this end. A formula of group LASSO can be applied to 

enforce sparsity on a group level, for instance, all the 

members in a group are either all set to 0, or none of them are 

set. An additional modification, known as the sparse group 

LASSO, can also be applied to enforce further sparsity on the 

group of non-sparse variables [36]. In this article, we use this 

method by assuming a single feature map as a single group 

and weights in a feature map as group members. In this way, 

the optimization method can be used to delete the complete 

feature map as well as selected weights in the feature map. 

Depending on the particular feature map, we achieve 

different outcomes, such as feature selection when deleting a 

feature map and pruning when deleting features. The method 

of group L1 norm in machine learning is fairly well-known 

including convex loss function, multi-kernel, and multitask 

problems.  However, as far as we know, this kind of general 

formula was never backed in the CNNs literature, excluding 

few particular cases. For instance, the author in [37], applied 

a group sparse approach to choosing groups of features 

co-occurring in a robotic control problem. 

 

III. METHOD 

The representation of our study is to produce a simple 

structure to achieve filter pruning. Initially, we provide a 

method to measure the feature maps and weights of feature 

maps. After that, we introduce tactics for feature map 

selection with filter pruning. Recently, filter pruning has been 

in the attention of researchers [13] that calculates the 

importance of the filter by capped L1- norm, scale factors, or 

Shannon entropy. The L1- norm regularization assists two 

tasks: 1. It penalizes sparsity for filter selection, 2. It controls 

the overfitting as well. Additionally, the L1-regularization 

can be applied directly in most current software libraries, and 

as compared to the classical weight decay method, it does not 

grow the computational cost. 

Generally, CNN is considered a feedforward architecture 

made of several convolutional layers. We apply 𝐹𝑙 and  𝑀𝑙 to 

illustrate the number of filters and channels for 𝑙 − 𝑡ℎ 

convolution layer weights 𝑊(𝑙) ∈  ℝ𝑀𝑙×𝐹𝑙×𝐾×𝐾 , where 𝑊 

shows the set of all weights in the CNN (𝑊 =
{𝑊1, 𝑊2, … , 𝑊𝐿}), and 𝐾  represent the kernel size in the 

architecture. Furthermore, 𝐿 is the number of CNN layers. 

For suitability, 𝑊𝑖,𝑗
𝑙  denotes a 2D kernel in the 𝑖 − 𝑡ℎ channel 

of the 𝑗 − 𝑡ℎ filter for the 𝑙 − 𝑡ℎ convolutional layer. Finally, 

The 𝑖 − 𝑡ℎ layer of architecture 𝑊𝑙  should be denoted for 

channels as {𝑊𝑖,:
𝑙 : 1 ≤ 𝑖 ≤ 𝑀𝑙}, and for filters as {𝑊:𝑖

𝑙: 1 ≤

𝑖 ≤ 𝐹𝑙}. When a pruning filter is taking place, its related 

feature maps are pruned too, and compression is done in the 

𝑖 − 𝑡ℎ layer. The filters in the coming convolutional layer are 

pruned too due to the kernels has used in pruned feature maps 

in the last layer, and it also saves an extra computation 

operation in the 𝑖 + 1 − 𝑡ℎ layer. 

As we are aware that the LASSO cannot accept the group 

information and chooses a subgroup of features from all 

groups. Further, the Correlated variables are selected by the 

elastic net. On the other hand, the subset of the groups is 

selected by group LASSO. In filters, 𝐹𝑖𝑗 is defined by values 

of 𝑠. Each filter 𝐹𝑖 have 𝑑 feature maps. Hence, the feature 

maps of the filter shape have a natural group structure. Every 

feature map links to a group and every group has 𝑠 

sub-feature maps. While we want to select feature maps for a 

filter, it is necessary to handle each feature map with 𝑠 

sub-feature maps as a unit when picking an significant filter. 

And we desire to delete some redundant feature maps in each 

filter. 

