



Abstract—A feed-forward loop has been widely used in

control systems to boost the performance without hurting the

overall stability of the system. We propose a new neural network,

FfcNet by adopting the idea from the control theory. The

proposed network adds a pre-designed feed-forward loop in

parallel with the existing regular blocks, which is similar to the

identity mapping in ResNet network. The feed-forward loop

helps the overall network to converge faster while keeping

overall system stability and accuracy. It is also shown that the

feed-forward loop is equivalent to setting a proper initial

condition of the parameters in the network. A special dataset of

highly distorted 7-segment LED images is prepared to evaluate

the performance of the pattern recognition algorithm. We

demonstrated the performance of the proposed design through

simulations and found the new design improved the convergence

rate by 52% from the original ResNet network while keeping the

same test accuracy.

Index Terms—Fast convergence, feed-forward loop, FfcNet,

pattern recognition, ResNet.

I. INTRODUCTION

Pattern recognition or image classification problem is one

of the most popular topics in the recent machine learning area

since it is applicable to a wide range of applications such as

autonomous driving, fault detection, disease diagnosis and etc.

Among the algorithms, ResNet network is regarded as one of

the most popular and effective algorithms. A series of ResNet

algorithms [1]-[6] have been proposed since the concept was

first proposed in [1], [2]. At the heart of their proposed

residual network is the idea that the layers have an identity

function in parallel with the conventional convolution neural

network as shown in Fig. 1. It has shown the best performance

with some variants such as changing the identity function to

1×1 convolution or even its logical extension to so-called

DenseNet in [3]. With the help of the increased computational

power by GPU, the trends in ResNet design were adding more

layers to improve the accuracy rather than having a structural

improvement except for the approaches in [4]-[6], where

some structural variations were proposed to improve the

speed/accuracy for specific applications. However, the

requirement of a big computational power or a slow

adaptation rate to train millions of nodes is still a big

challenge to the current machine learning area.

A feed-forward loop has been widely and effectively used

in many industries. We can directly compensate the external

disturbances using

accelerometers

or

gyroscopes

during the

motion control.

We can also apply very sophisticated learning

Manuscript received January 6, 2022; revised January 27, 2022.

Nam Guk Kim is with Cybernetics Imaging Systems, Changwon,
Gyeongsangnam-do, Korea, 51391 (e-mail: ngkim823@gmail.com).

schemes for repetitive tasks as in [7]-[9]. A typical block

diagram of a feed-forward controller is shown in Fig.

2. The

main advantage of using a feed-forward loop is that it can

improve the tracking performance or convergence time

without sacrificing the overall system stability. We can

extend the well-known Internal Model Principle (IMP) of

control theory

[10] to the feed-forward control system in Fig.

2 to state that we can achieve a perfect tracking of the

reference signal r(t) = sin 𝜔𝑡

if the feed-forward controller

C𝑓(s)

is chosen to have 1 (𝑠2 + 𝜔2)⁄

or model of r(t).

Fig.

1.

ResNet

network with

an identity mapping

as a residual block.

Fig.

2.

Block diagram of a typical feed-forward controller.

We often get some ideas or breakthroughs from other

domains when we are stuck in difficult problems. It is well-

known to control engineers that the design of the

state

observer is equivalent to the design of the state feedback

controller

[10]. On the other hand, a preliminary study on the

relationship between ILC (Iterative Learning Control) and RL

(Reinforced Learning) was given in [11]

as well. It is shown

that their performance of the error convergence is exactly

same when the update gains were chosen in the same way.

This kind of studies on equivalence shed some light on the

consecutive studies through applying

the traditional control

theory to the state-of-art machine learning domain.

Inspired by the above 3 prior studies, we propose a new

neural network,

FfcNet, which adds a pre-designed feed-

forward loop in parallel with the conventional CNN

(Convolution Neural Network). Kindly note that the paths

shown as the dotted lines in Fig.

1,2 are feed-forward paths.

