
Abstract—An erasable itemset is the low profit itemset in the 

product database. The previous algorithms for mining erasable 

itemsets ignore the weight of each component of the product and 

mine erasable itemsets by concerning the product profit only in 

static product databases. But, when we consider the weight of 

each component, previous algorithms for mining weighted 

erasable itemsets would violate the anti-monotone property. 

That is, the subset X of an erasable pattern Y may not be an 

erasable pattern. The IWEI algorithm uses the static 

overestimated factor of itemsets profits to satisfy the “anti-

monotone property” of weighted erasable itemset and 

constructs the IWEI-Tree and OP-List data structure for the 

dynamic database. However, the IWEI-Tree has to be 

reconstructed, when reading the whole product database is 

finished. It will take long time to complete the mining of the 

whole tree, if the database is frequently updated. The IWEI 

algorithm generates the too low static value of the overestimated 

factor to prune candidates. To solve those problems, in this 

paper, we propose the Inverted-Product-List algorithm (InvP-

List) and with the local estimated factor to identify weighted 

erasable itemsets candidates from the Candidate-List which is 

generated from InvP-List. We propose the appropriate 

estimated factor to reduce the number of candidates which is 

called LMAW. LMAW is a local estimated factor which is used 

to check whether the itemset is a weighted erasable itemset or 

not. Our InvP-List algorithm also requires only one database 

scan. Moreover, our proposed algorithm concerning the local 

estimated factor creates few numbers of candidates than the 

IWEI algorithm. From the performance study, we show that 

our InvP-List algorithm is more efficient than the IWEI 

algorithm both in the real and the synthetic datasets. 

Index Terms—Erasable itemset, frequent patterns, itemset 

pruning, local estimated factor, weight constraint. 

I. INTRODUCTION

Erasable itemset mining is an approach for mining itemsets 

with low profits to be erasable from large-scale databases of 

products in manufacturing industries, when the manager of 

manufacturing industries faces financial crises [1]-[4]. In 

other words, an erasable itemset is a component set of 

products with the low profit so that we will not develop such 

products which contain discarded components. 

In previous algorithms [1]-[3], [5], [6] they only consider 

the case that the gain value of itemset X is an erasable itemset, 

when the gain value of itemset X is not larger than the 

threshold value. The definition of the threshold value is a 

percentage value δ (i.e., the threshold which is given by the 

user) multiplied by the total profit value of products in the 

product database. The definition of the gain value of the 
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itemset X, gain(X), is a summation of profits of all the 

products which contain one or more items of itemset X. 

Fig. 1 shows an example of a product database TD1, where 

the threshold δ = 0.3, the threshold value = 1050 (= (700 + 

200 + 2000 + 600) ×

 

0.3), and gain(A) = 900 (= 700 + 200). 

Due to that the gain value of item A is smaller than the 

threshold value 1050, we c

 

an conclude that item A is an 

erasable item in the product database TD1.

 

Fig. 1. An example of the product database TD1. 

The previously traditional methods [2]-[4], [6] of erasable 

itemset mining have several limitations in terms of data 

accumulation and features of each item. First, previous 

algorithms are designed for processing for the static database. 

Once new data is inserted into the database, they must take 

time to scan the database more than once. However, the 

amount of the data of products increases due to the activation 

and growth of the components in the real life. Due to such a 

reason, by using previous algorithms to deal with the 

incremental database [4], [7]-[9] is not efficient for facing 

such a change. 

There are four cases in the incremental database 

environment. When the new data is inserted into the database, 

the total profits and the threshold value of the original data 

will be changed. Therefore, the erasable itemset existing in 

the original database may or may not be the erasable itemset. 

Moreover, the inerasable itemset existing in the original 

database may or may not be the inerasable itemset. 

Consequently, those situations can be classified into 4 cases 

by the characteristic of data accumulation. Therefore, once 

the database is upgraded, data must be examined again. 

Moreover, previous algorithms regard that all the 

components which compose products as the same importance, 

no matter what types of components which they are going to 

mine. But each product is constituted of various components, 

those components have different features in their products. 

So, each component has its own weight [4], [10]-[13] such as 

the price in the real world. 

In the real world, Lee et al. [4] propose an algorithm to 

mine weighted erasable itemsets called the IWEI algorithm 

which considers the weight of each item such as the price in 
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the real world, instead of the frequency of the item in the 

database only. First, the IWEI algorithm constructs the tree 

structure to store the information of the data by scanning the 

database just one time. But the IWEI algorithm must 

repeatedly reconstruct the tree according to the descending 

order of the frequency of items for compacting the tree. 

