
Abstract—An erasable itemset is the low profit itemset in the

product database. The previous algorithms for mining erasable

itemsets ignore the weight of each component of the product and

mine erasable itemsets by concerning the product profit only in

static product databases. But, when we consider the weight of

each component, previous algorithms for mining weighted

erasable itemsets would violate the anti-monotone property.

That is, the subset X of an erasable pattern Y may not be an

erasable pattern. The IWEI algorithm uses the static

overestimated factor of itemsets profits to satisfy the “anti-

monotone property” of weighted erasable itemset and

constructs the IWEI-Tree and OP-List data structure for the

dynamic database. However, the IWEI-Tree has to be

reconstructed, when reading the whole product database is

finished. It will take long time to complete the mining of the

whole tree, if the database is frequently updated. The IWEI

algorithm generates the too low static value of the overestimated

factor to prune candidates. To solve those problems, in this

paper, we propose the Inverted-Product-List algorithm (InvP-

List) and with the local estimated factor to identify weighted

erasable itemsets candidates from the Candidate-List which is

generated from InvP-List. We propose the appropriate

estimated factor to reduce the number of candidates which is

called LMAW. LMAW is a local estimated factor which is used

to check whether the itemset is a weighted erasable itemset or

not. Our InvP-List algorithm also requires only one database

scan. Moreover, our proposed algorithm concerning the local

estimated factor creates few numbers of candidates than the

IWEI algorithm. From the performance study, we show that

our InvP-List algorithm is more efficient than the IWEI

algorithm both in the real and the synthetic datasets.

Index Terms—Erasable itemset, frequent patterns, itemset

pruning, local estimated factor, weight constraint.

I. INTRODUCTION

Erasable itemset mining is an approach for mining itemsets

with low profits to be erasable from large-scale databases of

products in manufacturing industries, when the manager of

manufacturing industries faces financial crises [1]-[4]. In

other words, an erasable itemset is a component set of

products with the low profit so that we will not develop such

products which contain discarded components.

In previous algorithms [1]-[3], [5], [6] they only consider

the case that the gain value of itemset X is an erasable itemset,

when the gain value of itemset X is not larger than the

threshold value. The definition of the threshold value is a

percentage value δ (i.e., the threshold which is given by the

user) multiplied by the total profit value of products in the

product database. The definition of the gain value of the

Manuscript received December 13, 2021; revised April 11, 2022.

itemset X, gain(X), is a summation of profits of all the

products which contain one or more items of itemset X.

Fig. 1 shows an example of a product database TD1, where

the threshold δ = 0.3, the threshold value = 1050 (= (700 +

200 + 2000 + 600) ×

0.3), and gain(A) = 900 (= 700 + 200).

Due to that the gain value of item A is smaller than the

threshold value 1050, we c

an conclude that item A is an

erasable item in the product database TD1.

Fig. 1. An example of the product database TD1.

The previously traditional methods [2]-[4], [6] of erasable

itemset mining have several limitations in terms of data

accumulation and features of each item. First, previous

algorithms are designed for processing for the static database.

Once new data is inserted into the database, they must take

time to scan the database more than once. However, the

amount of the data of products increases due to the activation

and growth of the components in the real life. Due to such a

reason, by using previous algorithms to deal with the

incremental database [4], [7]-[9] is not efficient for facing

such a change.

There are four cases in the incremental database

environment. When the new data is inserted into the database,

the total profits and the threshold value of the original data

will be changed. Therefore, the erasable itemset existing in

the original database may or may not be the erasable itemset.

Moreover, the inerasable itemset existing in the original

database may or may not be the inerasable itemset.

Consequently, those situations can be classified into 4 cases

by the characteristic of data accumulation. Therefore, once

the database is upgraded, data must be examined again.

Moreover, previous algorithms regard that all the

components which compose products as the same importance,

no matter what types of components which they are going to

mine. But each product is constituted of various components,

those components have different features in their products.

So, each component has its own weight [4], [10]-[13] such as

the price in the real world.

In the real world, Lee et al. [4] propose an algorithm to

mine weighted erasable itemsets called the IWEI algorithm

which considers the weight of each item such as the price in

The authors are with National Sun Yat-sen University, Taiwan (e-mail:

changyi@mail.cse.nsysu.edu.tw, jacky83528@gmail.com, rsps1008@g-

mail.nsysu.edu.tw).

Mining Weighted Erasable Itemsets Over the Incremental

Database Based on the InvP-List

Ye-In Chang, Siang-Jia Du, and Chin-Ting Lin

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

236doi: 10.18178/ijmlc.2022.12.6.1106

the real world, instead of the frequency of the item in the

database only. First, the IWEI algorithm constructs the tree

structure to store the information of the data by scanning the

database just one time. But the IWEI algorithm must

repeatedly reconstruct the tree according to the descending

order of the frequency of items for compacting the tree.