We will show that the feed-forward loop in the FfcNet

can

make the overall system faster as in the feed-forward control

and give similar benefits as the identity mapping in ResNet

network. We further insist that adding a feed-forward loop is

A New Approach to Neural Network Design for Fast

Convergence via Feed-forward Loop

Nam Guk Kim

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

259doi: 10.18178/ijmlc.2022.12.6.1109

mailto:ngkim823@gmail.com

equivalent to setting an appropriate initial condition to the

estimator. A rigorous derivation of the equivalence is not

given here but we will illustrate it with a simple parameter

estimation problem. We hope this to motivate the control

engineers to dive into the modern machine learning area and

continue to contribute the deployment of theory and

application from a different viewpoint.

II. MOTIVATION AND PRELIMINARY RESULTS

In this chapter, we present motivations of the proposed

algorithm along with some preliminary studies for the

problem definition.

A. Motivation

Consider the below SISO system ∑ with a single unknown

parameter 𝑎:

 𝛴: 𝑦 = 𝑎 ∙ 𝑥 (1)

where 𝑥, 𝑦, 𝑎 ∈ ℝ are the input, output, and gain of the

system, respectively. Let us consider a simple parameter

estimator Ω such that

 Ω :

{

𝑦𝑘 = 𝑎 ∙ 𝑥𝑘

 𝑦̂𝑘 = 𝑎𝑘 ∙ 𝑥𝑘

 𝑒𝑘 = 𝑦𝑘 − 𝑦̂𝑘

 𝑧𝑘 = 𝑎 − 𝑎𝑘

 𝑎𝑘+1 = 𝑎𝑘 + 𝛾 ∙ 𝑒𝑘 ∙ 𝑥𝑘

 𝑙(𝑒𝑘) =
1

2
 ‖𝑒𝑘‖

2

 (2)

where for 𝑘𝑡ℎ iteration, 𝑥𝑘 denotes the input 𝑥 , 𝑦𝑘 denotes

the output of 𝑦, 𝑦̂𝑘 denotes estimated value of output 𝑦𝑘 , 𝑒𝑘

denotes estimation error of output, 𝑦𝑘 − 𝑦̂𝑘 , 𝑧𝑘 denotes

estimation error of the parameter, 𝑎 − 𝑎𝑘, and 𝑙(𝑒𝑘) denotes

the loss function, respectively. Here, we used the so-called

gradient decent method to update the parameter 𝑎𝑘 to the

direction of minimizing the loss function, that is, 𝑎𝑘+1 =

𝑎𝑘 − 𝛾 ∙
𝜕𝑙

𝜕𝑎𝑘
.

Fig. 3(a). Block diagram of the simple estimator Ω.

Fig. 3(b). Equivalent block diagram of Fig. 3(a): a regulation problem.

The simple parameter estimator defined in (1) ~ (2) can be

depicted as the block diagram in Fig. 3(a), which can be easily

transformed into another block diagram in Fig. 3(b). Kindly

note that the original estimation problem in Fig. 3(a) was

transformed into a set point regulation problem (sort of

control problem) with a time-varying gain 𝛾 ∙ |𝑥𝑘|
2 in Fig.

3(b). The estimation error converges to zero, or equivalently,

𝑎𝑘 converges to 𝑎 if the update gain γ is chosen small enough

so that 0 < 𝛾 ∙ |𝑥𝑘|
2 < 1.

Now, let’s choose an initial condition of the estimated

parameter 𝑎𝑘 as 𝑎0. First, we change variables as 𝑎̃𝑘 = 𝑎𝑘 −
𝑎0 , 𝑦̂𝑘 = 𝑦̅𝑘 + 𝑦̃𝑘 , where 𝑦̅𝑘 = 𝑎0 ⋅ 𝑥𝑘 and 𝑦̃𝑘 = 𝑎̃𝑘 ⋅

𝑥𝑘 . Then, the block diagrams shown in Fig. 3 can be changed

into Fig. 4. It is quite obvious that 𝑎̃𝑘 will converge to 𝑎 − 𝑎0

faster as we choose 𝑎0 closer to the true value of 𝑎. As shown

in Fig. 4, this simple initial condition setting can be

interpreted as adding a feed-forward term 𝑎0 to the original

system as in the dotted boxes. The faster convergence of the

simple estimator with a proper initial condition 𝑎0 matches

quite well with the benefit of reducing the tracking error

faster by adding a feed-forward loop into the original control

loop.

