
  

 

Abstract—Metaheuristic approaches have been widely used 

to solve large scale, complex global optimization problems. In 

this paper, a Hybrid simulated annealing based on discrete 

radius particle swarm optimization (H-DRPSOSA) with 

adaptive mutation is proposed. The proposed algorithm takes 

the advantage of the global search of the RPSO and the local 

search strategy of the SA algorithm to quickly generate good 

solutions.The paper also explains the framework design to solve 

the large scale multidimensional knapsack problems 

(LCO-MKPs). Additional, we present a random transfer 

mechanism for the feasible solution of the discrete search 

region. The proposed hybrid is compared to state-of-the-art 

solution techniques by applying them to the multidimensional 

knapsack dataset. Computational results demonstrate that the 

proposed algorithm is capable of producing competitive 

solutions.  

 
Index Terms—Large Scale Complex Problems (LCOs), 

Radius Particle Swarm Optimization (RPSO), Simulated 

Annealing (SA), Multidimensional Knapsack Problems (MKPs)  

 

I. INTRODUCTION 

Large scale complex problems (LCOs) explore a large 

number of the feasible solution in the search space such as 

resource constrained project scheduling problem (RCPSP), 

Traveling salesman problem (TSP) and knapsack 

problems(KPs) [1]. LCOs can be divided into several 

categories such as continuous or discrete and constrained or 

unconstrained [2]. In the encounter of increasing complexity 

and dimensionality of LCOs, some investigations [3] are 

adapted to type of LCOs. The classical metaheuristic 

algorithms were usually designed for low dimensional 

problems and show the low performance during tackling 

high-dimensional problems. Many modified algorithms [4], 

[5] have been proposed strategies on the classical technique 

and applied on different stages to enhance the performance of 

algorithms.  

The large scale multidimensional knapsack problems 

(LS-MKPs) can be modeled in the discrete domain with 

constrained value and variety of practical problems, such as    
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capital budgeting controlling, resources allocation [6]-[8], 

web polling problem [9], project selection [10], cutting and 

packing problem [11], and cryptography [12]. The MKPs is 

given a set of items with weights and sizes, and the capacity 

value of a knapsack, to maximize the total weight of selected 

items in the knapsack satisfying the capacity constraint 

[13].The MKPs have been studied in the last few decades, 

involving both exact and heuristic algorithms [14]-[16]. 

Bansal and Deep [17] propose the modified binary particle 

swarm optimization (MBPSO) that updates the term of 

position of BPSO gives a new probability of selection. The 

amoeboid organism model is proposed by Zhang et al. [18]. 

They convert the problem to a directed domain by the 

network converting algorithm. Wan et al [19] is developed 

the new probability model based on estimation of distribution 

algorithm (EDAs) on the candidate solutions. 

 In this paper, we present a hybrid algorithm of discrete 

radius particle swarm optimization (DRPSO) with adaptive 

mutation and simulated annealing (SA) to solve LCO-MKPs 

using the maximum profit as the objective function. 

Additional, we present a random transfer mechanism for the 

feasible solution. Thus, the data used for the experiments in 

this paper has been derived from the standard dataset of 

multidimensional knapsack problems (MKPs). 

The multidimensional knapsack problems (MKPs) is 

introduced in Section II. Section III describes the discrete 

radius particle swarm algorithm (DRPSO), simulated 

annealing (SA) and framework of H-DRPSOSA for MKPs. 

Then, the experiments and results are illustrated and analyzed 

in Section IV. Finally, Section V provides conclusion. 

 

II. MULTIDIMENSIONAL KNAPSACK PROBLEM 

The multidimensional knapsack problems (MKPs) is a 

type of LCOs. The MKPs is a typical NP-hard problem in 

operations research. Thus, the MKPs is given a set of items 

with weights and values. The capacity value of knapsack to 

maximize overall profit of selected items whose total weight 

does not exceeding the capacity of knapsack. The MKPs can 

be given as equation (1) 
 

Maximize f(x)        =      ∑ 𝑝𝑖
𝑛
𝑖=1 𝑥𝑖                               (1) 

