
  

 

Abstract—A feed-forward loop has been widely used in 

control systems to boost the performance without hurting the 

overall stability of the system. We propose a new neural network, 

FfcNet by adopting the idea from the control theory. The 

proposed network adds a pre-designed feed-forward loop in 

parallel with the existing regular blocks, which is similar to the 

identity mapping in ResNet network. The feed-forward loop 

helps the overall network to converge faster while keeping 

overall system stability and accuracy. It is also shown that the 

feed-forward loop is equivalent to setting a proper initial 

condition of the parameters in the network.  A special dataset of 

highly distorted 7-segment LED images is prepared to evaluate 

the performance of the pattern recognition algorithm. We 

demonstrated the performance of the proposed design through 

simulations and found the new design improved the convergence 

rate by 52% from the original ResNet network while keeping the 

same test accuracy. 

 
Index Terms—Fast convergence, feed-forward loop, FfcNet, 

pattern recognition, ResNet. 

 

I. INTRODUCTION 

Pattern recognition or image classification problem is one 

of the most popular topics in the recent machine learning area 

since it is applicable to a wide range of applications such as 

autonomous driving, fault detection, disease diagnosis and etc. 

Among the algorithms, ResNet network is regarded as one of 

the most popular and effective algorithms. A series of ResNet 

algorithms [1]-[6] have been proposed since the concept was 

first proposed in [1], [2]. At the heart of their proposed 

residual network is the idea that the layers have an identity 

function in parallel with the conventional convolution neural 

network as shown in Fig. 1. It has shown the best performance 

with some variants such as changing the identity function to 

1×1 convolution or even its logical extension to so-called 

DenseNet in [3]. With the help of the increased computational 

power by GPU, the trends in ResNet design were adding more 

layers to improve the accuracy rather than having a structural 

improvement except for the approaches in [4]-[6], where 

some structural variations were proposed to improve the 

speed/accuracy for specific applications. However, the 

requirement of a big computational power or a slow 

adaptation rate to train millions of nodes is still a big 

challenge to the current machine learning area.  

A feed-forward loop has been widely and effectively used 

in many industries. We can directly compensate the external 

disturbances using

 

accelerometers

 

or

 

gyroscopes

 

during the 

motion control.

 

We can also apply very sophisticated learning 
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schemes for repetitive tasks as in [7]-[9]. A typical block 

diagram of a feed-forward controller is shown in Fig.

 

2. The 

main advantage of using a feed-forward loop is that it can 

improve the tracking performance or convergence time 

without sacrificing the overall system stability. We can 

extend the well-known Internal Model Principle (IMP) of 

control theory

 

[10] to the feed-forward control system in Fig.

 

2 to state that we can achieve a perfect tracking of the 

reference signal r(t) =  sin 𝜔𝑡

 

if the feed-forward controller 

C𝑓(s)

 

is chosen to have 1 (𝑠2 + 𝜔2)⁄

 

or model of r(t).

 
 

 

Fig.

 

1.

 

ResNet

 

network with

 

an identity mapping

 

as a residual block.

 

 

Fig.

 

2.

 

Block diagram of a typical feed-forward controller.

 

 

We often get some ideas or breakthroughs from other 

domains when we are stuck in difficult problems. It is well-

known to control engineers that the design of the

 

state 

observer is equivalent to the design of the state feedback 

controller

 

[10]. On the other hand, a preliminary study on the 

relationship between ILC (Iterative Learning Control) and RL 

(Reinforced Learning) was given in [11]

 

as well. It is shown 

that their performance of the error convergence is exactly 

same when the update gains were chosen in the same way. 

This kind of studies on equivalence shed some light on the 

consecutive studies through applying

 

the traditional control 

theory to the state-of-art machine learning domain.

 

Inspired by the above 3 prior studies, we propose a new 

neural network,

 

FfcNet, which adds a pre-designed feed-

forward loop in parallel with the conventional CNN 

(Convolution Neural Network). Kindly note that the paths 

shown as the dotted lines in Fig.

 

1,2 are feed-forward paths. 