Fig. 4(a). Block diagram of the simple parameter estimator Ω with an initial

condition 𝑎0.

Fig. 4(b). Equivalent block diagram of Fig. 4(a): a feed-forward loop.

B. Problem Definition and Preliminary Results

Now, let’s move into a pattern recognition problem.

MNIST datasets has been widely used in Kaggle or in-class

competition for the performance evaluation of machine

learning algorithms. However, we prepared a special set of

images to provide a better quantitative analysis on the effect

of various noise factors. As shown in Fig. 5, images of digits

from 0 to 9, which represent the 7-segment LED images, are

specially designed. The image has 31(H)x19(W) resolution

or 589 pixels and it is highly distorted by adding

measurement noises, turning off some pixels, and shifting the

whole images to some directions.

Fig. 5. Illustration of the datasets used in the paper to evaluate the

performance of various networks.

First, we model the image recognition system for the

distorted 7-segment LED images as

𝒚𝑖 = 𝐡(𝒙𝑖 , 𝐝) + 𝐧, for 𝑖 = 0, 1, 2, … , 9. (3)

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

260

where 𝒙𝑖 ∈ ℝ589 is an input vector obtained by serializing the

bit image of the figure ‘i’ from left to right and top to bottom

and 𝒚𝑖 ∈ ℝ10 is an output vector representing the figure ‘i’

with 𝑦𝑖,𝑗 = 𝛿𝑖,𝑗, where 𝑦𝑖,𝑗 is the jth element of the vector 𝒚𝑖

and 𝛿𝑖,𝑗 is the Kronecker delta function such that 𝛿𝑖,𝑗 =

1 if 𝑖 = 𝑗 and 0 if 𝑖 ≠ 𝑗. 𝒏 ∈ ℝ𝑁 represents a measurement

noise and 𝐝 ∈ ℝ𝐷 represents structural disturbances like bad

cells and translative shifts in the 7-segment LED images

stated in the previous paragraph. Now, our problem is to find

the best estimate of 𝒚𝑖 (or the functions 𝐡 in (3)) from the

measurement 𝒙𝑖 under the measurement noise 𝐧 and the

structural disturbance 𝐝 . In other word, to find 𝐠̂ ∶

 ℝ10×589 → ℝ10×10 such that

 min
𝐘
𝑙(𝐘, 𝐘̂) = min

𝐠̂
‖𝐘 − 𝐠̂(𝐗)‖2 (4)

Here, 𝐘 ∈ ℝ10×10 is the augmented output vector and 𝐗 ∈

ℝ10×589 is the augmented input vector such that 𝐘𝑻 =

 [(𝒚0)𝑇 , (𝒚1)𝑇 , ⋯ , (𝒚9)𝑇] and 𝐗𝑻 =
 [(𝒙0)𝑇 , (𝒙1)𝑇 , ⋯ , (𝒙9)𝑇] . Here, we limit our problem in

finding the unknown parameters of the known function 𝐟
rather than searching the optimal function in the whole

functional space. That is, the problem in (4) can be changed

into

min
𝐚
‖𝐘 − 𝐟(𝐚, 𝐗)‖2 (5)

One of the simplest methods to get a good estimate is to

model the system in (3) as a linear model and use the

framework of the linear regression, that is, to find 𝐖̂ and 𝐛̂ in

𝐟(𝐚̂, 𝐗) = 𝐗 ∙ 𝐖̂ + 𝐛̂ (6)

satisfying (5). Then, we can just put the input/output datasets

into the regression model or neural network to get the best

estimate of the parameters under the given assumptions.

A simple FC (fully connected) linear network and a simple

ResNet network are shown in Fig. 6 as an example of the

neural network to get the solution of the above problem. The

FC linear network directly connects 589 inputs to 10 outputs

through weights and biases. The ResNet network is composed

of a series of 2D convolution and 2D average pool followed

by a FC linear network. Note that the design of these simple

networks is not the main topic of this paper but we introduced

it here for the later use when we design our FfcNet network.

Detailed design and parameters of the ResNet network will be

explained in the later chapters.