Second, the IWEI algorithm uses an estimated factor called

MAW to reduce the computational cost. However, the MAW

value of this fixed estimated factor for pruning invalid

candidates of any size is so low, which results in too many

candidates. So, we propose the Inverted-Product-List (InvP-

List) algorithm, to discover the weighted erasable itemsets

based on the profit of each product and the weight of each

item. In our data structure, we make an InvP-List to record

the information of items of length 1 and use this list to

generate a 1-Candidate list to mine weighted erasable

itemsets. Moreover, we propose the local estimated factor to

prune the number of candidates which is called LMAW. The

value of LMAW would be changed according to the length

of the itemset, instead of the fixed value. Then, we find the

maximum average weight of items of length 1 as LMAW and

use LMAW and the gain value of the item to calculate the

value of MGain to check whether an item is a candidate or

not. If the item is a candidate, we will construct 1-Candidate

list to store it. After finding 1-Candidate list, we check

whether an item is a real weighted erasable itemset in 1-

Candidate list or not. Then, we find a new LMAW for itemset

of length 2 and generate candidate itemsets of length 2 based

on 1-Candidate list. We will find the weighted erasable

itemset of the long length continuously until we cannot find

any more candidates of the long length.

Our list structure can decrease the time of reconstructing

the tree and our algorithm can reduce the number of invalid

candidates which results in decreasing the processing time.

From the simulation result, we show that our proposed InvP-

List algorithm provides better performance than the IWEI

algorithm.

The rest of paper is organized as follows. In Section II, we

give a survey of the IWEI algorithm. In Section III, we

present our proposed approach. Section IV presents the

performance study of our approach and makes a comparison

between our approach and the IWEI algorithm. Finally, we

give a conclusion in Section V.

II. A SURVEY OF THE IWEI ALGORITHM

The IWEI algorithm was proposed by Lee et al. [4] and it

constructs an original IWEI-Tree by scanning an original

product database in Fig. 2, then reconstructs the tree in

descending order of frequency of item for compacting the

tree structure. Once the new product information is inserted

into the original IWEI-Tree, then the algorithm reconstructs

the tree for the purpose of a compact tree for maintaining.

Fig. 2. An example for example product database.

By concerning the static databases, there is a problem in

which they must read data straightway within a single

database scanning in incremental database environments.

Because the circumstances of such incremental databases are

constantly altering according to the accumulation of

information.

For the purpose of conducting the mining process more

efficiently, they propose a new list data structure which

reduces the duplicated information, called Order-and-profit-

list (OP-list).

An IWEI-Tree consists of a header table and a prefix tree.

The header table has three columns: item name, frequency(F),

and profit. The prefix tree is composed of multiple nodes,

where each node includes name of item, frequency, total

profit, parent link, children set, pre-order-index, and res-flag,

res-flag is used to check whether each node has been

restructured or not yet.

First, they construct the IWEI-Tree according to the

lexicographic order of item. For example, products P1-P6

have been inserted into the IWEI-Tree as shown in Fig. 3.

Fig. 3. The IWEI-Tree after inserting P1-P6.

Second, the IWEI algorithm conducts the reconstructing of

the tree according to descending order of frequency in order

to efficiently store product information. Fig. 4 shows the

reconstruction of the IWEI-Tree according to descending

order of frequency.

Fig. 4. The reconstruction of IWEI-Tree according to descending order of

frequency.

After constructing the IWEI-Tree, OP-list is generated,

where the list is composed of pre-order index, total profit, and

post-order index information of the nodes which composes

the tree. Fig. 5 shows the result of restructuring the IWEI-

Tree in Fig. 4.

Fig. 5. An OP -list of restructuring the IWEI-Tree.

However, containing information of all the nodes into OP-

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

237

list can be so inefficient, because there are not the whole

nodes in the tree participating in the mining process. OP-list

just keeps nodes information which is contained in erasable

1-itemsets.

They use an overestimated factor MGain(X) to check

whether itemset X is an erasable itemset candidate or not. If

MGain(X) > threshold, then itemset X is not a candidate,

where MAW means the largest value of AW in the itemsets

with length 1. MGain(X) is defined as Gain(X) divided by

MAW.

After passing the check of MGain(X), then they use the

AW result. They can obtain a weighted gain of X, WGain(X).

If WGain(X) > threshold, itemset X is not a weighted

erasable itemset, vice versa, WGain(X) is defined as Gain(X)

divided by AW(X).

III. THE PROPOSED ALGORITHM

A. Data Structure

To efficiently find the weighted erasable itemsets, the data

structure must avoid the reconstructing process, and the value

of the estimated factor is appropriate to decrease the number

of candidates. In this section, we propose an Inverted-Product

List (InvPL) Algorithm to efficiently discover the weighted

erasable itemsets by using the inverted file information of the

product database as the foundation of our data structure.