According to the above-mentioned explanation, we have 

chosen sparse group LASSO to solve the filter selection 

problem. If we consider the weights 𝑤 = {𝑤1 , 𝑤2, … , 𝑤𝑑} as 

feature maps of filter 𝑑, and 𝑤𝑖  have 𝑠 values. Then we have 

𝑤𝑖 = {𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑠}. Hence, sparse group LASSO can be 

described as: 

𝐿 = 𝑚𝑖𝑛
𝑤

 
1

2
∥ 𝑋𝑤 − 𝑌 ∥2

2+ 𝜆1 ∥ 𝑤 ∥1+ 𝜆2 ∑  

𝑑

𝑖=1

∥∥𝑤𝑖∥∥2

 s.t. 𝜆1 > 0, 𝜆2 > 0

 (1) 

Whereas L is represented to be the squared loss, and 𝑋, 𝑌 

shows train input and output, while 𝑤 is trainable parameters. 

The second expression regulates the sparsity in the feature 

level, finally, the last expression regulates the sparsity in the 

group level. For instance, if the value of 𝜆1is set to zero, then 

the expression should be called group LASSO, and when the 

value of 𝜆2 is set to zero, the expression should be known as 

LASSO. 

Afterward the weights 𝑤  of feature maps and sub-feature 

maps are achieved, the most naive approach is that only 

feature maps and sub-feature maps with non-zero weights are 

picked. Now we apply �̂� to define that the feature is picked 

or not. Further, the size of �̂� is the similar as that of 𝑤. �̂� 

achieved by: 

�̂�𝑖𝑗 = {
0  if 𝑤𝑖𝑗 = 0

1  others 
  (2) 

whereas  𝑖 = 1,2, … , 𝑑 and 𝑗 = 1,2, … , 𝑠 . Once the sum of 

absolute of 𝑤𝑖  is equivalent to 0, then the weights of the 𝑖 −
𝑡ℎ feature map are completely 0. Thus, the 𝑖 − 𝑡ℎ feature has 

to be detached. On the other hand, some sub-feature maps 

approach zero weights should also be detached in each filter. 

after selection of feature map, the feature maps 𝑋  are 

converted into 𝑋�̂�. 

We describe two terms; the number of feature maps with 

ratio as follows: 

 FNum = 𝑑 − ∑  

𝑑

𝑖=1

 ceil (
∑  𝑠

𝑗=1 𝑤𝑖�̂�

𝑠
)

 ratio =
∑  𝑑

𝑖=1 ∑  𝑠
𝑗=1 𝑤𝑖�̂�

𝑑 ∗ 𝑠

 (3) 

whereas 𝑐𝑒𝑖𝑙(𝑥)  pushes the members of 𝑥  to the near 

integers to infinity. Next, FNum  illustrates the related 

number of feature maps in the filter. At that point, FNum 

shows the degree of sparsity between filters. The higher 

FNum is, the higher the related number is, and the lower the 

sparsity degree between filters is. The ratio represents the 
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degree of sparsity in the filters. The minimum ratio is, higher 

than the sparsity degree in the filters. For feature map 

selection, we want to obtain better accuracy with less ratio 

and FNum. 

In equation 1, the optimal problem of group LASSO, we 

can observe that the optimization problem is the sum of 

convex functions [38]. The first term is considered as squared 

loss which is smooth. Further, the last two terms show the 

non-smooth regularized. This algorithm is based on the 

sub-gradient method. It calculates the gradient update 

iteratively. The first-order black-box approach is applied at 

each iteration. Therefore, only the gradient and function 

value is required to estimate and the rate of convergence is 

optimal for smooth convex optimization. Moreover, the 

projection of Euclidean can be evaluated either linear time or 

analytically. Thus, this method can be used on big CNN 

architecture such as LeNet, AlexNet, VGGNet, and ResNet. 

These features of the algorithm make it reliable to choose the 

feature maps of the CNN models. 

 

 
 

(a) Accuracy loss comparison with same sparsity in the first 

convolutional layers 

(b) Accuracy loss comparison with same sparsity in the second convolutional 

layer 

Fig. 2.  Comparision of loss of accuracy with similar sparsity for each convolutional layer of LeNet-5 Model. 
 