We will show that the feed-forward loop in the FfcNet

 

can 

make the overall system faster as in the feed-forward control 

and give similar benefits as the identity mapping in ResNet

 

network. We further insist that adding a feed-forward loop is 
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equivalent to setting an appropriate initial condition to the 

estimator. A rigorous derivation of the equivalence is not 

given here but we will illustrate it with a simple parameter 

estimation problem. We hope this to motivate the control 

engineers to dive into the modern machine learning area and 

continue to contribute the deployment of theory and 

application from a different viewpoint. 

 

II. MOTIVATION AND PRELIMINARY RESULTS 

In this chapter, we present motivations of the proposed 

algorithm along with some preliminary studies for the 

problem definition.  

A. Motivation 

Consider the below SISO system ∑ with a single unknown 

parameter 𝑎: 
 

      𝛴:  𝑦 = 𝑎 ∙ 𝑥                                   (1) 
 

where 𝑥, 𝑦, 𝑎 ∈ ℝ  are the input, output, and gain of the 

system, respectively. Let us consider a simple parameter 

estimator Ω such that 

                   Ω :   

{
 
 
 

 
 
 

𝑦𝑘 = 𝑎 ∙ 𝑥𝑘               

 �̂�𝑘 = 𝑎𝑘 ∙ 𝑥𝑘              

 𝑒𝑘 = 𝑦𝑘  −  �̂�𝑘          

   𝑧𝑘 = 𝑎 − 𝑎𝑘               

 𝑎𝑘+1 = 𝑎𝑘  +  𝛾 ∙ 𝑒𝑘 ∙ 𝑥𝑘

 𝑙(𝑒𝑘) =  
1

2
 ‖𝑒𝑘‖

2               

                 (2) 

where for 𝑘𝑡ℎ  iteration, 𝑥𝑘  denotes the input 𝑥 , 𝑦𝑘  denotes 

the output of 𝑦, �̂�𝑘 denotes estimated value of output 𝑦𝑘 , 𝑒𝑘 

denotes estimation error of output, 𝑦𝑘 − �̂�𝑘 , 𝑧𝑘  denotes 

estimation error of the parameter, 𝑎 − 𝑎𝑘, and 𝑙(𝑒𝑘) denotes 

the loss function, respectively. Here, we used the so-called 

gradient decent method to update the parameter 𝑎𝑘  to the 

direction of minimizing the loss function, that is, 𝑎𝑘+1 =

𝑎𝑘  −  𝛾 ∙
𝜕𝑙

𝜕𝑎𝑘
. 

 
Fig. 3(a). Block diagram of the simple estimator Ω. 

 

 
Fig. 3(b). Equivalent block diagram of Fig. 3(a): a regulation problem. 

 

The simple parameter estimator defined in (1) ~ (2) can be 

depicted as the block diagram in Fig. 3(a), which can be easily 

transformed into another block diagram in Fig. 3(b). Kindly 

note that the original estimation problem in Fig. 3(a) was 

transformed into a set point regulation problem (sort of 

control problem) with a time-varying gain 𝛾 ∙ |𝑥𝑘|
2  in Fig. 

3(b). The estimation error converges to zero, or equivalently, 

𝑎𝑘 converges to 𝑎 if the update gain γ is chosen small enough 

so that 0 < 𝛾 ∙ |𝑥𝑘|
2 < 1.  

Now, let’s choose an initial condition of the estimated 

parameter 𝑎𝑘 as 𝑎0. First, we change variables as �̃�𝑘 = 𝑎𝑘 −
𝑎0 , �̂�𝑘 = �̅�𝑘 + �̃�𝑘 , where �̅�𝑘 = 𝑎0 ⋅ 𝑥𝑘  and �̃�𝑘 = �̃�𝑘 ⋅

𝑥𝑘  . Then, the block diagrams shown in Fig. 3 can be changed 

into Fig. 4. It is quite obvious that �̃�𝑘 will converge to 𝑎 − 𝑎0 

faster as we choose 𝑎0 closer to the true value of 𝑎. As shown 

in Fig. 4, this simple initial condition setting can be 

interpreted as adding a feed-forward term 𝑎0 to the original 

system as in the dotted boxes. The faster convergence of the 

simple estimator with a proper initial condition 𝑎0 matches 

quite well with the benefit of reducing the tracking error 

faster by adding a feed-forward loop into the original control 

loop. 

 
Fig. 4(a). Block diagram of the simple parameter estimator Ω with an initial 

condition 𝑎0. 