           Subject to 

    ∑ 𝑤𝑖,𝑗𝑥𝑖 ≤ 𝐶𝑗
𝑛
𝑗=1    ∀𝑗 = 1,2,3, … , 𝑚, 𝑤𝑖,𝑗  ≥ 0,   𝐶𝑗 ≥ 0, 

                                                     𝑥𝑖  ∈ {0,1} , 𝑖 = 1,2,3, … , 𝑛 
 

where 𝑛 is the number of items, 𝑚 is the number of knapsack 

constraints with capacities 𝐶𝑗  (𝑗 = 1,2,3, … , 𝑚)  associated 

weights constrains matrix 𝑤𝑖,𝑗, and  𝑝𝑖  is the positive profit of 

the item 𝑖 . 𝑥𝑖 is a binary variable{0,1} that indicates 𝑥𝑖 = 1, if 

the item 𝑖 has been entered in the knapsack and 𝑥𝑖 = 0, if the 
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knapsack remain out. 

III. RELATED WORK 

The swarm intelligence (SI) are known to deal with the 
optimization problem. SI is the kinds of heuristic algorithm, 

called metaheuristic algorithm. SI have a concern with 

collective intelligence of social insects such as ants, bees and 
birds. SI are based on the collective behavior and 

self-organization of population. The behavior and 

self-organization in nature is called colony. The inspection of 

behavior of the colony dynamically and adaptively collect 
optimal solution from the search space. These action may 

change the environment and its neighbors by its knowledge. 

The idea of process is related the information about a promise 
position to obtain the candidate solution.The performance of 

SI depends on a balance between the exploitation and 
exploration on working process. 

Regarding swarm intelligence, on which we will focus in 

this the paper, is the Radius Particle Swarm Optimization 

(RPSO), brief overview of RPSO is descripted in the next 
section to provide a background for the proposed algorithm. 

A. Radius Particle Swarm Optimization with Adaptive 

Mutation 

Particle Swarm Optimization (PSO) [20] is a swarm 

intelligence algorithm that operates via a simple technique 

inspired by the flocking behaviour of birds and is referred to 
as a metaheuristic algorithm. The particle flies to a new 

position according to its new velocity and previous positions. 

Due to the fast convergence and easy implementation, PSO 

suffers from the premature convergence problem when 

dealing with complex optimization problems because it is 
easy to be trapped into local optima. Thus, the trapped 

particles will not participate in the search space.  
 

 
Fig. 1. The swarm circle topology and a radius-neighbourhood.  

 

The Radius Particle Swarm Optimization (RPSO) was 

proposed in [21] as the efficient algorithm for the complex 

optimization problem in which the scale factor is correlated 
with the numerical benchmarks problem. Thus, the RPSO 

extend the traditional PSO algorithm by grouping particles 

within the same radius into a new particle agent and then 

iteratively finding the best solution under the given objective 
functions. The significant concept of the RPSO is based on 

the lbest circle topology finding the agent particle within the 
radius of a circle, as shown in Fig. 1. Thus, it uses a swarm 

circle topology to find the agent particle within the radius of 
the circle. Each particle in the overlap radius can be in 

multiple groups. Once a group is defined, we find the best 

particle in that swarm group and assign to the agent particle 

represented by 𝑎𝑏𝑒𝑠𝑡𝑖,𝑗, as shown in Fig. 2. Finally, the agent 

particles are the candidates for finding the optimal solution, 
or the gbest position, as shown in Fig. 3. To overcome the 

premature convergence problem, the RPSO takes advantage 
of group-swarms to maintain the swarm diversity and 

evolution by sharing information from the agent particles, 

which effectively keep the balance between the global 
exploration and the local exploitation. Obviously, the agent 

particle guides the neighbouring particles to jump out of the 
local optimum and achieve the global best. 

 

 
Fig. 2. The radius-neighbourhood for the agent particle (abest).   

 

 
Fig. 3. The global neighbourhood for the global best (gbest).  

 

The euclidean distance is used to calculate the 
radius-neighbourhood between particle 𝑖 and particle 𝜃 using 

equation (2). 