In weighted erasable itemsets mining, it considers that

each item has the respective profit in the product. The

weighted erasable itemsets are the compositions of items

which do not contribute the most valuable profit in the

product database. Moreover, the “anti-monotone property”

does not hold in weighted erasable itemsets mining.

Therefore, we propose the InvPL algorithm for mining the

inverted product information and consider the local estimated

factor to hold the “anti-monotone property”. The InvP-List

mining operation can be efficiently executed by using the

item information of each list node sorted in the InvP-List. In

this section, we first describe the Inverted-Product table that

is used to compose the product database. Then, we present

the InvP-List data structure which is based on the Inverted-

Product table to find weighted erasable itemsets efficiently.

Fig. 6. An example of product database TD1.

Because different products may contain common items,

those products can be composed in a table which is used to

transform the product-base table into the item-based table.

The InvPL algorithm uses the inverted-product based

algorithm to efficiently discover the weighted erasable

itemsets in the product database. Fig. 6 and Fig. 7 show an

example of product database TD1 and the related weight

table WT1, respectively. We simply establish a table of items

with the corresponding products and the related information

which is denoted as InvP-Table as shown in Fig. 8.

Fig. 7. Weight table WT1.

Fig. 8. The recorded InvP-Table of product database TD1.

For each item I, the InvP-Table contains product

identification (Pid), gain value (Gain), average weight (AW)

of item I in the related product and count. The following

InvP-List is constructed according to the InvP-Table which

requires only the scan of product database one time. The

InvP-Table records the following information of each item I:

 Pid: It represents the set of products which contains item

I in the product database.

 Gain: It is constituted of the product profit. It represents

the sum of the profit of item I in the related products of

the database.

 AW: It represents the set of the average weight which

contains item I in the related products.

 Count: It represents the appearance of item I in the

product database.

Let ISet = {I1, I2, ..., In} be a set of all items in the product

database, DB = {P1, P2, ..., Pm} be a product database which

is composed of products and X = {I1, I2, ..., Is} be an itemset,

s ≥ 1.

The gain value of itemset (Gain) shows the amount of the

profits related to each product in the database. Given an

itemset X, gain of X, Gain(X), is a summation of profits of

all the products that contain one or more items of X, which is

computed as follows [4]:

Gain(𝑋) = ∑{𝐼𝑛𝑡𝑒𝑟(𝑋, 𝑃𝑟) ∗ 𝑃𝑟 . profit}

𝑚

𝑟=1

,

Inter(𝑋, 𝑃𝑟) = {
1, if 𝑋 ∩ 𝑃𝑟 ≠ ∅
0, otherwise

 (1)

The value of Gain(X) could only be increased, instead of

being decreased, as the data is increased.

The AW(Ip) shows the amount of the average weight

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

238

values related to each item in products. AW(Ip) is used to

compute the ratio of the weight of item I to the sum of all the

weight values for each product Pj, which is defined as follows

[4]:

AW(𝐼𝑝) =
∑ {

𝑤(𝐼𝑝)

∑ 𝐼𝑝∈𝑃𝑗∙𝑤(𝐼𝑟)
}𝑚

𝑗=1

𝑘
 (2)

Then, an average weight of itemset X, AW(X), is

computed as follows:

AW(𝑋) =
∑ 𝐴𝑤(𝑖𝑝)𝑠

𝑝=0

𝑠
 (3)

The LMAW is the local maximum average weight of the

item of length k, which is used to compute the estimated

value to prune candidates, the value of LMAW is between 0

and 1. By sorting the count in the descending order, we can

obtain LMAW and check if any item does not only appear

one time but also only appear in a product. Note that for such

a special case, we will introduce the special case later.

For example, item A appears in products P1 and P2, totally

2 products. Gain(A) is 800 (= 600 + 200), and AW(A) is

0.8

1.9
,

0.8

1.1
 (=

0.8

0.8+0.8+0.3
,

0.8

0.8+0.3
).

The MGT is multiplied by the user-defined threshold and

the summation of the profit in the product database. If

MGain(X) is larger than the MGT, itemset X will not be a

candidate.

The maximum gain of itemset X, MGain(X), is computed

as follows:

MGain(𝑋) =
Gain(𝑋)

𝐿𝑀𝐴𝑊
 (4)

That is, for those candidates X which have the value of

MGain(X) larger than MGT, they are what we can prune.

After sorted by the count of length 1 items in the initial

InvP-Table as shown in Fig. 9, the InvP-Table will be

recorded according to the descending order of the count. But

if items have the same count, it will be recorded according to

the alphabetical order.

Fig. 9. The sorted InvP-Table of product database TD1.

On the other hand, if there exists the special case, e.g.,

LMAW = 1, then we can check whether such an item I will

be the candidate or not by using MGain(X) in this case.

Otherwise, we will not accept it and continuously search the

new LMAW.

In Fig. 9, item C is a special case in the product database.