 
Fig. 4(b). Equivalent block diagram of Fig. 4(a): a feed-forward loop. 

 

B. Problem Definition and Preliminary Results 

Now, let’s move into a pattern recognition problem. 

MNIST datasets has been widely used in Kaggle or in-class 

competition for the performance evaluation of machine 

learning algorithms. However, we prepared a special set of 

images to provide a better quantitative analysis on the effect 

of various noise factors. As shown in Fig. 5, images of digits 

from 0 to 9, which represent the 7-segment LED images, are 

specially designed. The image has 31(H)x19(W) resolution 

or 589 pixels and it is highly distorted by adding 

measurement noises, turning off some pixels, and shifting the 

whole images to some directions.   

 

 
Fig. 5. Illustration of the datasets used in the paper to evaluate the 

performance of various networks. 

  

First, we model the image recognition system for the 

distorted 7-segment LED images as  

 

𝒚𝑖 = 𝐡(𝒙𝑖 , 𝐝) +  𝐧,   for 𝑖 = 0, 1, 2, … , 9.          (3) 
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where 𝒙𝑖 ∈ ℝ589 is an input vector obtained by serializing the 

bit image of the figure ‘i’ from left to right and top to bottom 

and 𝒚𝑖 ∈ ℝ10 is an output vector representing the figure ‘i’ 

with 𝑦𝑖,𝑗 = 𝛿𝑖,𝑗, where 𝑦𝑖,𝑗 is the jth element of the vector 𝒚𝑖 

and 𝛿𝑖,𝑗  is the Kronecker delta function such that 𝛿𝑖,𝑗 =

1 if 𝑖 = 𝑗 and 0 if 𝑖 ≠ 𝑗.  𝒏 ∈ ℝ𝑁  represents a measurement 

noise and 𝐝 ∈ ℝ𝐷 represents structural disturbances like bad 

cells and translative shifts in the 7-segment LED images 

stated in the previous paragraph. Now, our problem is to find 

the best estimate of 𝒚𝑖  (or the functions 𝐡 in (3)) from the 

measurement 𝒙𝑖   under the measurement noise 𝐧  and the 

structural disturbance 𝐝 . In other word, to find  �̂� ∶

 ℝ10×589 → ℝ10×10  such that 
 

  min
𝐘
𝑙(𝐘, �̂�) =  min

�̂�
‖𝐘 − �̂�(𝐗)‖2                (4) 

 

Here, 𝐘 ∈ ℝ10×10 is the augmented output vector and 𝐗 ∈

ℝ10×589  is the augmented input vector such that 𝐘𝑻 =

 [(𝒚0)𝑇 , (𝒚1)𝑇 , ⋯ , (𝒚9)𝑇]  and 𝐗𝑻 =
 [(𝒙0)𝑇 , (𝒙1)𝑇 , ⋯ , (𝒙9)𝑇] . Here, we limit our problem in 

finding the unknown parameters of the known function 𝐟 
rather than searching the optimal function in the whole 

functional space. That is, the problem in (4) can be changed 

into 
 

min
𝐚
‖𝐘 −  𝐟(𝐚, 𝐗)‖2                            (5) 

 

One of the simplest methods to get a good estimate is to 

model the system in (3) as a linear model and use the 

framework of the linear regression, that is, to find �̂� and �̂� in 
 

𝐟(�̂�, 𝐗) =  𝐗 ∙ �̂� + �̂�                            (6) 
 

satisfying (5). Then, we can just put the input/output datasets 

into the regression model or neural network to get the best 

estimate of the parameters under the given assumptions.  

A simple FC (fully connected) linear network and a simple 

ResNet network are shown in Fig. 6 as an example of the 

neural network to get the solution of the above problem. The 

FC linear network directly connects 589 inputs to 10 outputs 

through weights and biases. The ResNet network is composed 

of a series of 2D convolution and 2D average pool followed 

by a FC linear network. Note that the design of these simple 

networks is not the main topic of this paper but we introduced 

it here for the later use when we design our FfcNet network. 

Detailed design and parameters of the ResNet network will be 

explained in the later chapters. 

 

 
Fig. 6. Typical FC linear network(left) and ResNet network(right). 

Fig. 7 shows the performance of each network after 100 

iterations (200 iterations for the FC linear networks since it 

converges too slow). As expected, both networks are running 

fairly well for the above simple pattern recognition problem. 