Fig. 6. Typical FC linear network(left) and ResNet network(right).

Fig. 7 shows the performance of each network after 100

iterations (200 iterations for the FC linear networks since it

converges too slow). As expected, both networks are running

fairly well for the above simple pattern recognition problem.

Note that the FC linear network converges relatively slowly

and failed to get high train/test accuracy due to the limited

capability. The ResNet network even with a small number of

layers improved the train/test accuracy significantly up to

96%/94% but at the cost of longer computation time.

Carefully note that we do not mean the number of iterations

but the physical time to complete the task. Actually, the

runtime for the 100 iterations of the ResNet network took

190sec while 200 iterations of the FC linear network only

took 180sec due to its simpler network architecture or less

computational work.

Fig. 7. The performance of a FC linear network (left) and a typical ResNet

network (right) shown in Fig. 6.

Now, it seems our mission is clear. How can we make the

network faster while keeping or further improving the test

accuracy? A simple solution to increase the rate of

convergence is to increase the update gain 𝛾 . However, it

might disturb the overall stability of the system or make the

system too sensitive to the noise. Instead, we’d like to

propose another way of improving the convergence rate and

the test accuracy by adding a feed-forward loop in parallel

with the conventional CNN.

III. MAIN RESULT

In the previous chapters, we’ve found that adding a feed-

forward loop in a control system can reduce the tracking error

and setting a proper initial condition in an estimation system

can improve the convergence rate of the estimation error. In

this chapter, we will propose a new convolution neural

network, FfcNet which can achieve both faster convergence

and higher accuracy while keeping the overall system stable.

A. Framework

Let us look into the ResNet network shown in Fig. 1 and

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

261

the block diagrams of a simple estimator with an initial

condition shown in Fig. 4. We can find that both designs have

a parallel loop (shown in the dotted box) which boosts the

performance of the system. Now, we’d like to extend the idea

from setting a proper initial condition 𝑎0 in the simple

parameter estimator in (1) ~ (2) to setting an initial guess for

the parameter 𝐚 in (5). The block diagram shown in Fig. 4(a)

can be generalized into Fig. 8(a) through replacing the initial

value 𝑎0 for the parameter 𝑎 with the initial guess

𝒚̅𝒌 = 𝐟0(𝐚0, 𝒙𝑘) (7)

for the target system 𝐟(𝐚, 𝒙𝑘). Then again, the block diagram

in Fig. 8(a) can be transformed into the network diagram

shown in Fig. 8(b), which is similar to the ResNet network

when the identity mapping is replaced by the feed-forward

function.

However, the proposed FfcNet is different from the

original ResNet network. The feed-forward loop in FfcNet

directly connects the input and the final output while the

identity mapping in ResNet connects the output of the current

layer to the input of the next layer with keeping the same

dimension. Also, the main purpose of this feed-forward term

𝒚̅𝒌 in (7) is to give an initial guess (of course, hope to be the

best one) of the original function 𝐟(𝐚, 𝒙𝑘). It does not need to

be of the same form as the original function nor being updated

during the adaptation. However, the remaining term

𝒚̃𝒌 = ∆𝐟(𝐚̃𝑘, 𝒙𝑘) = 𝐟(𝒂, 𝒙𝑘) − 𝐟0(𝐚0, 𝒙𝑘) (8)

will be continuously trained to fill up the gap between the

original function and the initial guess. We expect ∆𝐟(𝐚̃𝑘, 𝒙𝑘)
to be small and thus easy to be trained when our initial choice

of 𝐟0(𝐚0, 𝒙𝑘) is close enough to the original function 𝐟(𝒂, 𝒙𝑘).
Finally, the proposed FfcNet network is composed of two

terms:

𝒚̂𝒌 = 𝒚̅𝒌 + 𝒚̃𝒌 = 𝐟0(𝐚0, 𝒙𝑘) + ∆𝐟(𝐚̃𝑘 , 𝒙𝑘) (9)

Fig. 8(a). Block diagram of the proposed FfcNet network: Generalize

setting an initial condition into adding a feed-forward loop.