Item C only appears in product P3 and product P3 contains

only one item (i.e., C), so the average weight of item C is 1

and LMAW is 1 (= AW(C)). Let the threshold be 32%, the

MGT of the original product database is 1632 (= 5100 ×

0.32). We have Gain(C) = 2100 and LMAW = 1, so the

MGain(C) is 2100. Because the MGain(C) is 2100 which is

larger than MGT, item C will not be a candidate of length 1

item.

Due to item C will not be the candidate of length 1 item,

we must continuously search the new LMAW. Finally, we

find the new LMAW = 0.61 (= AW(G)) in InvP-Table.

After sorting the InvP-List, we can determine LMAW.

Then, we create the candidate of length 1 by MGain(X). By

using 1-Candidate table to mine weighted erasable itemsets,

we can reduce the search time, and can solve the accumulated

problem. If we prune the items in InvP-List, the weighted

erasable of length k may lose, when new products are inserted

into the product database. However, we prune items in 1-

Candidate table which does not cause missing cases, when

we process product database update. Because 1-Candidate

table is recorded again while we process the update of the

product of database. 1-Candidate table contains four columns,

item, Pid, Gain and average weight (AW). We construct 1-

Candidate table by InvP-List related to product database TD1

as shown in Fig. 10. We use Gain of each item in InvP-List

and LMAW to calculate MGain(X). If MGain(X) is not

larger than MGT, we record the item name, Pid, Gain and

AW in 1-Candidate table.

Fig. 10. 1-Candidate table for TD1.

In Fig. 10, we have MGT = 1632 and LMAW = 0.61 in the

original product database TD1 and Gain of item A is 800.

The MGain(A) = 1311 is smaller than MGT, so item A is a

candidate of length 1. We record the item name, Pid, Gain

and the average weight of item A in InvP-List to 1-Candidate

table.

B. The Mining Algorithm with 1-Candidate-Table

After we finish the construction of the 1-Candidate table

which is based on the InvP-List, we start the mining step. We

perform the weighted erasable itemset mining by 1-

Candidate table, instead of InvP-List. Because mining

weighted erasable itemset with 1-Candidate table can reduce

the search time and solve the accumulate problem. First, we

check the candidates of length k. If it passes the condition, it

must be a member of the weighted erasable itemset of length

k. Second, we generate the candidates of length (k+1) to find

the weighted erasable itemset of length (k+1) until we cannot

generate any longer length candidates.

We use the weighted gain WGain(X) to check whether the

candidate itemset is a real weighted erasable itemset or not.

Therefore, we can find how much effectiveness of itemset X

on the products which contains itemset X by WGain(X). The

weighted gain of itemset X, WGain(X), is computed as

follows:

WGain(𝑋) =
Gain(𝑋)

𝐴𝑊(𝑋)
 (5)

By dividing Gain(X) with AW(X), we get the proportion

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

239

of Gain(X) to AW(X). If the MGain(X) is not larger than

MGT, itemset X is a weighted erasable itemset. That is,

itemset X could not make many profits, and vice versa.

The value of AW(X) may be increased or decreased, as the

data is increased. Similarly, the value of WGain(X) may be

increased or decreased, as the data is increased.

In fact, the value of LMAW is kept as lower as better in

terms of concerning the number of candidates. The reason is

that when the value of LMAW is small, it represents that the

denominator of formula MGain(X) = Gain(X) / LMAW is

large. It will result in a large quotient. Moreover, it will result

in a large MGain(X). Note that the value of MGain(X) is

always smaller than or equal to WGain(X), i.e., the real value

of itemset X. Therefore, if the value of MGain(X) is as near

as the value of WGain(X), then we can have a large chance

to prune it, which can result in a small number of candidates.

Fig. 11. 1-Candidate Table for checking item A.

For example, in Fig. 11, item A is a candidate of length 1.

We calculate WGain(A) by Gain(A) and AW(A). WGain(A)

= 1403 (= 800 / 0.57) is smaller than MGT (= 1632), so item

A is a real weighted erasable itemset of length 1.

After checking the candidates of length 1, we find items A,

B and G are real weighted erasable itemsets of length 1.

Because their weighted gain values are smaller than MGT.

Then, we use candidates of length 1 to generate candidates

of length 2. First, we select the candidate that the size of Pid

is largest to combine with other candidates of length 1.

Second, we use MGain(X) to reduce the number of

candidates. Finally, we use WGain(X) to check the candidate

which passes the WGain(X) no matter whether it is real

weighted erasable itemset or not.

In order to generate candidates of length k, where k is

larger than 1, we make use of two properties. First, we use

the difference Pid (DiffS) property [3]. Given itemset X and

itemset Y, DiffS(X, Y) is defined as follows:

Diffs(𝑋, 𝑌) = 𝑃𝑖𝑑(𝑌) \ 𝑃𝑖𝑑(𝑋) (6)

For example, the pid set of itemset X = [2, 3, 6, 8] and the

pid set of itemset Y = [1, 2, 6], DiffS(X, Y) = [1].