Note that the FC linear network converges relatively slowly 

and failed to get high train/test accuracy due to the limited 

capability. The ResNet network even with a small number of 

layers improved the train/test accuracy significantly up to 

96%/94% but at the cost of longer computation time. 

Carefully note that we do not mean the number of iterations 

but the physical time to complete the task. Actually, the 

runtime for the 100 iterations of the ResNet network took 

190sec while 200 iterations of the FC linear network only 

took 180sec due to its simpler network architecture or less 

computational work.  
 

  

 
Fig. 7. The performance of a FC linear network (left) and a typical ResNet 

network (right) shown in Fig. 6.  

 

Now, it seems our mission is clear. How can we make the 

network faster while keeping or further improving the test 

accuracy? A simple solution to increase the rate of 

convergence is to increase the update gain 𝛾 . However, it 

might disturb the overall stability of the system or make the 

system too sensitive to the noise. Instead, we’d like to 

propose another way of improving the convergence rate and 

the test accuracy by adding a feed-forward loop in parallel 

with the conventional CNN.  

 

III. MAIN RESULT 

In the previous chapters, we’ve found that adding a feed-

forward loop in a control system can reduce the tracking error 

and setting a proper initial condition in an estimation system 

can improve the convergence rate of the estimation error. In 

this chapter, we will propose a new convolution neural 

network, FfcNet which can achieve both faster convergence 

and higher accuracy while keeping the overall system stable.  

A. Framework 

Let us look into the ResNet network shown in Fig. 1 and 
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the block diagrams of a simple estimator with an initial 

condition shown in Fig. 4. We can find that both designs have 

a parallel loop (shown in the dotted box) which boosts the 

performance of the system. Now, we’d like to extend the idea 

from setting a proper initial condition 𝑎0 in the simple 

parameter estimator in (1) ~ (2) to setting an initial guess for 

the parameter 𝐚 in (5). The block diagram shown in Fig. 4(a) 

can be generalized into Fig. 8(a) through replacing the initial 

value 𝑎0 for the parameter 𝑎 with the initial guess  
 

�̅�𝒌 = 𝐟0(𝐚0, 𝒙𝑘)                         (7) 
 

for the target system 𝐟(𝐚, 𝒙𝑘). Then again, the block diagram 

in Fig. 8(a) can be transformed into the network diagram 

shown in Fig. 8(b), which is similar to the ResNet network 

when the identity mapping is replaced by the feed-forward 

function. 

However, the proposed FfcNet is different from the 

original ResNet network. The feed-forward loop in FfcNet 

directly connects the input and the final output while the 

identity mapping in ResNet connects the output of the current 

layer to the input of the next layer with keeping the same 

dimension. Also, the main purpose of this feed-forward term 

�̅�𝒌 in (7) is to give an initial guess (of course, hope to be the 

best one) of the original function 𝐟(𝐚, 𝒙𝑘). It does not need to 

be of the same form as the original function nor being updated 

during the adaptation. However, the remaining term 
 

�̃�𝒌 = ∆𝐟(�̃�𝑘, 𝒙𝑘) = 𝐟(𝒂, 𝒙𝑘) − 𝐟0(𝐚0, 𝒙𝑘)          (8) 
 

will be continuously trained to fill up the gap between the 

original function and the initial guess. We expect ∆𝐟(�̃�𝑘, 𝒙𝑘) 
to be small and thus easy to be trained when our initial choice 

of 𝐟0(𝐚0, 𝒙𝑘) is close enough to the original function 𝐟(𝒂, 𝒙𝑘). 
Finally, the proposed FfcNet network is composed of two 

terms: 
 

�̂�𝒌 = �̅�𝒌 + �̃�𝒌  = 𝐟0(𝐚0, 𝒙𝑘) +  ∆𝐟(�̃�𝑘 , 𝒙𝑘)         (9) 
 

 
Fig. 8(a). Block diagram of the proposed FfcNet network: Generalize 

setting an initial condition into adding a feed-forward loop. 

 

 
Fig. 8(b). Network architecture of the FfcNet network: Replace the identity 

mapping in the ResNet with a feed-forward loop. 