Fig. 8(b). Network architecture of the FfcNet network: Replace the identity

mapping in the ResNet with a feed-forward loop.

B. How to Select the Feed-forward Loop?

Now, it seems that choosing a proper initial guess is quite

important to the success of the proposed FfcNet network

design. As said before, we don’t have to choose 𝐟0(𝐚0, 𝒙𝑘) as

𝐟(𝐚0, 𝒙𝑘) but just close enough to 𝐟(𝒂, 𝒙𝑘). In this section,

we’d like to propose two simple and practical methods to

choose the feed-forward loop.

 Firstly, we can model the original block as a simple linear

network as shown in (6). In this case, the model which we

trained using a FC linear network might be a good candidate

since it already demonstrated 94%/82% of train/test accuracy

for the datasets. Definitely, it is not a perfect model - it might

be underfitted due to too simple model - but it can represent

the original block well enough to be used as the feed-forward

loop 𝐟0(𝐚0, 𝒙𝑘). The first candidate of the feed-forward loop

can be

𝐟0(𝐚0, 𝒙𝑘) = 𝒙𝑘 ∙ 𝐖̅ + 𝐛̅ (10)

where 𝐖̅ and 𝐛̅ are the weight and bias of the FC linear

network which we trained separately.

Secondly, if we’ve already got some measurement data, we

can calculate the best estimate of the linear model using MLE

(Maximum Likelihood Estimation), which can be easily

found in the textbook of linear systems [10]. That is, we can

calculate 𝐖̅ and 𝐛̅ from pseudo-inverse matrix of the

augmented systems as follows

 𝐖∗ = (𝑿𝑻 ∙ 𝑿)−𝟏 ∙ 𝑿𝑻 ∙ 𝒀 (11)

where 𝐖∗ is the augmented matrix including both weights 𝐖̅

and biases 𝐛̅ , and 𝑿 and 𝒀 are the augmented vectors by

combining 𝒙 and 𝒚.

Of course, we have many other options to choose as the

feed-forward loop but it seems to be beyond the scopes of this

paper. In this paper, we are more focusing on the structure of

the network and how the sub-networks work together for a

better performance.

C. Design of FfcNet Network

The final network architecture of the proposed FfcNet

network is shown in Fig. 9. We used a similar network

architecture for the regular block as the ResNet network

shown in Fig. 6, which is a series of 2D convolution and 2D

average pooling. In the Conv2D block, we used (3,3) for

kernel, (1,1) for stride and padding. In AvgPool2D block, we

used (2,2) for size, (1,1) for stride, and (0,0) for padding.

Although it is not explicitly shown here, there is a full pre-

actuation block with BN (Batch Normalization) and Relu

before the 2D convolution block in the regular block. Most

importantly, comparing Fig. 6 and Fig. 9, we find that the

short-cut unity mapping in the ResNet is replaced by a feed-

forward loop in FfcNet, which directly connects the input and

the final output. We used a FC linear network of the form in

(10) but all the weight and bias parameters are frozen after

being specially initialized by the pre-designed simple

network. Thus, this feed-forward loop is not an adaptation

layer but works as a fixed mapping. As mentioned before, the

FC linear network and the regular block shown in Fig. 9 are

just an example and they can be chosen based on the datasets

and target system. Finally, we add 2 outputs using a simple

network which is also specially initialized with the identity

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

262

matrix. Note that this trick is to maximize the benefit of the

feed-forward loop when the regular block starts training.

Fig. 9. Network architecture of the FfcNet network.

D. Further Understanding of the Feed-forward Loop

Now, we want to further understand how the feed-forward

loop works, contributes to shortening the convergence time,

and improves the training/test accuracy. From (4) ~ (6) along

with (9), the gradient of the loss function 𝑙(𝒚𝑘, 𝒙𝑘) in (4), (5)

with respect to the input value 𝒙𝑘 is given by

𝝏𝑙

𝝏𝒙𝑘
=

𝝏𝑙

𝝏𝒚̂𝑘
∙
𝝏𝒚̂𝑘

𝝏𝒙𝑘

 = −(𝒚𝑘 − 𝒚̂𝑘) ∙ (
𝝏𝐟0

𝝏𝒙𝑘
+

𝝏∆𝐟

𝝏𝒙𝑘
)

