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Abstract—This paper proposes a new hyperparameter search 

method involving elliptical grid transformations and rotations 

of a grid of probe points. This technique is termed “rotated grid 

search”. We begin by motivating the method by discussing the 

limitations of random search. A new formalism for more 

efficiently probing a hyperparameter search space is then 

proposed. Next, we build a theoretical framework to compare 

hyperparameter optimization performance of rotated grid 

search against random search. We then evaluate both search 

methods empirically to quantify the marginal benefit of using 

one over the other. Monte-Carlo simulations on various 

synthetic objective functions show that rotated grid search 

outperforms random search over the full range of anisotropy 

explored in this study. Finally, we conduct a case study on a real 

dataset, rectangles-images, and show that rotated grid search 

outperforms random search in a high dimensional space. 

 

Index Terms—Random search, grid search, global 

optimization, model selection, rotated grid search, neural 

networks, deep learning.  

 

I INTRODUCTION 

The aim of statistical learning is to find a function that 

maps some input features to an output such that an objective 

function is optimized. Statistical learning can thus be reduced 

to an optimization problem where the objective function is a 

function of parameters and hyperparameters (see, for 

instance, [1]). While parameters can often be optimized 

through gradient descent, hyperparameters are more difficult 

to optimize because the gradient of the objective function 

with respect to the hyperparameters has no analytic 

expression. Therefore, hyperparameters need to be specified 

before the parameters can be optimized [2]. 

As a result, most hyperparameter optimization techniques 

are based on trying multiple sets of hyperparameters and 

selecting the set that gives the best objective function value 

[3]. This is a computationally expensive step, since for each 

choice of hyperparameters, the parameters need to be refit 

(for example via gradient descent or tree-based learning). It 

is therefore important that the candidate hyperparameter sets 

be chosen to maximize the chances of finding the best 

objective function value [4], [5]. 

Two of the most common methods of choosing these 

candidate sets of hyperparameters are grid search and random 

search (as studied in [6]). Grid search benefits from being 

simple to implement whilst being reliable in low dimensional 

spaces [7], [8]. Conversely, random search tends to be more 

efficient in high-dimensional spaces because objective 

functions in real world Machine Learning problems often 
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have low effective dimensionality (see [9] for a detailed 

discussion). In addition, it is slightly more practical than grid 

search since the resolution of a search can be changed “on the 

fly” by simply adding more random search points, unlike grid 

search where the resolution needs to be pre-defined before the 

grid points can be created [8].

 

However, both grid search and random search have certain 

drawbacks. Grid search suffers from the curse of 

dimensionality [10] whereby for every additional value of a 

hyperparameter that the user wishes to probe, the number of 

requisite trials increases exponentially. Random search, on 

the other hand, is not deterministic and this can complicate 

result replication when the number of random points probed 

is not sufficiently large [11].

 

In this study, we introduce a new search method, rotated 

grid search, which combines the attractive features of both 

grid search and random search. We compare the performance 

of rotated grid search against random search on synthetic 

data, and on the same real-world dataset used by [8].

 

 

II

 

ROTATED GRID SEARCH

 

An appealing trait of random search, as claimed by [8], is 

that it probes the objective function with 𝑁 = 𝑛2

 

distinct 

points along any given dimension (for a square grid). This is 

in contrast to grid search which probes the objective function 

with only 𝑛

 

distinct points when projected along any given 

dimension, since the points are axis-aligned. This becomes 

especially important for objective functions with low 

effective dimensionality, as shown in Fig. 1.

 

 

 

Fig. 1. In a square grid, grid search probes n distinct points along each axis 

whereas random search probes 𝑛2

 

distinct points along each axis. Therefore 
for objective functions with low effective dimensionality (shown in green), 

random search offers a higher probability of being close to the optimal 

solution. Image credit [8].