                              𝑑(𝑝𝑖 , 𝑝Ø) = √∑ (𝑝𝑖,𝑗 − 𝑝Ø,𝑗)
2𝑚

𝑗=1  ; 𝑑 ≤ 2𝑟 , 

         𝑖 ≠ Ø ,  𝑓𝑜𝑟   1 ≤  𝑖 ≤ 𝑛 , 𝑓𝑜𝑟    1 ≤  Ø ≤ 𝑛                  (2) 

where 

                                              𝜌 =  {𝑥1,𝑥2, 𝑥3, … , 𝑥𝑛} 

                              𝑟 =   𝜇 ∙ 𝑣𝑚𝑎𝑥; 𝜇 ∈ [0.0,1.0]                           (3) 

In equation (3), the radius value (𝑟)  of the particle is 
obtained. Here, 𝑟  is determined by the maximum velocity 

𝑣𝑚𝑎𝑥. Therefore, 𝑣𝑚𝑎𝑥  is assigned to the maximum bounds of 

the search space or the feasible bounds in the benchmark 
function. We consider the problem of finding the global 

optimum using the agent particle (𝑎𝑏𝑒𝑠𝑡𝑖,𝑗)  within a 

radius-neighbourhood as given in equation (4).   

   𝑎𝑏𝑒𝑠𝑡𝑖,𝑗 =   𝑚𝑖𝑛
𝛽∈𝜌

𝑓(𝛽)                            (4) 

Therefore, the particle 𝑖 in the swarm updates it velocity 

and position as given in equation (5) and equation (6), 
respectively. 

         𝑣𝑖,𝑗(𝑡 + 1) = 𝑤 ∙ 𝑣𝑖,𝑗(𝑡) + 𝑐1 ∙ 𝑅1  ∙ (𝑝𝑏𝑒𝑠𝑡
𝑖,𝑗 − 𝑥𝑖,𝑗(𝑡)) 

                    +𝑐2 ∙ 𝑅2 ∙ (𝑎𝑏𝑒𝑠𝑡𝑖,𝑗(𝑡) − 𝑥𝑖,𝑗(𝑡))                 (5) 
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          𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑖,𝑗(𝑡) + 𝑣𝑖,𝑗(𝑡 + 1)                      (6) 

A drawback observed on the search space with the 

particles is the trapped on the the bounds of the search area      
( 𝑣𝑚𝑎𝑥  or  𝑣𝑚𝑖𝑛 )  (See in Fig. 4). Thus, the trajectory of 

particle will be produced low exploration. 

This paper present the adaptive mutation in RPSO with 

property of large exploration capability even in the case of 

large or low velocity values (𝑣𝑚𝑎𝑥 or  𝑣𝑚𝑖𝑛)  to solve this 
problem. 

 

 
Fig. 4. The trajectory of PSO is trapped on the the bounds of the search area  

( 𝑣𝑚𝑎𝑥 or  𝑣𝑚𝑖𝑛) of the search space. 

 

The pseudo-code of the adaptive mutation algorithm is 

given below. 

 

Algorithm 1. Adaptive mutation 
1 if  𝑥𝑖,𝑗(𝑡 + 1) > 𝑣𝑚𝑎𝑥   then 

2      𝛾 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝑖) 

3      𝑥 ′
𝑖,𝑗(𝑡) ← 𝑥𝛾,𝑗 (𝑡) 

4     𝑥𝑖,𝑗(𝑡 + 1) ← 𝑥 ′
𝑖,𝑗(𝑡) 

5 end if 

6 if  𝑥𝑖,𝑗(𝑡 + 1) < 𝑣𝑚𝑖𝑛   then 

7    𝛾 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝑖) 

8      𝑥 ′
𝑖,𝑗(𝑡) ← 𝑥𝛾,𝑗(𝑡) 

9     𝑥𝑖,𝑗(𝑡 + 1) ← 𝑥 ′
𝑖,𝑗(𝑡) 

10. end if 

 

As limited by the bounds of the search area, the mutation 

operator is applied to each dimension of the particle. The 

adaptive mutation procedure is elaborated as follows: 
Step 1. Random number 𝛾 between 1 and the number of 

particle 𝑖. 
Step 2. Set the particle 𝑥 ′

𝑖,𝑗(𝑡) for the mutation from the 

particle 𝑥𝛾,𝑗 (𝑡) of number 𝛾 in the swarm. 