TABLE I: ILLUSTRATING OUTCOMES FOR THE LENET-5 ARCHITECTURE ON 

THE MNIST DATASET 

Approach 

Used 

Number of Filters 

in each layer 
Error% 

FLOPs 

saved 

Pruned 

Ratio 

Baseline 
Layer1: 20, 

Layer2: 50 
0.83 4.40 × 106 - 

NIPS’16 [24] 
Layer1: 5, 

Layer2: 19 
0.80 5.97 × 105 86.42% 

NIPS’17[39] - 0.86 2.89 × 105 90.47% 

Singh[40] 
Layer1: 3, 

Layer2: 8 
0.92 2.14 × 105 95.14% 

Ours 
Layer1: 2, 

Layer2: 6 
0.95 2.13 × 105 96.15% 

IV. EXPERIMENT SETTINGS 

We performed our technique on several standard 

architectures and datasets. We have applied CIFAR family 

datasets (CIFAR10) on VGGNet (VGG-16) and ImageNet on 

AlexNet models, on the other hand, we have used MNIST 

datasets (handwritten digits) on the LeNet-5 model. Datasets 

are pre-split, for the CIFAR family, datasets are distributed 

for 50,000 for train images and 10,000 for test images with 10 

classes, and the MNIST dataset is split into 60,000 examples 

for the train set and 10,000 examples for the test set with 10 

different classes of handwritten numbers. The NVIDIA GTX 

TITAN Xp GPU is used for experiments with a Python 

framework known as Pytroch. The initial models are trained 

from scratch for sake of calculating baseline accuracies in the 

test set. The data augmentation is used all through the training 

time, which cropped every image arbitrarily into a shape of 

32 by 32 with padding set to four and applies a horizontal flip. 

Further, we fix the mini-batch size to 100 for the training set 

and 1000 for the test set for the VGGNet model. The LeNet 

model comparatively is small and takes input 28 by 28 image 

size, therefore, we cropped every image randomly into the 

shape of 28 by 28, with padding of two and a flip through data 

augmentation method. The Stochastic Gradient Descent 

(SGD) is used for both models during the trained and 

fine-tuned process for about 150 iterations. During this 

process, the initial learning rate is set to 0.001 to 0.1 for all 

number of iterations. Furthermore, we have also used weight 

initialization and different appropriate scores for 𝜆1 and 𝜆2 in 

equation 2 are applied to penalize the required sparsity 

regularization and grouping influence respectively in the 

network. Lastly, we set all extra parameters the same as used 

in baseline training. 

A. LeNet-5 on MNIST dataset 

This section describes the usefulness of our approach on 

traditional CNN architecture, known as LeNet-5 using 

MNIST datasets. The LeNet-5, here number five shows the 

number of layers in the network, the input layer with two 

convolutional layers and two fully connected (FC) layers 

with a total of 431K parameters. This network has a baseline 

accuracy of 99.13% on the MNIST datasets. We apply our 

sparse group lasso method that measures the filter and filter 

weight importance layer-wise and apply fine-tuning process 

iteratively. We adjust the value of 𝜆1 =  0.0001 in equation 

D(2) to compute the filter importance in each iteration of 

pruning. The initial learning rate is set to 0.001 to 0.1 for all 

number of iterations for this experiment. Comparing with the 

past methods given in Table I, we have a considerably greater 

pruned ratio with Flop’s compression is the higher and 

negligible loss in the accuracy. This shows the greatness of 

our introduced approach for measuring filter importance 

against the past approaches. It could be seen in the Fig. 2(a) 

that the accuracy of the three approaches would decrease with 

the rise in pruning ratio in the first convolutional layer. 

Additionally, there is no deceptive dissimilarity among these 

algorithms. It can be seen that the proposed method`s 
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accuracy has minor enhancement when the pruning ratio is 

dropped illustrated in Fig. 2(b). This might be due to our 

method neglect over-fitting to some degree under that kind of 

situation. 

 
TABLE II: PRUNING RESULTS OF THE ALEXNET MODEL PERFORMED ON IMAGENET. 

Method Accuracy Param-baseline Parameters Pruned FLOPs Saved 

Weight sum[17] 54.99% 6.0 x 106 5.4 x 106 73.3% 43.8% 

Slimming[31] 53.87% - - 70.5% 46.9% 

Group Lasso[24] 54.31% 6.0 × 106 3.5 × 105 67.4% 51.4% 

ThiNet[41] 53.67% - - 75.6% 55.9% 

Jiang[42] 54.63% -  76.1% 63.7% 

Ours 54.91% 6.0 × 106 3.1 x 105 75.9% 67.8% 

 