Second, the IWEI algorithm uses an estimated factor called 

MAW to reduce the computational cost. However, the MAW 

value of this fixed estimated factor for pruning invalid 

candidates of any size is so low, which results in too many 

candidates. So, we propose the Inverted-Product-List (InvP-

List) algorithm, to discover the weighted erasable itemsets 

based on the profit of each product and the weight of each 

item. In our data structure, we make an InvP-List to record 

the information of items of length 1 and use this list to 

generate a 1-Candidate list to mine weighted erasable 

itemsets. Moreover, we propose the local estimated factor to 

prune the number of candidates which is called LMAW. The 

value of LMAW would be changed according to the length 

of the itemset, instead of the fixed value. Then, we find the 

maximum average weight of items of length 1 as LMAW and 

use LMAW and the gain value of the item to calculate the 

value of MGain to check whether an item is a candidate or 

not. If the item is a candidate, we will construct 1-Candidate 

list to store it. After finding 1-Candidate list, we check 

whether an item is a real weighted erasable itemset in 1-

Candidate list or not. Then, we find a new LMAW for itemset 

of length 2 and generate candidate itemsets of length 2 based 

on 1-Candidate list. We will find the weighted erasable 

itemset of the long length continuously until we cannot find 

any more candidates of the long length. 

Our list structure can decrease the time of reconstructing 

the tree and our algorithm can reduce the number of invalid 

candidates which results in decreasing the processing time. 

From the simulation result, we show that our proposed InvP-

List algorithm provides better performance than the IWEI 

algorithm.  

The rest of paper is organized as follows. In Section II, we 

give a survey of the IWEI algorithm. In Section III, we 

present our proposed approach. Section IV presents the 

performance study of our approach and makes a comparison 

between our approach and the IWEI algorithm. Finally, we 

give a conclusion in Section V.  

 

II. A SURVEY OF THE IWEI ALGORITHM 

The IWEI algorithm was proposed by Lee et al. [4] and it 

constructs an original IWEI-Tree by scanning an original 

product database in Fig. 2, then reconstructs the tree in 

descending order of frequency of item for compacting the 

tree structure. Once the new product information is inserted 

into the original IWEI-Tree, then the algorithm reconstructs 

the tree for the purpose of a compact tree for maintaining. 

 

 
Fig. 2. An example for example product database. 

By concerning the static databases, there is a problem in 

which they must read data straightway within a single 

database scanning in incremental database environments. 

Because the circumstances of such incremental databases are 

constantly altering according to the accumulation of 

information. 

For the purpose of conducting the mining process more 

efficiently, they propose a new list data structure which 

reduces the duplicated information, called Order-and-profit-

list (OP-list). 

An IWEI-Tree consists of a header table and a prefix tree. 

The header table has three columns: item name, frequency(F), 

and profit. The prefix tree is composed of multiple nodes, 

where each node includes name of item, frequency, total 

profit, parent link, children set, pre-order-index, and res-flag, 

res-flag is used to check whether each node has been 

restructured or not yet. 

First, they construct the IWEI-Tree according to the 

lexicographic order of item. For example, products P1-P6 

have been inserted into the IWEI-Tree as shown in Fig. 3. 

 

 
Fig. 3. The IWEI-Tree after inserting P1-P6. 

Second, the IWEI algorithm conducts the reconstructing of 

the tree according to descending order of frequency in order 

to efficiently store product information. Fig. 4 shows the 

reconstruction of the IWEI-Tree according to descending 

order of frequency. 

 

 
Fig. 4. The reconstruction of IWEI-Tree according to descending order of 

frequency. 

After constructing the IWEI-Tree, OP-list is generated, 

where the list is composed of pre-order index, total profit, and 

post-order index information of the nodes which composes 

the tree. Fig. 5 shows the result of restructuring the IWEI-

Tree in Fig. 4. 

 

 
Fig. 5. An OP -list of restructuring the IWEI-Tree. 

However, containing information of all the nodes into OP-
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list can be so inefficient, because there are not the whole 

nodes in the tree participating in the mining process. OP-list 

just keeps nodes information which is contained in erasable 

1-itemsets. 

They use an overestimated factor MGain(X) to check 

whether itemset X is an erasable itemset candidate or not. If 

MGain(X) > threshold, then itemset X is not a candidate, 

where MAW means the largest value of AW in the itemsets 

with length 1. MGain(X) is defined as Gain(X) divided by 

MAW. 