Step 3. Select the mutation points 𝛿𝑗  on the selected 

particle 𝑥𝑖,𝑗(𝑡 + 1). For each mutation point 𝛿𝑗, the 𝑥𝑖,𝑗(𝑡 +

1) is inserted into the new position 𝑥 ′
𝑖,𝑗(𝑡). 

The pseudo-code of the RPSO with adaptive mutation 

algorithm is given below. 
 

Algorithm 2. RPSO algorithm with Adaptive mutation 

1 for each time step 𝑡   to 𝑡𝑚𝑎𝑥  do 

2      for each particle  𝑖  in the swarm do      

3           update position   𝑥𝑖,𝑗(𝑡 + 1) with Eq.(5) and Eq.(6) 

4       if  𝑥𝑖,𝑗(𝑡 + 1) > 𝑣𝑚𝑎𝑥   then  Adaptive mutation 

5          if  𝑥𝑖,𝑗(𝑡 + 1) < 𝑣𝑚𝑖𝑛   then Adaptive mutation 

6          calculated particle’s fitness 𝑓(𝑥𝑖,𝑗(𝑡 + 1)) 

7        if particle’s fitness 𝑓(𝑥𝑖,𝑗(𝑡 + 1)) better than   𝑝𝑏𝑒𝑠𝑡 𝑥𝑖,𝑗(𝑡 + 1)      

     then    update 𝑝𝑏𝑒𝑠𝑡 𝑥𝑖,𝑗(𝑡 + 1)       

8         find 𝑎𝑔𝑒𝑛𝑡  particle 

9        if agent particle’s fitness 𝑓(𝑎𝑏𝑒𝑠𝑡𝑖,𝑗(𝑡 + 1))better than gbest  

10           then  update  𝑔𝑏𝑒𝑠𝑡  
11      end for 

12 end for 

 

B. Discrete Radius Particle Swarm Optimization 

The MKPs require algorithms that can operate in discrete 
search space. We present the Discrete Radius Particle Swarm 

Optimization (DRPSO) for the MKPs.  Each particle takes 

the value of one or zero for its position within the probability. 

The updated position is redefined by the role (equation 7) and 
updates the position by equation (8). In this paper, we apply 

the concept of DRPSO algorithms to solve the MKPs. 

                   𝑆 (𝑣𝑖,𝑗(𝑡 + 1)) =  
1

1+ 𝑒
−𝑣𝑖,𝑗(𝑡+1)                                  (7) 

              𝑥𝑖,𝑗(𝑡 + 1) =  {
0  𝑖𝑓 𝑟𝑎𝑛𝑑() ≥ 𝑆(𝑣𝑖,𝑗(𝑡 + 1))

   1  𝑖𝑓 𝑟𝑎𝑛𝑑() < 𝑆 (𝑣𝑖,𝑗(𝑡 + 1))
          (8) 

where 𝑟𝑎𝑛𝑑() is the random number between 0 and 1, 𝑆() in 

the  equation 7 is the sigmoid function (see in Fig. 5) for 
transforming the velocity to the probability value. 

 
Fig.  5.  The Sigmoid function. 

 

C. Simulated Annealing 

Kirkpartick et al. [22] proposed simulated annealing (SA) 

algorithm that is a gradient method for the optimization 
problem. The SA gradually improves the candidate solution 

by searching for optimal solution within a local 
neighborhood. There are two ways of accepting a new 

solution. First, if its fitness value is better than that of the 

current solution. Second, in worse fitness case accepts a 

solution with a worse fitness value with a certain probability. 

Therefore, the probability is calculated on the difference in 

fitness values between the new and current solution as 
defined by equation (9).  

                 𝑃(𝑡) =  𝑒
−

∆𝑓𝑡

𝑇                                    (9) 

where 𝑇 is the current temperature (scaling parameter),∆𝑓𝑡 is 

the difference in the values of the result between the current 

and the candidate solutions at step The temperature has an 

initial value 𝑇𝑜 and it is reduced progressively according to a 

predefined cooling schedule 𝛼 (see in Fig. 6); 𝛼 is number 
between 0 and 1.  As the temperature at 𝑡+1 iteration is 

calculated by equation (10).  