Second, by using the difference Pid (DiffS) property, we

use a property which is proposed from the MEI algorithm [3],

and is defined as follows:

Gain(𝑋𝑌) = 𝐺𝑎𝑖𝑛(𝑋) + ∑ 𝑘. 𝑝𝑟𝑜𝑓𝑖𝑡𝑘∈𝐷𝑖𝑓𝑓𝑠(𝑋, 𝑌) (7)

For example, Fig. 12 shows DiffS(A, B) = Pid(B) \ Pid(A),

and DiffS(A, B)= [4]. We can calculate the gain value of

itemset [A, B] by the summation of the gain value of item A

and the profit of difference Pid, Gain(AB) = 800 + 300 =

1100.

Fig. 12. Gain value of itemset AB.

Fig. 13. Item A combining with items B and G to generate candidates of

length 2.

For example, in Fig. 11, after checking the case of the real

weighted erasable of length 1 from candidates, we select item

A to combine with other candidates which pass the

MGain(X). Item A combines with items B or G to generate

candidates of length 2 which are itemsets [A, B], and [A, G]

in Fig. 13. As compared to 1-Candidate table shown in Fig.

10, we record dPid to calculate Gain of itemset, instead of

Pid. Because we use the concept of DiffS. Due to this reason,

we will not record duplicated information of Pid.

At this time, we would calculate LMAW for itemsets of

length k when k > 1. We select the first largest AW and the

second largest AW of item until the k-th largest of length 1

to get AW as the new LMAW.

First, the new LMAW is 0.59 (= (0.57 + 0.61) / 2), we can

find the maximum weighted gain value of itemsets [A, B] =

1864 and [A, G] = 2033. Both itemsets [A, B] and [A, G]

with the maximum weighted gain value which are larger than

MGT (= 1632). Therefore, itemsets [A, B], and [A, G] are not

candidates of length 2, and we prune them from candidates

of length 2. Because itemsets [A, B], and [A, G] will never

be the real weighted itemsets no matter what items combine

with them in the original product database.

Due to that [A, B], and [A, G] are not candidates of length

2, we cannot find the candidates which length is larger than

2 when we consider the case of length k that item A combine

with the other items. Then, we consider a remaining

candidate of length 1 to combine with the other candidates of

length 1, except item A which size of Pid of candidates is the

second largest. In addition, we must check LMAW of the

remaining candidates. Because some candidates have been

considered, like item A, those items will not be combined

with the other candidates.

For example, item A has been considered already, we

select another candidate of length 1, item B that the size of

Pid of remaining candidates of length 1 is the second largest.

We find LMAW = 0.59 (= (0.57 + 0.61) / 2). The gain value

of itemset [B, G] = 1300 and LMAW = 0.59. MGain(B, G) =

2203 is larger than MGT (= 1632). Itemset [B, G] is not a

candidate of length 2, so that we cannot generate candidates

which length is larger than 2 when considering item B in Fig.

14.

Fig. 14. Item B combining with item G to generate candidates of length 2.

Finally, we can find that items A, B and G are real

weighted erasable itemsets from candidates. On the other

hand, we only generate 6 candidates, but the IWEI algorithm

generates 11 candidates for the same product databases.

1) Insertion of the new data

When the new product information is inserted into

products, we have to check the following cases. If this

product contains new item which is not recorded in the

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

240

original inverted-product table, then we record the

information of Item, Pid, Gain, AW and Count of the item

into the last part of the inverted-product table. Otherwise, we

update the item information which is corresponding to the

item in the original inverted-product table. When we finish

inserting the new product information into the inverted-

product table, we sort the additional product database and

find an appropriate LMAW at the same time.

Due to that the new information of items are added to the

last part of the inverted-product table, we cannot reconstruct

the inverted-product table at all. However, we must find an

appropriate LMAW. Because the new data is generated, and

the AW information of the item could be changed and

infected.

For example, Fig. 15 shows that product P7 is inserted into

the bottom of inverted-product table and updating the

corresponding items in the original inverted-product table,

when product P7 comes. Due to that product P7 contains

items G and H, and item G has already in the original

inverted-product table, so we just add new pid to Pid set.

Then, we add the new average weight to AW set and

accumulate Gain, Count for the corresponding item G in the

original inverted-product table.

Fig. 15. Insertion of product P7 into InvP-Table.

Fig. 16 shows the final result, when products P7 and P8 are

inserted into the original product database. After updating the

inverted-product table, we should find the new LMAW

which plays an important role to efficiently prune candidates

and sort the new inverted-product table according to Count

of the item at the same time.

Fig. 16. The insertion of Product P8 into InvP-Table.

After updating the inverted-product table, we should find

the new LMAW which plays an important role to efficiently

prune candidates and sort the new inverted-product table

according to Count of the item at the same time.