B. How to Select the Feed-forward Loop? 

Now, it seems that choosing a proper initial guess is quite 

important to the success of the proposed FfcNet network 

design. As said before, we don’t have to choose 𝐟0(𝐚0, 𝒙𝑘) as 

𝐟(𝐚0, 𝒙𝑘) but just close enough to 𝐟(𝒂, 𝒙𝑘). In this section, 

we’d like to propose two simple and practical methods to 

choose the feed-forward loop.  

 Firstly, we can model the original block as a simple linear 

network as shown in (6). In this case, the model which we 

trained using a FC linear network might be a good candidate 

since it already demonstrated 94%/82% of train/test accuracy 

for the datasets. Definitely, it is not a perfect model - it might 

be underfitted due to too simple model - but it can represent 

the original block well enough to be used as the feed-forward 

loop 𝐟0(𝐚0, 𝒙𝑘). The first candidate of the feed-forward loop 

can be 

𝐟0(𝐚0, 𝒙𝑘) =  𝒙𝑘 ∙ �̅� + �̅�                    (10) 

 

where �̅�  and �̅�  are the weight and bias of the FC linear 

network which we trained separately.  

Secondly, if we’ve already got some measurement data, we 

can calculate the best estimate of the linear model using MLE 

(Maximum Likelihood Estimation), which can be easily 

found in the textbook of linear systems [10]. That is, we can 

calculate �̅�  and �̅�  from pseudo-inverse matrix of the 

augmented systems as follows 

 

 𝐖∗ = (𝑿𝑻 ∙ 𝑿)−𝟏 ∙ 𝑿𝑻 ∙ 𝒀                     (11) 

 

where 𝐖∗ is the augmented matrix including both weights �̅� 

and biases �̅� , and 𝑿  and 𝒀  are the augmented vectors by 

combining 𝒙 and 𝒚.  

Of course, we have many other options to choose as the 

feed-forward loop but it seems to be beyond the scopes of this 

paper. In this paper, we are more focusing on the structure of 

the network and how the sub-networks work together for a 

better performance. 

C. Design of FfcNet Network 

The final network architecture of the proposed FfcNet 

network is shown in Fig. 9. We used a similar network 

architecture for the regular block as the ResNet network 

shown in Fig. 6, which is a series of 2D convolution and 2D 

average pooling. In the Conv2D block, we used (3,3) for 

kernel, (1,1) for stride and padding. In AvgPool2D block, we 

used (2,2) for size, (1,1) for stride, and (0,0) for padding. 

Although it is not explicitly shown here, there is a full pre-

actuation block with BN (Batch Normalization) and Relu 

before the 2D convolution block in the regular block. Most 

importantly, comparing Fig. 6 and Fig. 9, we find that the 

short-cut unity mapping in the ResNet is replaced by a feed-

forward loop in FfcNet, which directly connects the input and 

the final output. We used a FC linear network of the form in 

(10) but all the weight and bias parameters are frozen after 

being specially initialized by the pre-designed simple 

network. Thus, this feed-forward loop is not an adaptation 

layer but works as a fixed mapping. As mentioned before, the 

FC linear network and the regular block shown in Fig. 9 are 

just an example and they can be chosen based on the datasets 

and target system. Finally, we add 2 outputs using a simple 

network which is also specially initialized with the identity 
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matrix. Note that this trick is to maximize the benefit of the 

feed-forward loop when the regular block starts training.  

 
Fig. 9. Network architecture of the FfcNet network. 

D. Further Understanding of the Feed-forward Loop 

Now, we want to further understand how the feed-forward 

loop works, contributes to shortening the convergence time, 

and improves the training/test accuracy. From (4) ~ (6) along 

with (9), the gradient of the loss function 𝑙(𝒚𝑘, 𝒙𝑘) in (4), (5) 

with respect to the input value 𝒙𝑘 is given by 

 
𝝏𝑙

𝝏𝒙𝑘
= 

𝝏𝑙

𝝏�̂�𝑘
∙
𝝏�̂�𝑘

𝝏𝒙𝑘
                                            

        = −(𝒚𝑘 − �̂�𝑘) ∙ (
𝝏𝐟0

𝝏𝒙𝑘
+ 

𝝏∆𝐟

𝝏𝒙𝑘
)             

     = −𝒆𝑘 ∙
𝝏𝐟0(𝐚0, 𝒙𝑘)