After passing the check of MGain(X), then they use the 

AW result. They can obtain a weighted gain of X, WGain(X). 

If WGain(X) > threshold, itemset X is not a weighted 

erasable itemset, vice versa, WGain(X) is defined as Gain(X) 

divided by AW(X). 

 

III. THE PROPOSED ALGORITHM 

A. Data Structure 

To efficiently find the weighted erasable itemsets, the data 

structure must avoid the reconstructing process, and the value 

of the estimated factor is appropriate to decrease the number 

of candidates. In this section, we propose an Inverted-Product 

List (InvPL) Algorithm to efficiently discover the weighted 

erasable itemsets by using the inverted file information of the 

product database as the foundation of our data structure. 

In weighted erasable itemsets mining, it considers that 

each item has the respective profit in the product. The 

weighted erasable itemsets are the compositions of items 

which do not contribute the most valuable profit in the 

product database. Moreover, the “anti-monotone property” 

does not hold in weighted erasable itemsets mining. 

Therefore, we propose the InvPL algorithm for mining the 

inverted product information and consider the local estimated 

factor to hold the “anti-monotone property”. The InvP-List 

mining operation can be efficiently executed by using the 

item information of each list node sorted in the InvP-List. In 

this section, we first describe the Inverted-Product table that 

is used to compose the product database. Then, we present 

the InvP-List data structure which is based on the Inverted-

Product table to find weighted erasable itemsets efficiently. 

 

 
Fig. 6. An example of product database TD1. 

 

Because different products may contain common items, 

those products can be composed in a table which is used to 

transform the product-base table into the item-based table. 

The InvPL algorithm uses the inverted-product based 

algorithm to efficiently discover the weighted erasable 

itemsets in the product database. Fig. 6 and Fig. 7 show an 

example of product database TD1 and the related weight 

table WT1, respectively. We simply establish a table of items 

with the corresponding products and the related information 

which is denoted as InvP-Table as shown in Fig. 8. 

 
Fig. 7. Weight table WT1. 

 
Fig. 8. The recorded InvP-Table of product database TD1. 

For each item I, the InvP-Table contains product 

identification (Pid), gain value (Gain), average weight (AW) 

of item I in the related product and count. The following 

InvP-List is constructed according to the InvP-Table which 

requires only the scan of product database one time. The 

InvP-Table records the following information of each item I: 

 Pid: It represents the set of products which contains item 

I in the product database. 

 Gain: It is constituted of the product profit. It represents 

the sum of the profit of item I in the related products of 

the database. 

 AW: It represents the set of the average weight which 

contains item I in the related products. 

 Count: It represents the appearance of item I in the 

product database. 

Let ISet = {I1, I2, ..., In} be a set of all items in the product 

database, DB = {P1, P2, ..., Pm} be a product database which 

is composed of products and X = {I1, I2, ..., Is} be an itemset, 

s ≥ 1. 

The gain value of itemset (Gain) shows the amount of the 

profits related to each product in the database. Given an 

itemset X, gain of X, Gain(X), is a summation of profits of 

all the products that contain one or more items of X, which is 

computed as follows [4]: 

Gain(𝑋) =  ∑{𝐼𝑛𝑡𝑒𝑟(𝑋, 𝑃𝑟) ∗ 𝑃𝑟 . profit}

𝑚

𝑟=1

, 

Inter(𝑋, 𝑃𝑟) =  {
1,   if 𝑋 ∩ 𝑃𝑟 ≠ ∅
0,   otherwise     

               (1) 

The value of Gain(X) could only be increased, instead of 

being decreased, as the data is increased. 

The AW(Ip) shows the amount of the average weight 
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values related to each item in products. AW(Ip) is used to 

compute the ratio of the weight of item I to the sum of all the 

weight values for each product Pj, which is defined as follows 

[4]: 

AW(𝐼𝑝) =
∑ {

𝑤(𝐼𝑝)

∑ 𝐼𝑝∈𝑃𝑗∙𝑤(𝐼𝑟)
}𝑚

𝑗=1

𝑘
                          (2) 

Then, an average weight of itemset X, AW(X), is 

computed as follows: 

AW(𝑋)  =  
∑ 𝐴𝑤(𝑖𝑝)𝑠

𝑝=0

𝑠
                                 (3) 

The LMAW is the local maximum average weight of the 

item of length k, which is used to compute the estimated 

value to prune candidates, the value of LMAW is between 0 

and 1. By sorting the count in the descending order, we can 

obtain LMAW and check if any item does not only appear 

one time but also only appear in a product. Note that for such 

a special case, we will introduce the special case later.  