Fig. 17 shows the sorted inverted-product table which has

inserted the additional information of the item into the

inverted-product table. We can get the new LMAW after

sorting. We have LMAW = 0.57 (= AW(G)). The value of

LMAW changes, because item G is a component in product

P7. Moreover, the new average weight of G which gets the

value of adding the original average weight of G and the

average weight of G in product P7. The average weight of

length 1 item may change, when the new product is inserted.

Moreover, this value is possible to be increased or decreased.

Due to this reason, we must find an appropriate LMAW,

because LMAW is the local maximum average weight the

length 1 item average weight.

Fig. 17. InvP-Table for original + incremental product database.

When getting the new LMAW and finishing sorting the

new inverted-product table, we can get the length 1 candidate

table for the new inverted-product table (i.e., the original +

the incremental product databases). After getting candidate

table of length 1, we can use the information of items of

length 1 in this table to calculate candidates and real weighted

erasable itemsets by LMAW, MGain(X) and WGain(X).

C. Comparison

After all, we make a comparison to discuss the difference

between our proposed InvPL algorithm and the IWEI

algorithm. We use product database TD1 and weight table

WT1 as an input as shown in Fig. 6 and Fig. 7 to compare the

generated number of candidates and data structure of the

InvPL algorithm and the IWEI algorithm.

When products P1 - P6 are scanned, the IWEI-Tree of the

IWEI algorithm must reconstructed one times to compress

the data structure, but our InvPL algorithm does not

reconstruct data structure. Another aspect, we compare the

number of candidates of the IWEI algorithm and the InvPL

algorithm in the original section of product database.

Because we propose the local estimated factor to rise the

value of MGain so that we can prune many more unnecessary

candidates. The number of candidates of the InvPL algorithm

is 6, which is smaller than 11 of the IWEI algorithm.

We make a comparison of construct times and the number

of candidates between our InvPL algorithm and the IWEI

algorithm, when incremental data is inserted into the original

product database. Our InvPL algorithm does not reconstruct

the data rather than reconstruct one time in the IWEI

algorithm.

Finally, we make a comparison of the number of generated

candidates and the number of real weighted erasable itemsets

between the InvPL algorithm and IWEI algorithm. We find

the number of candidates of our InvPL algorithm (=10) is less

than that of the IWEI algorithm (=18), and the number of real

weighted erasable itemsets is the same (=4).

IV. PERFORMANCE

In our performance study, we consider the real dataset

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

241

(http://fimi.ua.ac.be/data/) and the synthetic dataset. In this

section, we will compare the performance between the IWEI

algorithm and our InvPL algorithm. We will compare the

processing time of those two algorithms mining for the real

dataset and the synthetic datasets. We also compare the

number of candidates of those two algorithms. Therefore, we

evaluate the performance of the IWEI algorithm and our

InvPL algorithm in terms of the processing time under the

change of the threshold. Moreover, we also evaluate the

process of mining weighted erasable itemsets in terms of the

processing time under the change of the number of items and

the number of products in the product database. The

Mushroom dataset is the information of various species of the

mushroom, and it is a dense dataset. The profit of products

and mushrooms are generated between 10 and 100, and the

weight of items and elements are generated between 0.1 and

0.9.

The parameters used in the generation of synthetic datasets

are shown in Table I. The details of the Mushroom dataset

are shown in Table II. (To make a comparison between the

IWEI algorithm and our InvPL algorithm, for the real dataset,

we use different range of user defined percentage, i.e.,

threshold.) The details of synthetic datasets are shown in

Table III.”

TABLE I: VARIABLES

Parameter Description

Threshold The user defined percentage

I The number of the items in the dataset

D The number of the products in the dataset

TABLE II: THE DETAILS OF REAL DATASET

Dataset Tavg |D| |I| User Defined

Percentage

Mushroom 23 8124 120 0.5 – 0.9

TABLE III: THE DETAILS OF SYNTHETIC DATASETS

Case Dataset Tavg |D| |I| User Defined

Percentage

1 T10.I1K.

D100K

10 100,000 1,000 0.0166

– 0.017

2 T10.I?K.

D100K

10 1,000

– 1,080

1,000 0.0166

Then, in Fig. 18, we show the comparison of the number

of candidates for the real dataset on Mushroom under the

change of the threshold. In this experiment, we set the

threshold to be 0.5, 0.6, 0.7, 0.8 and 0.9. From Fig. 18, we

show that the number of generated candidates of our InvPL

algorithm is fewer than that of the IWEI algorithm. The

reason is that the IWEI algorithm uses the too low estimated

factor to prune candidates. Moreover, we find that the

number of candidates of both algorithms increase, when the

threshold increases. Because when the threshold increases, it

will cause many candidates to pass the MGT test. However,

to prune candidates, the value of the estimated factor used in

our InvPL algorithm is never lager than that used in the IWEI

algorithm. Therefore, our InvPL algorithm will prune more

number of candidates than the IWEI algorithm. Furthermore,

the Mushroom dataset, a dense dataset, the number of

candidates determined by our InvPL algorithm increases

slowly as the value of the threshold increases. The reason is

the same as stated before.