B. AlexNet on ImageNet Dataset 

The ImageNet dataset splits into 1.2 million training sets 

and 50 thousand test sets, respectively, with 1000 different 

classes. Moreover, AlexNet contains around 61 million 

parameters that are distributed into five convolutional layers 

with 3 fully connected (FC) layers and a softmax layer. We 

set the 𝜆1 = 5 × 10−6 and 𝜆2 =  10−4 and trained the model 

for 80 iterations. Table II shows the result of compressing 

AlexNet with our proposed method. It is clear that according 

to obtained accuracy, our method pruned 75.9% of 

parameters with no loss of accuracy, comparing to the group 

LASSO which achieved around 66.7% parameters pruned 

and Jiang et al [42] has pruned 63.7% parameters and suffer a 

loss in accuracy of 0.17% and 0.28% respectively. It is 

confirmed that if more compression rates applied using EGL 

or group LASSO, it may lead to greater loss in performance. 

Fig. 3 illustrates the accuracy of different classification 

problems over pruned FLOPs, achieved by distinguishing the 

structured regularization. Our Sparse Group Lasso is an 

effective structure regularization that generally does well 

than other state-of-art methods. 

C. VGG16 on CIFAR10 dataset 

The VGG16 model, here 16 shows the number of layers, in 

which it has 1 input layer, 13 convolutional layers with 2 

fully connected (FC) layers, there are about 138 million 

parameters across these layers. We use our method on 

VGG16 for 180 iterations applying the 𝜆1 = 1 × 10−5 and 

𝜆2 =  10−6. Detailed outcomes are presented in table. III for 

VGG16 pruning through our model. Our approach has 

performed well on parameters pruning contrary to work 

presented in table. II by pruning 96.1% parameters, whereas 

in [17] it only prunes 64.0% of parameters. Moreover, we 

have achieved FLOPs reduction of about 83.55% against the 

work in [17] achieved 34.2% of FLOPs reduction. Moreover, 

Fig. 4 illustrates the results of filter pruning with SGL 

pruning rate starts from 10 to 100%. The pruning outcomes 

show that data distribution shares among different 

convolutional layers. With some convolutional layers, 

pruning only 10% of information can achieve over 70% 

reduction in filters. 

 
Fig. 3. Comparison between Sparse Group Lasso (ours) and other state-of-art 

methods. 

 
TABLE III:  PRUNING RESULTS OF THE VGG-16 MODEL PERFORMED ON CIFAR-10 

Method Baseline Accuracy Param-baseline Parameters Pruned 

Li [41] 93.25% 93.30% 1.5 x 107 5.4 x 106 64.0% 

Slimming[31] 93.66% 93.80% - - 88.5% 

Entropy[43] 93.72% 93.97% 1.5 × 107 3.5 × 105 76.4% 

Aketi[19] 93.75% 93.80% - - 90.5% 

Kumar[13] 93.77% 93.81% 1.5 x 107 3.0 x 105 92.7% 

Ours 93.76% 93.80% - 3.1 x 105 96.1% 

 

 
Fig. 4.  The VGG16 pruning results on the CIFAR-10 dataset with a sparse 

group lasso pruning rate from 10 to 100%. 

V. CONCLUSION 

In this article, we presented a fresh new methodology to 

measure the impact of the filters, which computes the 

valuation of filters and weight of the filters based on the 

effectiveness driven by these filters. We proposed a sparse 

group lasso approach for filter level pruning, by assuming a 

single feature map as a single group and weights in a feature 

map as group members. In this way, the optimization method 

can be used to delete the complete feature map as well as 

select weights in the feature map according to importance 

valuation. Hence, generated to formulate the method of 
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pruning. Moreover, the effectiveness of the filters in each 

layer of CNNs is also mentioned and the results illustrated 

that in various layers. The large range of filters have a slight 

impact on the performance of the model therefore, it is 

necessary to remove those filters from the layer. 

Considerable study shows the benefit of our proposed 

approach by comparing the present methods. Particularly, 

VGG-16 architecture used on CIFAR-10 datasets, our 

introduced methodology can effectively prune 96.1% 

parameters with FLOPs saved approx. 83.55%, and a slight 

accuracy gain, these results show that our method has the 

upper hand against some benchmark approaches. In future, 

we will try to implement this method to more complex 

architectures such as ResNet and GoogLeNet with huge 

datasets like ImageNet. 
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