For example, item A appears in products P1 and P2, totally 

2 products. Gain(A) is 800 (= 600 + 200), and AW(A) is 

 
0.8

1.9
,

0.8

1.1
 (= 

0.8

0.8+0.8+0.3
,

0.8

0.8+0.3
). 

The MGT is multiplied by the user-defined threshold and 

the summation of the profit in the product database. If 

MGain(X) is larger than the MGT, itemset X will not be a 

candidate. 

The maximum gain of itemset X, MGain(X), is computed 

as follows: 

MGain(𝑋)  =  
Gain(𝑋)

𝐿𝑀𝐴𝑊
                             (4) 

That is, for those candidates X which have the value of 

MGain(X) larger than MGT, they are what we can prune. 

After sorted by the count of length 1 items in the initial 

InvP-Table as shown in Fig. 9, the InvP-Table will be 

recorded according to the descending order of the count. But 

if items have the same count, it will be recorded according to 

the alphabetical order. 

 

 
Fig. 9. The sorted InvP-Table of product database TD1. 

On the other hand, if there exists the special case, e.g., 

LMAW = 1, then we can check whether such an item I will 

be the candidate or not by using MGain(X) in this case. 

Otherwise, we will not accept it and continuously search the 

new LMAW. 

In Fig. 9, item C is a special case in the product database. 

Item C only appears in product P3 and product P3 contains 

only one item (i.e., C), so the average weight of item C is 1 

and LMAW is 1 (= AW(C)). Let the threshold be 32%, the 

MGT of the original product database is 1632 (= 5100 × 

0.32). We have Gain(C) = 2100 and LMAW = 1, so the 

MGain(C) is 2100. Because the MGain(C) is 2100 which is 

larger than MGT, item C will not be a candidate of length 1 

item. 

Due to item C will not be the candidate of length 1 item, 

we must continuously search the new LMAW. Finally, we 

find the new LMAW = 0.61 (= AW(G)) in InvP-Table. 

After sorting the InvP-List, we can determine LMAW. 

Then, we create the candidate of length 1 by MGain(X). By 

using 1-Candidate table to mine weighted erasable itemsets, 

we can reduce the search time, and can solve the accumulated 

problem. If we prune the items in InvP-List, the weighted 

erasable of length k may lose, when new products are inserted 

into the product database. However, we prune items in 1-

Candidate table which does not cause missing cases, when 

we process product database update. Because 1-Candidate 

table is recorded again while we process the update of the 

product of database. 1-Candidate table contains four columns, 

item, Pid, Gain and average weight (AW). We construct 1-

Candidate table by InvP-List related to product database TD1 

as shown in Fig. 10. We use Gain of each item in InvP-List 

and LMAW to calculate MGain(X). If MGain(X) is not 

larger than MGT, we record the item name, Pid, Gain and 

AW in 1-Candidate table. 

 

 
Fig. 10. 1-Candidate table for TD1. 

In Fig. 10, we have MGT = 1632 and LMAW = 0.61 in the 

original product database TD1 and Gain of item A is 800. 

The MGain(A) = 1311 is smaller than MGT, so item A is a 

candidate of length 1. We record the item name, Pid, Gain 

and the average weight of item A in InvP-List to 1-Candidate 

table. 

B. The Mining Algorithm with 1-Candidate-Table 

After we finish the construction of the 1-Candidate table 

which is based on the InvP-List, we start the mining step. We 

perform the weighted erasable itemset mining by 1-

Candidate table, instead of InvP-List. Because mining 

weighted erasable itemset with 1-Candidate table can reduce 

the search time and solve the accumulate problem. First, we 

check the candidates of length k. If it passes the condition, it 

must be a member of the weighted erasable itemset of length 

k. Second, we generate the candidates of length (k+1) to find 

the weighted erasable itemset of length (k+1) until we cannot 

generate any longer length candidates. 

We use the weighted gain WGain(X) to check whether the 

candidate itemset is a real weighted erasable itemset or not. 

Therefore, we can find how much effectiveness of itemset X 

on the products which contains itemset X by WGain(X). The 

weighted gain of itemset X, WGain(X), is computed as 

follows: 

WGain(𝑋)  =  
Gain(𝑋)

𝐴𝑊(𝑋)
                            (5) 

 

By dividing Gain(X) with AW(X), we get the proportion 
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of Gain(X) to AW(X). If the MGain(X) is not larger than 

MGT, itemset X is a weighted erasable itemset. That is, 

itemset X could not make many profits, and vice versa. 