Fig. 18. A comparison of the number of candidates of the Mushroom

dataset under the change of the threshold.

In Fig. 19, we show the comparison of the processing time

for the real dataset, Mushroom, under the change of the

threshold. In this experiment, we set the threshold to be 0.5,

0.6, 0.7, 0.8 and 0.9. From Fig. 19, we show that the

processing time of our InvPL algorithm is faster than the

IWEI algorithm. The reason is that the IWEI algorithm

generates more number of candidates than our InvPL

algorithm. Moreover, our InvPL algorithm does not

reconstruct the list structure again. Therefore, our InvPL

algorithm takes shorter time than the IWEI algorithm to find

weighted erasable itemsets. Furthermore, we use a data

structure similar to the in- verted index. Therefore, the search

time for the interesting pattern is efficient and almost the

fixed time, no matter what value of the threshold is and no

matter what distribution of the data is.

Fig. 19. A comparison of the processing time for the Mushroom dataset

under the change of the threshold.

Fig. 20. A comparison of the number of candidates for the synthetic

dataset, T10.I1K.D100K, under the change of the threshold

Next, we show the performance experiment of the both

algorithms for the synthetic dataset. In Fig. 22, we show the

number of candidates of both algorithms for the synthetic

dataset, T10.I1K.D100K under the change of the threshold.

In this experiment, we set the threshold to be 0.0166, 0.0167,

0.0168, 0.0169 and 0.0170. From Fig. 20, we show that the

number of generated candidates of our InvPL algorithm is

fewer than that of the IWEI algorithm. The reason is that the

IWEI algorithm always uses the too low estimated factor to

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

242

prune candidates. Moreover, we find that the number of

candidates of the IWEI algorithm increases faster than that of

our InvPL algorithm, when the threshold increases. The

reason is the same as what we have stated above. Therefore,

the InvPL algorithm prunes more number of candidates than

the IWEI algorithm.

In Fig. 21, we show the comparison of the processing time

for the synthetic dataset, T10.I1K.D100K under the change

of the threshold. In this experiment, we set the user defined

percentage to be 0.0166, 0.0167, 0.0168, 0.0169 and 0.0170.

From Fig. 21, we show that the processing time of our InvPL

algorithm is shorter than the IWEI algorithm. The reason is

that our InvPL algorithm generates fewer number of

candidates than the IWEI algorithm. Moreover, our InvPL

algorithm does not reconstruct the list structure again.

Therefore, our InvPL algorithm takes shorter time than the

IWEI algorithm to find the weighted erasable itemsets.

Fig. 21. A comparison of the processing time for the synthetic dataset,

T10.I1K.D100K, under the change of the threshold.

In Fig. 22, we show the comparison of the processing time

for the synthetic dataset, T10.I(1-1.08)K.D100K, under the

change of the number of items. In this experiment, we set the

user defined percentage to be 0.0166.

From Fig. 22, we show that the processing time of our

InvPL algorithm is less than the IWEI algorithm. The reason

is that our InvPL algorithm examines candidates more easily

than the IWEI algorithm when candidates of long length.

Moreover, we observe that the processing time of both

algorithms increases. But the process time of our InvPL

algorithm increases slower than that of the IWEI algorithm,

when the number of items increases. Because our InvPL

algorithm obtains candidate itemsets easily, when the number

of items increases. Moreover, our InvPL algorithm does not

reconstruct the list structure again. Therefore, our InvPL

algorithm takes less time than the IWEI algorithm to find

weighted erasable itemsets.

Fig. 22. A comparison of the processing time for the synthetic dataset,

T10.I(1- 1.08)K.D100K, under the change of the number of items.

Therefore, our InvPL algorithm takes less time than IWEI

algorithm to find weighted erasable itemsets. In our

simulation study, we let the weight of each item be between

0.1 and 0.9, instead of between 0.5 and 0.75 in the

performance study of the IWEI algorithm. Because we

consider that it simulates to the real life. Under such a

consideration, as |D| increases, the threshold value (i.e., total

product profits * threshold) will also increase, which results

in the case that the Gain value of each itemset also could

increase. Therefore, the chance to be the weighted erasable

itemset decreases, resulting in the decrease of the processing

time.

V. CONCLUSIONS

In this paper, we have proposed an InvP-List algorithm

which can efficiently mine weighted erasable itemsets with

fewer number of candidates. We use the list structure of the

inverted product dataset to record the database information

of items in each product in our algorithm. Furthermore, our

proposed algorithm dynamically calculates LMAW to

compute the value of MGain which is an overestimated factor

to prune candidates. Then, we have studied the performance

of the InvP-List algorithm and the IWEI algorithm. We have

conducted several experiments using the real dataset and

different synthetic data. The performance results have shown

that the InvP-List algorithm has better performance than the

IWEI algorithm.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Chang and Du concuted the research; Du and Lin analyzed

the data and wrote the paper; all authors had approved the

final version.