𝝏𝒙𝑘
 − 𝒆𝑘 ∙

𝝏∆𝐟(�̃�𝑘,𝒙𝑘)

𝝏𝒙𝑘

         (12) 

 

As is analyzed in [2] along with (12), we can find that the 

feed-forward loop inherits all the nice features of the unity 

mapping in ResNet network. The gradient 
𝝏𝑙

𝝏𝒙𝑘
 can be 

decomposed into two additive terms. The first term of −𝒆𝑘 ∙
𝝏𝐟0(𝐚0, 𝒙𝑘)

𝝏𝒙𝑘
 propagates information directly from the error to the 

input layer without being affected by the layers being updated 

by the parameter �̃�𝑘 . The second term of −𝒆𝑘 ∙
𝝏∆𝐟(�̃�𝑘,𝒙𝑘)

𝝏𝒙𝑘
 

propagates throughout the layers which are being updated by 

the parameters. It is more obvious in the case that the original 

system is a linear system and we add a feed-forward loop with 

a linear function. In that case, (12) will be of the form    

 
𝝏𝑙

𝝏𝒙𝑘
= −𝒆𝑘 ∙ (�̅�

𝑇 + �̃�𝑘
𝑇
)                   (13) 

 

where �̃�𝑘  is trained to estimate 𝐖− �̅�. It clearly shows 

that the first term (constant matrix) is independent of any 

weight layers and only the second term (with a subscript k) 

propagates through the weight layers. 

IV. SIMULATION RESULTS 

In this chapter, we demonstrate the performance of the 

proposed FfcNet network through simulation results.  

A. Simulation Environment 

The Gluon library in Apache mxnet is used as the base 

framework of the machine learning throughout the 

simulations. More precisely, our simulation environments are 

modified based on the machine learning framework given in 

[12]. We used the update gain 𝛾  of 0.005, 

SoftmaxCrossEntropyLoss() as a loss function, the stochastic 

gradient descent algorithm to update the parameters, and 

Xavier initialization to initialize the weight parameters except 

for the special layers in the FfcNet network.  

For the datasets, we used 5,890 images with 100 mini-

batches for both training and test. As noise factors, we added 

AWGN of 𝑵(0, 1) and turned off 30% pixels randomly. 

Finally, the training and test images are shifted to a random 

direction with a PDF of 𝑵(±0.3, 1)  but to the opposite 

directions to reflect the environmental shift in datasets.  

Here, we want to add some comments on the choice of the 

datasets. The reason why we introduced a new dataset rather 

than using the popular MNIST datasets or similar ones is that 

the proposed datasets could give us further opportunities for 

the quantitative analysis on the network design. Kindly note 

that the number of train/test datasets, the resolution of the 

datasets, the amount of measurement noise, structural 

disturbances, and even the environmental shift can be 

controlled. We can connect these parameters with the various 

performance indices in a quantitative manner and even 

correlate them with other design parameters such as update 

gain, depth of layer, etc. The results are not included in this 

paper due to the limited space and we will leave it as the 

future research topics.  

 
TABLE I: PERFORMANCE COMPARISON FOR 4 NETWORKS 

Channels 
95%  

Rise Time 

Train 

Loss 

Train  

Accuracy 

Test  

Accuracy 

(1) FC Lin* 84 0.38 0.94 0.82 

(2) ResNet 46 0.10 0.96 0.94 

(3) FfcNet#1 22 0.02 0.99 0.96 

(4) FfcNet#2  4 0.02 0.99 0.97 

(*) The simulation results of FC linear network are based on 200 iterations 

due to the too slow con-vergence while others are based on 100 iterations. 
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Fig. 10. Simulation results for each network designs. Figures are from top 

to bottom for networks in (1)~(4).  

 

B. Performance Evaluation 

Now, let’s compare the performance of each network. We 

chose the prediction (test) accuracy after 100 iterations and 

the rate of the convergence (95% rise time of the train 

accuracy) as the key performance indices. We compared total 

4 different networks including 2 results from the preliminary 

results; (1) FC Lin – a simple FC linear network in Fig. 6, (2) 

ResNet – a typical ResNet network in Fig. 6, (3) FfcNet#1 – a 

new FfcNet network in Fig. 9 with setting initial conditions 

from FC Lin, (4) FfcNet#2 – a new FfcNet network in Fig. 9 

with setting initial condition from MLE in (11). 