The value of AW(X) may be increased or decreased, as the 

data is increased. Similarly, the value of WGain(X) may be 

increased or decreased, as the data is increased. 

In fact, the value of LMAW is kept as lower as better in 

terms of concerning the number of candidates. The reason is 

that when the value of LMAW is small, it represents that the 

denominator of formula MGain(X) = Gain(X) / LMAW is 

large. It will result in a large quotient. Moreover, it will result 

in a large MGain(X). Note that the value of MGain(X) is 

always smaller than or equal to WGain(X), i.e., the real value 

of itemset X. Therefore, if the value of MGain(X) is as near 

as the value of WGain(X), then we can have a large chance 

to prune it, which can result in a small number of candidates. 

 

 
Fig. 11. 1-Candidate Table for checking item A. 

 

For example, in Fig. 11, item A is a candidate of length 1. 

We calculate WGain(A) by Gain(A) and AW(A). WGain(A) 

= 1403 (= 800 / 0.57) is smaller than MGT (= 1632), so item 

A is a real weighted erasable itemset of length 1. 

After checking the candidates of length 1, we find items A, 

B and G are real weighted erasable itemsets of length 1. 

Because their weighted gain values are smaller than MGT. 

Then, we use candidates of length 1 to generate candidates 

of length 2. First, we select the candidate that the size of Pid 

is largest to combine with other candidates of length 1. 

Second, we use MGain(X) to reduce the number of 

candidates. Finally, we use WGain(X) to check the candidate 

which passes the WGain(X) no matter whether it is real 

weighted erasable itemset or not. 

In order to generate candidates of length k, where k is 

larger than 1, we make use of two properties. First, we use 

the difference Pid (DiffS) property [3]. Given itemset X and 

itemset Y, DiffS(X, Y) is defined as follows: 

Diffs(𝑋, 𝑌) = 𝑃𝑖𝑑(𝑌) \ 𝑃𝑖𝑑(𝑋)                      (6) 

For example, the pid set of itemset X = [2, 3, 6, 8] and the 

pid set of itemset Y = [1, 2, 6], DiffS(X, Y) = [1]. 

Second, by using the difference Pid (DiffS) property, we 

use a property which is proposed from the MEI algorithm [3], 

and is defined as follows: 

Gain(𝑋𝑌) = 𝐺𝑎𝑖𝑛(𝑋) + ∑ 𝑘. 𝑝𝑟𝑜𝑓𝑖𝑡𝑘∈𝐷𝑖𝑓𝑓𝑠(𝑋,   𝑌)       (7) 

For example, Fig. 12 shows DiffS(A, B) = Pid(B) \ Pid(A), 

and DiffS(A, B)= [4]. We can calculate the gain value of 

itemset [A, B] by the summation of the gain value of item A 

and the profit of difference Pid, Gain(AB) = 800 + 300 = 

1100. 

 

 
Fig. 12. Gain value of itemset AB. 

 
Fig. 13. Item A combining with items B and G to generate candidates of 

length 2. 

 

For example, in Fig. 11, after checking the case of the real 

weighted erasable of length 1 from candidates, we select item 

A to combine with other candidates which pass the 

MGain(X). Item A combines with items B or G to generate 

candidates of length 2 which are itemsets [A, B], and [A, G] 

in Fig. 13. As compared to 1-Candidate table shown in Fig. 

10, we record dPid to calculate Gain of itemset, instead of 

Pid. Because we use the concept of DiffS. Due to this reason, 

we will not record duplicated information of Pid. 

At this time, we would calculate LMAW for itemsets of 

length k when k > 1. We select the first largest AW and the 

second largest AW of item until the k-th largest of length 1 

to get AW as the new LMAW. 

First, the new LMAW is 0.59 (= (0.57 + 0.61) / 2), we can 

find the maximum weighted gain value of itemsets [A, B] = 

1864 and [A, G] = 2033. Both itemsets [A, B] and [A, G] 

with the maximum weighted gain value which are larger than 

MGT (= 1632). Therefore, itemsets [A, B], and [A, G] are not 

candidates of length 2, and we prune them from candidates 

of length 2. Because itemsets [A, B], and [A, G] will never 

be the real weighted itemsets no matter what items combine 

with them in the original product database. 