ACKNOWLEDGMENT

 This research was supported in part by the Ministry of

Science and Technology of Republic of China under Grant

No. MOST108-2221-E110-060.

REFERENCES

[1] Z.-H. Deng, G.-D. Fang, Z.-H. Wang, and X.-R. Xu, “Mining erasable

itemsets,” in Proc. the Int. Conf. on Machine Learning and Cybernetics,

2009, pp. 67–73.

[2] Z.-H. Deng and X.-R. Xu, “Fast mining erasable itemsets using NC-

sets,” Expert Systems with Applications, vol. 39, no. 4, pp. 4453–4463,

2012.

[3] T. Le and B. Vo, “MEI: An Efficient Algorithm for Mining Erasable

Itemsets,” Engineering Applications of Artificial Intelligence, vol. 27,

no. 1, pp. 155–166, 2014.

[4] G. Lee, U. Yun, H. Ryang, and D. Kim, “Erasable itemset mining over

incremental databases with weight conditions,” Engineering

Applications of Artificial Intelligence, vol. 52, no. 1, pp. 213–234,

2016.

[5] Z. Deng and X. Xu, “An efficient algorithm for mining erasable

itemsets,” in Proc. the Int. Conf. on Advanced Data Mining and

Applications, 2010, pp. 214–225.

[6] T. Le, B. Vo, and F. Coenen, “An efficient algorithm for mining

erasable itemsets using the difference of NC-sets,” in Proc. the IEEE

Int. Conf. on Systems, Man, and Cybernetics, 2013, pp. 2270–2274.

[7] U. Yun and G. Lee, “Incremental mining of weighted maximal

frequent itemsets from dynamic databases,” Expert Systems with

Applications, vol. 54, no. 1, pp. 304–327, 2016.

[8] U. Yun and H. Ryang, “Incremental high utility pattern mining with

static and dynamic databases,” Applied Intelligence, vol. 42, no. 2, pp.

323–352, 2015.

[9] U. Yun, H. Ryang, G. Lee, and H. Fujita, “An efficient algorithm for

mining high utility patterns from incremental databases with one

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

243

database scan,” Knowledge Based Systems, vol. 124, no. 1, pp. 188–

206, 2017.

[10] J. C.-W. Lin, W. Gan, P. Fournier-Viger, and T.-P. Hong, “RWFIM:

Recent weighted frequent itemsets mining,” Engineering Applications

of Artificial Intelligenc e, vol. 45, no. 1, pp. 18–32, 2015.

[11] L. H. Son, P. L. Lanzi, B. C. Cuong, and H. A. Hung, “Data mining in

GIS: A novel context-based fuzzy geographically weighted clustering

algorithm,” International Journal of Machine Learning and

Computing, vol. 2, no. 3, pp. 235–238, 2012.

[12] S. Mutalib, A. Mohamed, S. Abdul-Rahman, and N. Mustafa,

“Weighted frequent itemset of SNPs in genome wide studies,”

International Journal of Machine Learning and Computing, vol. 8, no.

4, pp. 311–318, 2018.

[13] L. Nguyen, G. Nguyen, and B. Le, “Fast algorithms for mining

maximal erasable patterns,” Expert Systems with Applications, vol. 124,

pp. 50–66, 2019.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Ye-In Chang received her B.S. degree in computer

science and information engineering from National

Taiwan University, Taipei, Taiwan, in 1986. She

received her M.S. and Ph.D. degrees in computer and

information science from The Ohio State University,

Columbus, Ohio, in 1987 and 1991, respectively.

From August 1991 to July 1999, she joined the

Faculty of Department of Applied Mathematics at

National Sun Yat-Sen University, Kaohsiung,

Taiwan. From August 1997, she has been a professor in the Department of

Applied Mathematics at National Sun Yat-Sen University, Kaohsiung,

Taiwan. Since August 1999, she has been a professor in the Department of

Computer Science and Engineering at National Sun Yat-Sen University,

Kaohsiung, Taiwan. Her research interests include database systems,

distributed systems, multimedia information systems, mobile information

systems and data mining.

S. J. Du received M.S. degrees in computer science

and engineering from National Sun Yat-Sen

University in 2018. His research interests include

distribute computing and data mining. For the field

of data mining, he focuses on mining the erasable

pattern or the erasable itemset. He is currently a

system designer in Taiwan.

C. T. Lin received the B.S. degree from National

Taichung University of Education in 2018. He is

currently a M.S. student in the Department of

Computer Science and Engineering at National Sun

Yat-Sen University in Taiwan. His research interests

include data mining and distributed computing.

International Journal of Machine Learning and Computing, Vol. 12, No. 5, September 2022

244

https://creativecommons.org/licenses/by/4.0/