 = −𝒆𝑘 ∙
𝝏𝐟0(𝐚0, 𝒙𝑘)

𝝏𝒙𝑘
 − 𝒆𝑘 ∙

𝝏∆𝐟(𝐚̃𝑘,𝒙𝑘)

𝝏𝒙𝑘

 (12)

As is analyzed in [2] along with (12), we can find that the

feed-forward loop inherits all the nice features of the unity

mapping in ResNet network. The gradient
𝝏𝑙

𝝏𝒙𝑘
 can be

decomposed into two additive terms. The first term of −𝒆𝑘 ∙
𝝏𝐟0(𝐚0, 𝒙𝑘)

𝝏𝒙𝑘
 propagates information directly from the error to the

input layer without being affected by the layers being updated

by the parameter 𝐚̃𝑘 . The second term of −𝒆𝑘 ∙
𝝏∆𝐟(𝐚̃𝑘,𝒙𝑘)

𝝏𝒙𝑘

propagates throughout the layers which are being updated by

the parameters. It is more obvious in the case that the original

system is a linear system and we add a feed-forward loop with

a linear function. In that case, (12) will be of the form

𝝏𝑙

𝝏𝒙𝑘
= −𝒆𝑘 ∙ (𝐖̅

𝑇 + 𝐖̃𝑘
𝑇
) (13)

where 𝐖̃𝑘 is trained to estimate 𝐖− 𝐖̅. It clearly shows

that the first term (constant matrix) is independent of any

weight layers and only the second term (with a subscript k)

propagates through the weight layers.

IV. SIMULATION RESULTS

In this chapter, we demonstrate the performance of the

proposed FfcNet network through simulation results.

A. Simulation Environment

The Gluon library in Apache mxnet is used as the base

framework of the machine learning throughout the

simulations. More precisely, our simulation environments are

modified based on the machine learning framework given in

[12]. We used the update gain 𝛾 of 0.005,

SoftmaxCrossEntropyLoss() as a loss function, the stochastic

gradient descent algorithm to update the parameters, and

Xavier initialization to initialize the weight parameters except

for the special layers in the FfcNet network.

For the datasets, we used 5,890 images with 100 mini-

batches for both training and test. As noise factors, we added

AWGN of 𝑵(0, 1) and turned off 30% pixels randomly.

Finally, the training and test images are shifted to a random

direction with a PDF of 𝑵(±0.3, 1) but to the opposite

directions to reflect the environmental shift in datasets.

Here, we want to add some comments on the choice of the

datasets. The reason why we introduced a new dataset rather

than using the popular MNIST datasets or similar ones is that

the proposed datasets could give us further opportunities for

the quantitative analysis on the network design. Kindly note

that the number of train/test datasets, the resolution of the

datasets, the amount of measurement noise, structural

disturbances, and even the environmental shift can be

controlled. We can connect these parameters with the various

performance indices in a quantitative manner and even

correlate them with other design parameters such as update

gain, depth of layer, etc. The results are not included in this

paper due to the limited space and we will leave it as the

future research topics.

TABLE I: PERFORMANCE COMPARISON FOR 4 NETWORKS

Channels
95%

Rise Time

Train

Loss

Train

Accuracy

Test

Accuracy

(1) FC Lin* 84 0.38 0.94 0.82

(2) ResNet 46 0.10 0.96 0.94

(3) FfcNet#1 22 0.02 0.99 0.96

(4) FfcNet#2 4 0.02 0.99 0.97

(*) The simulation results of FC linear network are based on 200 iterations

due to the too slow con-vergence while others are based on 100 iterations.

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

263

Fig. 10. Simulation results for each network designs. Figures are from top

to bottom for networks in (1)~(4).

B. Performance Evaluation

Now, let’s compare the performance of each network. We

chose the prediction (test) accuracy after 100 iterations and

the rate of the convergence (95% rise time of the train

accuracy) as the key performance indices. We compared total

4 different networks including 2 results from the preliminary

results; (1) FC Lin – a simple FC linear network in Fig. 6, (2)

ResNet – a typical ResNet network in Fig. 6, (3) FfcNet#1 – a

new FfcNet network in Fig. 9 with setting initial conditions

from FC Lin, (4) FfcNet#2 – a new FfcNet network in Fig. 9

with setting initial condition from MLE in (11).