Due to that [A, B], and [A, G] are not candidates of length 

2, we cannot find the candidates which length is larger than 

2 when we consider the case of length k that item A combine 

with the other items. Then, we consider a remaining 

candidate of length 1 to combine with the other candidates of 

length 1, except item A which size of Pid of candidates is the 

second largest. In addition, we must check LMAW of the 

remaining candidates. Because some candidates have been 

considered, like item A, those items will not be combined 

with the other candidates. 

For example, item A has been considered already, we 

select another candidate of length 1, item B that the size of 

Pid of remaining candidates of length 1 is the second largest. 

We find LMAW = 0.59 (= (0.57 + 0.61) / 2). The gain value 

of itemset [B, G] = 1300 and LMAW = 0.59. MGain(B, G) = 

2203 is larger than MGT (= 1632). Itemset [B, G] is not a 

candidate of length 2, so that we cannot generate candidates 

which length is larger than 2 when considering item B in Fig. 

14. 
 

 
Fig. 14. Item B combining with item G to generate candidates of length 2. 

Finally, we can find that items A, B and G are real 

weighted erasable itemsets from candidates. On the other 

hand, we only generate 6 candidates, but the IWEI algorithm 

generates 11 candidates for the same product databases.  

1) Insertion of the new data 

When the new product information is inserted into 

products, we have to check the following cases. If this 

product contains new item which is not recorded in the 
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original inverted-product table, then we record the 

information of Item, Pid, Gain, AW and Count of the item 

into the last part of the inverted-product table. Otherwise, we 

update the item information which is corresponding to the 

item in the original inverted-product table. When we finish 

inserting the new product information into the inverted-

product table, we sort the additional product database and 

find an appropriate LMAW at the same time. 

Due to that the new information of items are added to the 

last part of the inverted-product table, we cannot reconstruct 

the inverted-product table at all. However, we must find an 

appropriate LMAW. Because the new data is generated, and 

the AW information of the item could be changed and 

infected. 

For example, Fig. 15 shows that product P7 is inserted into 

the bottom of inverted-product table and updating the 

corresponding items in the original inverted-product table, 

when product P7 comes. Due to that product P7 contains 

items G and H, and item G has already in the original 

inverted-product table, so we just add new pid to Pid set. 

Then, we add the new average weight to AW set and 

accumulate Gain, Count for the corresponding item G in the 

original inverted-product table. 

 

 
Fig. 15. Insertion of product P7 into InvP-Table. 

Fig. 16 shows the final result, when products P7 and P8 are 

inserted into the original product database. After updating the 

inverted-product table, we should find the new LMAW 

which plays an important role to efficiently prune candidates 

and sort the new inverted-product table according to Count 

of the item at the same time. 

 

 
Fig. 16. The insertion of Product P8 into InvP-Table. 

After updating the inverted-product table, we should find 

the new LMAW which plays an important role to efficiently 

prune candidates and sort the new inverted-product table 

according to Count of the item at the same time. 

Fig. 17 shows the sorted inverted-product table which has 

inserted the additional information of the item into the 

inverted-product table. We can get the new LMAW after 

sorting. We have LMAW = 0.57 (= AW(G)). The value of 

LMAW changes, because item G is a component in product 

P7. Moreover, the new average weight of G which gets the 

value of adding the original average weight of G and the 

average weight of G in product P7. The average weight of 

length 1 item may change, when the new product is inserted. 

Moreover, this value is possible to be increased or decreased. 

Due to this reason, we must find an appropriate LMAW, 

because LMAW is the local maximum average weight the 

length 1 item average weight. 
 

 

Fig. 17. InvP-Table for original + incremental product database. 

When getting the new LMAW and finishing sorting the 

new inverted-product table, we can get the length 1 candidate 

table for the new inverted-product table (i.e., the original + 

the incremental product databases). After getting candidate 

table of length 1, we can use the information of items of 

length 1 in this table to calculate candidates and real weighted 

erasable itemsets by LMAW, MGain(X) and WGain(X). 

C. Comparison 

After all, we make a comparison to discuss the difference 

between our proposed InvPL algorithm and the IWEI 

algorithm. We use product database TD1 and weight table 

WT1 as an input as shown in Fig. 6 and Fig. 7 to compare the 

generated number of candidates and data structure of the 

InvPL algorithm and the IWEI algorithm. 

When products P1 - P6 are scanned, the IWEI-Tree of the 

IWEI algorithm must reconstructed one times to compress 

the data structure, but our InvPL algorithm does not 

reconstruct data structure. Another aspect, we compare the 

number of candidates of the IWEI algorithm and the InvPL 

algorithm in the original section of product database. 