 

However, a drawback of random search is that its 

inherently random nature can, at times, result in large pockets 

of the hyperparameter space being probed too sparsely [12].
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Here we introduce a new hyperparameter search technique, 

rotated grid search, which preserves the advantage of random 

search by probing 𝑛2 points along a given dimension, while 

employing a fully deterministic sampling technique to 

mitigate the risk of probing pockets of the hyperparameter 

space too sparsely. Indeed, the deterministic nature of the 

operation allows us to pick the optimal angle of rotation to 

ensure that points on the rotated grid are more spread out than 

points on a random grid, thereby allowing us to probe the 

hyperparameter space more efficiently. An example of such 

a rotated grid in two dimensions is shown in Fig. 2. 

 
Fig. 2. A schematic showing projections of distinct hyperparameters probed 

along the x-axis with grid search (red dots) versus rotated grid search (green 

dots). Whereas grid search probes only 2 distinct x-values, rotated grid search 

probes 4 distinct x-values despite the same number of total search points, as 
shown by the green and red dashed lines projected onto the x-axis. 

 

Rotated grid search allows for more distinct 

hyperparameters to be probed along each axis in a systematic 

way, overcoming the oft-quoted deficiency of both grid 

search (only 𝑛  hyperparameters being probed along a given 

axis rather than 𝑛2 ) and random search (pockets of the 

hyperparameter space may be probed sparsely just by random 

chance). In the case of a two dimensional grid, we apply an 

elliptical grid transformation to map from a square grid  

(𝑥, 𝑦) ∈ [0,1] to a circular grid (𝑢, 𝑣) ∈ [𝑢2 + 𝑣2 < 1]: 

𝑢 = 𝑥√1 −
𝑦2

2
, 

𝑣 = 𝑦√1 −
𝑥2

2
. 

This mapping ensures that the rotated points remain within 

the bounds of the grid. A counter-clockwise rotation by an 

angle 𝜃  is then applied to the grid, followed by an inverse 

elliptical grid transformation on the rotated points to map the 

circular grid back to a square grid, given by: 

𝑥 =
1

2
√2 + 2√2𝑢 + 𝑢2 − 𝑣2 −

1

2
√2 − 2√2𝑢 + 𝑢2 − 𝑣2 

𝑦 =
1

2
√2 + 2√2𝑢 − 𝑢2 + 𝑣2 −

1

2
√2 − 2√2𝑢 − 𝑢2 + 𝑣2 

For grid dimensions 𝑛 > 2 , the above procedure is 

performed over all permutations of pairs of dimensions. Thus 

the general 𝑛 -dimensional case will have 𝑛(𝑛 − 1)/2 

rotations. 

Before deploying rotated grid search, the optimal angle of 

rotation must be determined. A rotation of 𝜃 = 90𝑜 recovers 

a non-rotated grid when the starting grid is equally spaced 

along both axes. On the other extreme, although an 

infinitesimally small rotation does indeed yield 𝑛2  distinct 

points, these points are so close to each other that they 

effectively probe the same region of the projected 

hyperparameter space as the underlying grid search. 

Therefore, the optimum rotation angle lies somewhere 

between these two extremes. We set a rotation angle of 𝜃 =
20𝑜 for the rest of this study. For a discussion on the choice 

of 𝜃, see Appendix A. 

 

III SYNTHETIC DATASET 

A. Methodology 

We begin, for simplicity reasons, by restricting our 

analysis to two-dimensional hyperparameter spaces. 

Although classical (negative) loss functions are used as the 

objective function of learnable parameters, hyperparameters 

are usually not learnable (i.e. the objective function is not 

differentiable with respect to hyperparameters and hence 

gradient descent cannot be leveraged). In fact there is less 

constraint on how the objective function may vary with 

respect to hyperparameters because they emerge from the 

machine learning model formalism itself. To account for this 

arbitrary relationship between the objective function and 

model hyperparameters, we model the objective function in 

hyperparameter space, 𝐽(𝑥, 𝑦) ,  as a superposition of q 

independent bivariate normal distributions: 

𝐽(𝑥, 𝑦) = 𝑐∑

𝑞

𝑖=1

𝑒𝑥𝑝⁡[−(
𝑥 − 𝜇𝑥

(𝑖)

√2𝜎𝑥
(𝑖)
)

2

− −(
𝑦 − 𝜇𝑦

(𝑖)

√2𝜎𝑦
(𝑖)
)

2

] 

where 𝑐 is a normalization factor and 𝜇𝑥, 𝜇𝑦 are the means of 

each of the 𝑞  independent bivariate normal distributions 

along the 𝑥  and 𝑦  directions respectively (where 𝑥  and 𝑦 

correspond to the directions of the hyperparameter grid). 