The simulation results are shown in Fig. 10 for each

network design and key performance indices are summarized

in Table I. As expected, all the other networks except for the

simple FC linear network, showed quite good performance of

around 95% test accuracy. It is demonstrated that the

proposed FfcNet network can reduce the convergence time

significantly and improve the test accuracy as well.

V. CONCLUSION

In this paper, we proposed a new neural network design

scheme, FfcNet which has a faster rate of convergence with

improved test accuracy. We proposed a new test platform of

identifying 7-segment LED images to evaluate the

performance of neural networks. The performance of the

proposed network was demonstrated by the improved

convergence rate and prediction accuracy for the distorted 7-

segment LED images. Although a rigorous mathematical

derivation is not given here, an analogy between the feed-

forward loop in conventional control schemes and the

residual network in ResNet network was illustrated

conceptually for the better understanding of FfcNet network.

The purpose of this paper is to propose a new conceptual

design scheme and we hope this preliminary study can seed

the future studies on the neural network design such as

extending this concept to other more complex systems or

other areas beyond image recognition. Another interesting

research topic would be the connection with the fine-tuning

since it also uses similar schemes of using the pre-trained data

to train a new set of data [13]-[15]. We’d like to leave this

along with more rigorous mathematical derivation of the

convergence for the future study topics.

APPENDIX A

In Appendix A, we give symbols and notation used

throughout the paper.

Symbol Description

𝐱𝒊 Input vector in ℝ589 obtained by serializing the bit image of

‘i’ in 7 segment LED.

𝐲𝒊 Output vector in ℝ10 representing the figure ‘i’, e.g., 𝐲1 =
 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0].

𝐡 A function mapping 𝐱𝒊 ∈ ℝ589 to 𝐲𝒊 ∈ ℝ10 , i=0,1,2…,9

with a parameter 𝐝 ∈ ℝD.

𝐗 Augmented input vector in ℝ10×589 obtained by stacking 𝐱𝒊
in sequence vertically.

𝐘 Augmented output vector in ℝ10×10 obtained by stacking 𝐲𝒊
in sequence vertically.

𝐟 A function mapping 𝐗 ∈ ℝ10×589 to 𝐘 ∈ ℝ10×10 with a

parameter 𝒂 ∈ ℝA.

𝐚 A vector in ℝ𝐴 which parameterizes the function 𝐟 in terms

of the augmented input vector 𝐗 , that is, 𝐘 = 𝐟(𝐚, 𝐗).
𝐚̂ Estimate of the parameter vector 𝐚 in ℝ599×10

𝐖̂ Weight matrix for the linear network with a dimension of

ℝ589×10

𝐛̂ Bias matrix for the linear network with a dimension of

ℝ10×10
𝒙𝑘 kth mini-batch of the augmented input vector

𝐗 in ℝM×589 with a mini-batch size of M.

𝒚𝑘 kth mini-batch of the augmented output vector
𝐘 in ℝM×10 with a mini-batch size of M.

𝐚0 An initial estimate of the parameter vector 𝐚 ∈ ℝA for the

function 𝐟.
𝐟0 An estimate of the function 𝐟: ℝM×589 → ℝM×10.
𝒚̅𝑘 kth mini-batch of the augmented output vector

𝐘 in ℝM×10 for the input vector 𝒙𝑘, which is obtained from

the known function 𝐟0(𝐚0, 𝒙𝑘).
∆𝐟 The difference between the function 𝐟 and 𝐟0.

𝐚̃𝑘 Parameter vector in ℝA of the function ∆𝐟 for the kth mini-

batch.

𝒚̃𝑘 kth mini-batch of the augmented output vector

𝐘 in ℝM×10 for the input vector 𝒙𝑘, which is obtained from

the function ∆𝐟(𝐚̃𝑘 , 𝒙𝑘).
𝒚̂𝑘 The final estimate of 𝒚𝑘 for the input vector 𝒙𝑘 .
𝒆𝑘 Estimation error 𝒚𝑘 − 𝒚̂𝑘 for the kth mini-batch.