The simulation results are shown in Fig. 10 for each 

network design and key performance indices are summarized 

in Table I. As expected, all the other networks except for the 

simple FC linear network, showed quite good performance of 

around 95% test accuracy. It is demonstrated that the 

proposed FfcNet network can reduce the convergence time 

significantly and improve the test accuracy as well.  

 

V. CONCLUSION 

In this paper, we proposed a new neural network design 

scheme, FfcNet which has a faster rate of convergence with 

improved test accuracy. We proposed a new test platform of 

identifying 7-segment LED images to evaluate the 

performance of neural networks. The performance of the 

proposed network was demonstrated by the improved 

convergence rate and prediction accuracy for the distorted 7-

segment LED images. Although a rigorous mathematical 

derivation is not given here, an analogy between the feed-

forward loop in conventional control schemes and the 

residual network in ResNet network was illustrated 

conceptually for the better understanding of FfcNet network. 

The purpose of this paper is to propose a new conceptual 

design scheme and we hope this preliminary study can seed 

the future studies on the neural network design such as 

extending this concept to other more complex systems or 

other areas beyond image recognition. Another interesting 

research topic would be the connection with the fine-tuning 

since it also uses similar schemes of using the pre-trained data 

to train a new set of data [13]-[15]. We’d like to leave this 

along with more rigorous mathematical derivation of the 

convergence for the future study topics.  

APPENDIX A 

In Appendix A, we give symbols and notation used 

throughout the paper.  

 
Symbol Description 

𝐱𝒊 Input vector in ℝ589 obtained by serializing the bit image of 

‘i’ in 7 segment LED. 

𝐲𝒊 Output vector in ℝ10 representing the figure ‘i’, e.g., 𝐲1 =
 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]. 

𝐡 A function mapping 𝐱𝒊 ∈ ℝ589  to 𝐲𝒊 ∈ ℝ10 , i=0,1,2…,9 

with a parameter 𝐝 ∈ ℝD. 

𝐗 Augmented input vector in ℝ10×589 obtained by stacking 𝐱𝒊 
in sequence vertically.  

𝐘 Augmented output vector in ℝ10×10 obtained by stacking 𝐲𝒊 
in sequence vertically.  

𝐟 A function mapping 𝐗 ∈ ℝ10×589  to 𝐘 ∈ ℝ10×10  with a 

parameter 𝒂 ∈ ℝA. 

𝐚 A vector in ℝ𝐴 which parameterizes the function 𝐟 in terms 

of the augmented input vector 𝐗 , that is, 𝐘 =  𝐟(𝐚, 𝐗). 
�̂� Estimate of the parameter vector 𝐚 in ℝ599×10 

�̂� Weight matrix for the linear network with a dimension of 

ℝ589×10 

�̂� Bias matrix for the linear network with a dimension of 

ℝ10×10 
𝒙𝑘 kth mini-batch of the augmented input vector  

𝐗 in ℝM×589 with a mini-batch size of M. 

𝒚𝑘 kth mini-batch of the augmented output vector  
𝐘 in ℝM×10 with a mini-batch size of M. 

𝐚0 An initial estimate of the parameter vector 𝐚 ∈ ℝA for the 

function 𝐟. 
𝐟0 An estimate of the function 𝐟: ℝM×589 → ℝM×10. 
�̅�𝑘 kth mini-batch of the augmented output vector  

𝐘 in ℝM×10 for the input vector 𝒙𝑘, which is obtained from 

the known function 𝐟0(𝐚0, 𝒙𝑘).   
∆𝐟 The difference between the function 𝐟 and 𝐟0. 

�̃�𝑘 Parameter vector in ℝA of the function ∆𝐟 for the kth mini-

batch. 

�̃�𝑘 kth mini-batch of the augmented output vector  

𝐘 in ℝM×10 for the input vector 𝒙𝑘, which is obtained from 

the function ∆𝐟(�̃�𝑘 , 𝒙𝑘).   
�̂�𝑘 The final estimate of 𝒚𝑘 for the input vector 𝒙𝑘 .    
𝒆𝑘 Estimation error 𝒚𝑘 − �̂�𝑘 for the kth mini-batch. 
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