These means are random variables sampled from random 

uniform distributions between zero and one. The standard 

deviation of the first variate, 𝜎𝑥 , is drawn from a random 

uniform distribution between zero and 𝜎𝑚𝑎𝑥  (treated here as 

a parameter). In other words, 

𝜇𝑥~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1), 
𝜇𝑦~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1), 

𝜎𝑥~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝜎𝑚𝑎𝑥). 

As for 𝜎𝑦, we define it as, 

𝜎𝑦 = 𝜎𝑥/𝛽, 

where 𝛽  is an anisotropy factor. The anisotropy of the 

objective function in hyperparameter space is therefore 

defined as the ratio of the standard deviations of the bivariate 

distributions along the two axes. An isotropic bivariate 

distribution is denoted by 𝛽 = 1 whereas deviations from this 

provides a measure of anisotropy. For example, when 𝛽 > 1, 

the multivariate distributions are compressed along the 

second (y) axis, causing the objective function to change 

more abruptly in that direction (see Fig. 3). Similarly when 

𝛽 < 1, the distributions are expanded along the second axis 

which is equivalent to compression along the first axis (after 

adjusting for the new scale), hence yielding the same level of 

anisotropy. Due to this symmetry, we only show results for 
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𝛽 > 1 in this study. 

Increasing q, which denotes the number of superimposed 

bivariate normal distributions, increases the number of peaks 

(local maxima) of the objective function in hyperparameter 

space. Fig. 3 illustrates the impact of β and q on the objective 

function for different (q, β) combinations for 𝜎𝑚𝑎𝑥 = 0.3. 

This choice of 𝜎𝑚𝑎𝑥 , used throughout this study, prevents the 

objective function’s constituent Gaussian distributions from 

becoming too flat over the domain. This allows for a rich 

landscape over which to perform hyperparameter 

optimization, thereby allowing us to perform meaningful 

comparisons between different search techniques. 

For example, the top right plot of Fig. 3 is produced by 

generating 𝑞 = 10  different bivariate normal distributions 

(each with a randomly drawn μx, μy and σx) and adding them 

together. Each local maximum visible on the chart (shown by 

yellower regions) corresponds to the peak of each of the 

constituent bivariate normal distributions. The final objective 

function is normalized such that its maximum value across all 

peaks is unity without loss of generality. 

In this study, we perform Monte-Carlo simulations [13] on 

such objective functions to quantify the comparative 

performance of random search and rotated grid search. Table 

I describes each of the free parameters in this study. Of the 

five free parameters in this study, the first three (β, q and 

𝜎𝑚𝑎𝑥) control the shape of the objective function, while the 

last three (n, N and θ) control the specifics of the search 

method. 
 

 
Fig. 3. Heat maps of random initializations of 2-dimensional objective 

functions for four separate (q, β) combinations. Peaks in the objective 

functions are denoted by yellow. q denotes the number of peaks (local 

optima) of the objective function, while β is a measure of the anisotropy of 

the objective function. Larger values of β imply higher anisotropy.

TABLE I: A DESCRIPTION OF THE FREE PARAMETERS USED IN THIS STUDY 

Parameter Description 

β Anisotropy of the objective function in two dimensions; 𝜎𝑦 = 𝜎𝑥/𝛽 

q Number of local maxima (peaks) of the objective function (number of superimposed Gaussians). 

𝜎𝑚𝑎𝑥  The standard deviation along the x-direction of each peak, σx, is sampled from a uniform distribution within the interval [0, 𝜎𝑚𝑎𝑥]. In this 

study we set 𝜎𝑚𝑎𝑥 = 0.3 (to prevent the objective function’s constituent Gaussian distributions from becoming too flat over the domain). 

n, N Number of points, n, over which the objective function is evaluated in the x-direction. Using a square grid, the total number of points over 

which the objective function is evaluated is 𝑁 = 𝑛2. In this experiment we set n= 6 (justified below). 