CONFLICT OF INTEREST

The author declares no conflict of interest.

ACKNOWLEDGMENT

A special thanks to the professors in the Department of

Mechanical Convergence Eng., Gyeongsang Nat’l Univ.,

Korea during the collaboration for the research activities.

REFERENCES

[1] K. He, X. Zhang, R. Shaoqing, and J. Sun, “Deep residual learning for
image recognition,” in Proc. the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 770–778.

[2] K. He, X. Zhang, R. Shaoqing, and J. Sun, “Identity mappings in deep
residual networks,” in Proc. European Conference on Computer Vision,

2016, pp. 630–645.

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

264

[3] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q.,

“Densely connected convolutional networks,” in Proc. the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp.
4700–4708.

[4] S. Zagoruyko and N. Komodakis, “Wide Residual Networks,” in Proc.

the British Machine Vision Conference, pp. 87.1-87.12, 2016.
[5] D. Y. Yeo, M. S. Kim, and J. H. Bae,”Adversarial optimization-based

knowledge transfer of layer-wise dense flow for image classification,”

Applied Science, vol. 11, pp. 3720, 2021.
[6] K. W. Jin and E. C. Lee, ” Improving the performance of frequently

used Korean handwritten character verification based on artificial

intelligence through multimodal fusion,” Applied Science, vol. 11, pp.
8413, 2021.

[7] H. Kim, S. Kim, J. Back, H. Shim and J. Seo, “Design of stable parallel

feed forward compensator and its application to synchronization
problem,” Automatica, vol. 64, no. 2, pp. 208-216, 2016.

[8] N. G. Kim, “A learning approach to asymptotic output tracking in non-

minimum phase non-linear system,” Ph. D dissertation, Dept. EE,
Seoul Nat’l Univ., Korea, 2000.

[9] Y. H. Kim and I. J. Ha, “Asymptotic State Tracking in a Class of

Nonlinear Systems via Learning-Based Inversion,” IEEE Transactions
on Automatic Control. vol. 45, pp. 2011–2017, 2000.

[10] C. Chen, Linear System Theory and Design, 3rd ed., Oxford University

Press Inc., 2012.
[11] Y. Zhang, B. Chu, and Z Shu, “A preliminary study on the relationship

between iterative learning control and reinforcement learning,” in Proc.

13th IFAC Workshop on Adaptive and Learning Control Systems
ALCOS, vol. 52. UK, 2019, pp. 314–319.

[12] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola. Dive into Deep

Learning. [Online]. Available: www.http://d2l.ai/
[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature

hierarchies for accurate object detection and semantic segmentation,”

in Proc. the IEEE Conference on Computer Vision And Pattern

Recognition (CVPR), June 2014, pp. 580-587.

[14] H. C. Jung, S. H. Lee, J. H. Yim, S. J. Park, and J.M. Kim. "Joint fine-
tuning in deep neural networks for facial expression recognition," in

Proc. the IEEE International Conference on Computer Vision, 2015,

pp. 2983-2991.
[15] Z. Li and D. Hoiem, “Learning without forgetting,” in Proc. European

Conference on Computer Vision, Springer, pp. 614–629, 2016.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Nam Guk Kim was born in South Korea in 1970. He

received the BS, MS and Ph. D degrees in EE from Seoul
Nat’l Univ., Seoul, Korea, in 1993, 1995 and 2000,

respectively. His major research interests in the univ.

were iterative learning and other control algorithm
development.

Since 2003, he had worked for Samsung Electronics

as a team leader of the storage product. After moving to
Seagate Technology in 2011, he continued his career in storage industry as

a Sr. Eng. director based in Korea and Singapore. Now, he is working as a

research fellow in Cybernetics Imaging Systems, Korea.
His recent interest is the ML/AI, especially for the image recognition and

RL. He won 3 CEO awards from all the above 3 companies for his

outstanding contributions to the technology development and biz.

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

265

http://d2l.ai/
https://creativecommons.org/licenses/by/4.0/