Because we propose the local estimated factor to rise the 

value of MGain so that we can prune many more unnecessary 

candidates. The number of candidates of the InvPL algorithm 

is 6, which is smaller than 11 of the IWEI algorithm. 

We make a comparison of construct times and the number 

of candidates between our InvPL algorithm and the IWEI 

algorithm, when incremental data is inserted into the original 

product database. Our InvPL algorithm does not reconstruct 

the data rather than reconstruct one time in the IWEI 

algorithm. 

Finally, we make a comparison of the number of generated 

candidates and the number of real weighted erasable itemsets 

between the InvPL algorithm and IWEI algorithm. We find 

the number of candidates of our InvPL algorithm (=10) is less 

than that of the IWEI algorithm (=18), and the number of real 

weighted erasable itemsets is the same (=4). 

 

IV. PERFORMANCE 

In our performance study, we consider the real dataset 
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(http://fimi.ua.ac.be/data/) and the synthetic dataset. In this 

section, we will compare the performance between the IWEI 

algorithm and our InvPL algorithm. We will compare the 

processing time of those two algorithms mining for the real 

dataset and the synthetic datasets. We also compare the 

number of candidates of those two algorithms. Therefore, we 

evaluate the performance of the IWEI algorithm and our 

InvPL algorithm in terms of the processing time under the 

change of the threshold. Moreover, we also evaluate the 

process of mining weighted erasable itemsets in terms of the 

processing time under the change of the number of items and 

the number of products in the product database. The 

Mushroom dataset is the information of various species of the 

mushroom, and it is a dense dataset. The profit of products 

and mushrooms are generated between 10 and 100, and the 

weight of items and elements are generated between 0.1 and 

0.9. 

The parameters used in the generation of synthetic datasets 

are shown in Table I. The details of the Mushroom dataset 

are shown in Table II. (To make a comparison between the 

IWEI algorithm and our InvPL algorithm, for the real dataset, 

we use different range of user defined percentage, i.e., 

threshold.) The details of synthetic datasets are shown in 

Table III.” 

 
TABLE I: VARIABLES 

Parameter Description 

Threshold The user defined percentage 

I The number of the items in the dataset 

D The number of the products in the dataset 

 

TABLE II: THE DETAILS OF REAL DATASET 

Dataset Tavg |D| |I| User Defined 

Percentage 

Mushroom 23 8124 120 0.5 – 0.9 

 

TABLE III: THE DETAILS OF SYNTHETIC DATASETS 

Case Dataset Tavg |D| |I| User Defined 

Percentage 

1 T10.I1K.

D100K 

10 100,000 1,000 0.0166  

– 0.017 

2 T10.I?K.

D100K 

10 1,000  

– 1,080 

1,000 0.0166 

 

Then, in Fig. 18, we show the comparison of the number 

of candidates for the real dataset on Mushroom under the 

change of the threshold. In this experiment, we set the 

threshold to be 0.5, 0.6, 0.7, 0.8 and 0.9. From Fig. 18, we 

show that the number of generated candidates of our InvPL 

algorithm is fewer than that of the IWEI algorithm. The 

reason is that the IWEI algorithm uses the too low estimated 

factor to prune candidates. Moreover, we find that the 

number of candidates of both algorithms increase, when the 

threshold increases. Because when the threshold increases, it 

will cause many candidates to pass the MGT test. However, 

to prune candidates, the value of the estimated factor used in 

our InvPL algorithm is never lager than that used in the IWEI 

algorithm. Therefore, our InvPL algorithm will prune more 

number of candidates than the IWEI algorithm. Furthermore, 

the Mushroom dataset, a dense dataset, the number of 

candidates determined by our InvPL algorithm increases 

slowly as the value of the threshold increases. The reason is 

the same as stated before. 

 

 
Fig. 18. A comparison of the number of candidates of the Mushroom 

dataset under the change of the threshold. 

In Fig. 19, we show the comparison of the processing time 

for the real dataset, Mushroom, under the change of the 

threshold. In this experiment, we set the threshold to be 0.5, 

0.6, 0.7, 0.8 and 0.9. From Fig. 19, we show that the 

processing time of our InvPL algorithm is faster than the 

IWEI algorithm. The reason is that the IWEI algorithm 

generates more number of candidates than our InvPL 

algorithm. Moreover, our InvPL algorithm does not 

reconstruct the list structure again. Therefore, our InvPL 

algorithm takes shorter time than the IWEI algorithm to find 

weighted erasable itemsets. Furthermore, we use a data 

structure similar to the in- verted index. Therefore, the search 

time for the interesting pattern is efficient and almost the 

fixed time, no matter what value of the threshold is and no 

matter what distribution of the data is. 