θ Angle by which the square grid is rotated in “rotated grid search”. The rotation produces the points over which the 

objective function is subsequently evaluated. In this study we set⁡𝜃 = 20𝑜 (justified in Appendix A). 

More precisely, we say that Search Method A beats Search 

Method B in a trial when the maximum value of the objective 

function found (over all 𝑁 = 𝑛2 evaluation points) by Search 

Method A is larger than the maximum value of the objective 

function found (over all 𝑁 = 𝑛2 evaluation points) by Search 

Method B. The probability of Search Method A beating 

Search Method B is then calculated as the expected number 

of times that the above condition is met over all Monte-Carlo 

trials. Note that each Monte-Carlo simulation consists of 

10,000,000 trials to ensure sufficient convergence. 

The search methods are evaluated on unit grids (as shown 

before) for a fixed number of evaluation points N and a fixed 

𝜎𝑚𝑎𝑥 = 0.3 (to prevent the objective function’s constituent 

Gaussian distributions from becoming too flat over the 

domain). In all search method cases, the N evaluation points 

are determined at the start. For grid search, n points are 

selected along both unit axes such that these points are 

equidistant from each other. For random search, points are 

uniformly randomly sampled along each axis to obtain the 

grid coordinates. Finally, the proposed rotated grid search 

methodology starts with the generated grid search points and 

rotates them as described in Section II. 

B. Results 

We wish to compare rotated grid search against random 

search for varying anisotropy factors. However, in order to 

simplify the problem and confirm literature results, we first 

investigate the effect of n and q on random and grid search. 

As mentioned previously, random search probes the 

objective function with more distinct points along a given 

dimension than grid search. While this provides many 

benefits, its random nature can at times result in large pockets 

of hyperparameter space being probed too sparsely. However, 

this drawback becomes less important if the objective 

function has high anisotropy since the objective function 

varies along one dimension much less than along the other 

dimension. Therefore we expect the probability of random 

search beating grid search to increase as the anisotropy of the 

objective function (β) increases, which is confirmed in Fig. 4. 

 
Fig. 4. Probability that random search beats grid search as a function of the 

anisotropy factor β (log 2 -scale) for varying number of evaluation points N 
for an objective function consisting of a single peak (q = 1) and σmax = 0.3. 
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The results show that the probability of random search 

beating grid search increases when the anisotropy β of the 

objective function increases. The probability is higher than 

50% when the anisotropy factor is larger than 4. The 

probability also increases as the number of evaluation points 

of the objective function, 𝑁 = 𝑛2 , increases, converging 

around 𝑁 = 62 = 36 . Therefore for the remainder of this 

study we hold the total number of evaluation points fixed at 

6 along each dimension in order to make the analysis more 

tractable. 

Hence each Monte-Carlo trial for each search technique 

consists of 36 point evaluations of the objective function 

within the hyperparameter space. 

It is also instructive to look at the same relationship 

(probability of random search beating grid search vs the 

anisotropy factor β) as the number of peaks q) of the objective 

function is varied. Fig. 5 shows that the performance spread 

between random search and grid search diminishes as the 

number of peaks of the objective function increases. 

Intuitively, this is because increasing the number of peaks (q) 

increases the probability of being close to a local maximum. 

Hence the search method itself starts to matter less. 

 

 
Fig. 5. Probability that random search beats grid search as a function of the 
anisotropy factor β (log2-scale) for different number of peaks of the objective 

function (𝑁 = 62 = 36 points) and σmax = 0.3. 
 

 
Fig. 6. Probability that rotated grid search (𝜃 = 20𝑜) beats random search 

as a function of the anisotropy factor β (log 2 -scale) for varying number of 
peaks q; σmax = 0.3 and N = 62 = 36 search points. 

 

These results were verified to hold over a wide range of 

σmax ∈ [0.1, 1], and are in line with results presented in the 

literature. Given these results, rotated grid search (with 𝜃 =
20𝑜 ) was compared against random search for varying 

anisotropy factors, β, as shown in Fig. 6. Since both rotated 

grid search and random search contain non axis-aligned 

points, it is instructive to compare them against each other, as 

                                                           
1 Datasets can be found at 

http://www.dmi.usherb.ca/~larocheh/mlpython/datasets.html#module-
datasets.rectangles_images 

it may not be initially clear which would perform better. We 

find that rotated grid search beats random search over the full 

range of anisotropies explored as shown in Fig. 6. As before 

with random search over grid search, the outperformance of 

rotated grid search over random search declines as the 

number of peaks increases. This is again because increasing 

the number of peaks increases the probability of being close 

to a local maximum and thus the search method itself starts 

to matter less. 

 

IV CASE STUDY 

Given that the results in Section III.B show rotated grid 

search outperforming random search on simulated 2-

dimensional objective functions, we conduct a case study to 

compare these two hyperparameter search methods on a real 

dataset. 

A. Dataset 

To compare rotated grid search over random search on a 

real dataset, we follow [8], [14] and [15] and use the 

rectangles-images dataset1. This is a dataset of outlines of 

rectangles where each image is labeled as either tall or wide. 

The rectangles are filled with a natural image patch, for 

example a section of a normal image. The background is 

another natural image patch (see Fig. 7 as an example). The 

image dimensions are 28×28 pixels. The height and width of 

the rectangles are sampled uniformly under the constraint that 

the area covered by the rectangles are between one to three 

quarters of the total image. Additionally, the length and width 

of each rectangle is constrained to be at least 10 pixels and 

the difference is forced to be at least 5 pixels. An example is 

displayed in Fig. 7. 
 

 
Fig. 7. An example of an image from the rectangles-images dataset. Each 

image is labeled as either tall or wide, depending on which is larger. 

 

In this study we used 10,000 training examples, 2,000 

validation examples, and 50,000 testing examples. 

B. Neural Network 

In [8], hyperparameter search was performed with a neural 

network trained on the rectangles-images dataset [16]. They 

showed that random search outperformed grid search, which 

confirms our results obtained in Section III.B. Following that 

work, we perform rotated grid search on this dataset and show 

that rotated grid search in turn outperforms random search. 

Table II lists the hyperparameters within the search space 

explored: 

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

269

http://www.dmi.usherb.ca/~larocheh/mlpython/datasets.html#module-datasets.rectangles_images
http://www.dmi.usherb.ca/~larocheh/mlpython/datasets.html#module-datasets.rectangles_images


 

 

TABLE II: THE MOST IMPORTANT HYPERPARAMETERS IN DECREASING 

ORDER, WITH THEIR CORRESPONDING SEARCH RANGE 

Hyperparameter Search range 

Initial learning rate [0.01, 100] 

t0 [3e2, 3e4] 

Lecun scaling factor [0.2, 2.0] 

Number of hidden units [18, 1024] 

Initial weight [0, 1] 

 

These hyperparameters are selected for the search because 

they contribute the largest variance to the objective function. 

In addition, we use a sigmoid activation function, a batch size 

of 20 and set the value of the L2 coefficient to 3.1e-7. For a 

detailed description of all hyperparameters, see [8]. 

C. Results 

We compare random search and rotated grid search over a 

wide range of anisotropies β (defined in Section III.A) by 

using “fake” hyperparameters 2  in the search space. By 

substituting important hyperparameters for these “fake” 

hyperparameters, we are lowering the rank structure of the 

objective function, which decreases its anisotropy. Five 

different experiments are performed corresponding to 

varying levels of anisotropy, as shown in Fig. 8. 

 Fig. 8. Barchart comparing the test accuracy of rotated grid search and 

random search on the rectangles-images dataset. The horizontal axis denotes 

the number of (“important”,“fake”) hyperparameters in the search space. In 

all five experiments, the two methods search over a total of six 
hyperparameters using 64 trials.