 
Fig. 19. A comparison of the processing time for the Mushroom dataset 

under the change of the threshold. 

 
Fig. 20. A comparison of the number of candidates for the synthetic 

dataset, T10.I1K.D100K, under the change of the threshold 

 

Next, we show the performance experiment of the both 

algorithms for the synthetic dataset. In Fig. 22, we show the 

number of candidates of both algorithms for the synthetic 

dataset, T10.I1K.D100K under the change of the threshold. 

In this experiment, we set the threshold to be 0.0166, 0.0167, 

0.0168, 0.0169 and 0.0170. From Fig. 20, we show that the 

number of generated candidates of our InvPL algorithm is 

fewer than that of the IWEI algorithm. The reason is that the 

IWEI algorithm always uses the too low estimated factor to 
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prune candidates. Moreover, we find that the number of 

candidates of the IWEI algorithm increases faster than that of 

our InvPL algorithm, when the threshold increases. The 

reason is the same as what we have stated above. Therefore, 

the InvPL algorithm prunes more number of candidates than 

the IWEI algorithm. 

In Fig. 21, we show the comparison of the processing time 

for the synthetic dataset, T10.I1K.D100K under the change 

of the threshold. In this experiment, we set the user defined 

percentage to be 0.0166, 0.0167, 0.0168, 0.0169 and 0.0170. 

From Fig. 21, we show that the processing time of our InvPL 

algorithm is shorter than the IWEI algorithm. The reason is 

that our InvPL algorithm generates fewer number of 

candidates than the IWEI algorithm. Moreover, our InvPL 

algorithm does not reconstruct the list structure again. 

Therefore, our InvPL algorithm takes shorter time than the 

IWEI algorithm to find the weighted erasable itemsets. 

 

 
Fig. 21. A comparison of the processing time for the synthetic dataset, 

T10.I1K.D100K, under the change of the threshold. 

 

In Fig. 22, we show the comparison of the processing time 

for the synthetic dataset, T10.I(1-1.08)K.D100K, under the 

change of the number of items. In this experiment, we set the 

user defined percentage to be 0.0166. 

From Fig. 22, we show that the processing time of our 

InvPL algorithm is less than the IWEI algorithm. The reason 

is that our InvPL algorithm examines candidates more easily 

than the IWEI algorithm when candidates of long length. 

Moreover, we observe that the processing time of both 

algorithms increases. But the process time of our InvPL 

algorithm increases slower than that of the IWEI algorithm, 

when the number of items increases. Because our InvPL 

algorithm obtains candidate itemsets easily, when the number 

of items increases. Moreover, our InvPL algorithm does not 

reconstruct the list structure again. Therefore, our InvPL 

algorithm takes less time than the IWEI algorithm to find 

weighted erasable itemsets. 

 

 
Fig. 22. A comparison of the processing time for the synthetic dataset, 

T10.I(1- 1.08)K.D100K, under the change of the number of items. 

Therefore, our InvPL algorithm takes less time than IWEI 

algorithm to find weighted erasable itemsets. In our 

simulation study, we let the weight of each item be between 

0.1 and 0.9, instead of between 0.5 and 0.75 in the 

performance study of the IWEI algorithm. Because we 

consider that it simulates to the real life. Under such a 

consideration, as |D| increases, the threshold value (i.e., total 

product profits * threshold) will also increase, which results 

in the case that the Gain value of each itemset also could 

increase. Therefore, the chance to be the weighted erasable 

itemset decreases, resulting in the decrease of the processing 

time. 

 

V. CONCLUSIONS 

In this paper, we have proposed an InvP-List algorithm 

which can efficiently mine weighted erasable itemsets with 

fewer number of candidates. We use the list structure of the 

inverted product dataset to record the database information 

of items in each product in our algorithm. Furthermore, our 

proposed algorithm dynamically calculates LMAW to 

compute the value of MGain which is an overestimated factor 

to prune candidates. Then, we have studied the performance 

of the InvP-List algorithm and the IWEI algorithm. We have 

conducted several experiments using the real dataset and 

different synthetic data. The performance results have shown 

that the InvP-List algorithm has better performance than the 

IWEI algorithm. 
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