 

 The first experiment (1,5) consists of the most important 

hyperparameter (initial learning rate) with 5 fake 

hyperparameters. Since objective function does not vary
 

along the directions of these fake hyperparameters, this 

experiment is a proxy for a large anisotropy (β). The next 

experiment (2,4) replaces one of the fake hyperparameters 

with the second most important hyperparameter. Since the 

objective function will now vary substantially in two out of 

the six directions, it is expected to be less anisotropic. In this 

way, the last experiment (5,1) consists of all five 

hyperparameters with only a single fake hyperparameter and 

simulates the least anisotropic objective
 

function (i.e. 

smallest β). Rotated grid search outperforms random search 

in all five experiments. This is in line with the theoretical 

expectations and numerical simulations of random objective 

functions in previous sections.
 

 

V
 

CONCLUSION
 

In this paper, we show that rotated grid search outperforms 

random search over the full range of anisotropies explored in 

                                                           
2 A “fake” hyperparameter is one that does not affect the neural network 

performance, i.e. a dummy hyperparameter in the search that was not used 
as input to the neural network. Given constant real hyperparameters, any 

this study on both a synthetic dataset and a high dimensional 

real dataset (rectangles-images). Given that the anisotropy of 

an objective function is usually not known a priori, the results 

suggest that rotated grid search is a better default choice 

hyperparameter optimization scheme. 

 
APPENDIX

 As mentioned in Section II, it is important that the grid of 

any search method have distinct values along each dimension 

because the objective function can have low (or no) 

dependence on certain hyperparameters, which in turn 

reduces its effective dimensionality.

 Additionally, we require these distinct points along each 

axis to be spaced out as evenly as possible whilst still 

maintaining their distinctness. To ensure this, we look at the 

distance between a randomly chosen optimum point in the 

domain, and each of the n2

 

evaluation points, and take the 

minimum distance across all n2

 

points. The expected 

minimum distance can then be calculated by averaging this 

minimum distance across a large number of simulations of 

the randomly chosen optimum points. A smaller expected 

minimum distance implies that points are more evenly spaced 

along that axis. Importantly, we calculate this distance after 

projecting the points onto an axis, so as to measure the 

expected distance from the optimum even for objective 

functions where only one of the two features are important. 

We therefore define the metric as,

 

 

 

 

   

Based on Fig. 9, the rotation angle can then be chosen as 

the value that minimizes this expected distance between the 

projected optimum point and the closest projected evaluation 

point, which gives approximately 𝜃 = 20𝑜.
 

Note that although 𝜃 = 20𝑜
 
is one such candidate, the plot 

also shows that as the number of probe points 𝑁
 
increases, 

this range expands. For example at 𝑁 = 64, any  5𝑜 < 𝜃 <
40𝑜

 
yield approximately the same expected minimum 

distance. In addition, due to mirror symmetry, 50𝑜 < 𝜃 <
85𝑜

 
have identical expected minimum distances too. 

Therefore although 𝜃 = 20𝑜
 
was used for the simulations in 

this study, there is in fact a large range of equally good 

choices of 𝜃
 
provided that the number probe points is not 

small. In fact, the only values of 𝜃
 
to avoid are in the vicinity 

of 0𝑜 , 45𝑜
 
and 90𝑜

 
(in the two-dimensional case). This is 

because at 0𝑜
 
or 90𝑜 , the rotated grid collapses to a 

traditional grid and at 45𝑜, whilst not entirely collapsing to a 

traditional grid, many grid points do overlap (which reduces 

the effectiveness of the probe). As dimensionality increases, 

the probability of points overlapping becomes vanishingly 

small because of increased mixing between the dimensions 

(i.e. a rotated grid of dimension 𝑛
 
is generated by 𝑂(𝑛2)

 

rotations between dimensions, as mentioned in Section II). 

Therefore the final choice of 𝜃 = 20𝑜, although not unique, 

is a safe choice to prevent any symmetry collapse, hence 

maintaining reasonable uniqueness of probe points.
 

change in the fake hyperparameters will not affect the neural network 
architecture. Their only purpose is to artificially expand the search space.
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x
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where |· · · |x is the length of an arbitrary vector after 

projecting it onto the x-axis, P is a randomly chosen 

optimal point, and 
iX is the ith evaluation point in the search.



 

 

 
Fig. 9. Expected minimum distance, M, between grid points and a randomly 
generated optimum point as a function of rotation angle, θ, for various values 

of N. M has been normalized for each N. 
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