                     𝑇(𝑡 + 1) =  𝛼 ∙ 𝑇(𝑡)                               (10) 

The pseudo code of SA is shown as below. 
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Algorithm 3. Simulated Annealing  

1 Initialization  α, 𝑇, ε, 𝐾 

2 Randomly generate an initial state as the current solution C 

3 while T > Fuzzen do   𝑘 ← 0          

4    while k < K  do Generate the candidate solutions N 

5     if ∆𝑓
𝑡

> 0  then     𝐶 ← 𝑁     

6     else if  𝑅𝑎𝑛𝑑𝑜𝑚[0,1] >  𝑒
−

∆𝑓
𝑡

𝑇   then  𝐶 ← 𝑁     

7       𝑘 ← 𝑘 + 1 

8    end while 

9      𝑇(𝑡 + 1) =  𝛼 ∙ 𝑇(𝑡) 

10 end while 

 

 

Fig. 6. Convergence graph of SA. 

 

D. Framework of Discrete Radius Particle Swarm 

Optimization with Simulated Annealing for the MKPs 

We deal a novel approach of Hybrid discrete radius 

particle swarm optimization and simulated annealing 
(H-DRPSOSA) to solve MKPs. The features of DRPSO and 

SA are fused to create an innovative approach, which can 
generate high-quality solutions in shorter calculation times 

and with more stable convergence characteristics. In the 

H-DRPSOSA, the global best position is selected from the 

agent particles of DRPSO in the search space. There are two 

ways of accepting a candidate solution. The H-DRPSOSA 

allows the fitness of some particles may be accepting a 

candidate solution with a worse fitness within a certain 
probability by the metropolis process of SA.  

That note, the temperature is controlled the convergence 

graph of SA according to a predefined cooling schedule(see 
in Fig. 6). Addition, we propose the adaptive temperature is 

obtained by dividing the difference between the maximum 
and minimum fitness of the DRPSO. Thus, the initial 

temperature is changed in each MKPs dataset.The main point, 

the H-DRPSOSA finds the best solution and skips local 

optima by allowing the exploration of the problem space in 
the direction that leads to a local increase in the next solution. 

In the final state, after the system is cool, each particle in the 

swarm updates position using the best position from the 

hybrid state and then opens up to find the global optimum. 
The H-DRPSOSA algorithm is elaborated below: 

 
Algorithm 4. Framework of  H-DRPSOSA 

1 

𝑇 ←  𝑚𝑎𝑥 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖,𝑗(0)

− 𝑚𝑖𝑛 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑥𝑖,𝑗(0)/𝑙𝑛06 

2 for each time step 𝑡  to 𝑡𝑚𝑎𝑥do 

3      for each particle  𝑖  in the swarm do 

4        if 𝑟𝑎𝑛𝑑() ≥ 𝑆(𝑣𝑖,𝑗(𝑡 + 1))  then   𝑥𝑖,𝑗(𝑡 + 1) ←

0 
5     else         𝑥𝑖,𝑗(𝑡 + 1) ← 1 

6     end if 

7        calculate 𝑓 (𝑥𝑖,𝑗(𝑡 + 1)) 

8         if  f (𝑥𝑖,𝑗(𝑡 + 1)) >  𝑝𝑏𝑒𝑠𝑡𝑖 then  update 𝑝𝑏𝑒𝑠𝑡𝑖 

9         find  𝑎𝑏𝑒𝑠𝑡𝑖 

10          if 𝑎𝑏𝑒𝑠𝑡𝑖 >  𝑔𝑏𝑒𝑠𝑡 then  update 𝑔𝑏𝑒𝑠𝑡 

11           else if (𝑇(𝑡 + 1) > 𝐾)  then   

12                    current solution   𝐶 ← 𝑔𝑏𝑒𝑠𝑡 

13 
                   Generate the candidate solution 𝑁  

 
14                     ∆𝑓 = 𝑓(𝐶) − 𝑓(𝑁) 

15      end if 

16          if ∆𝑓 > 0  then   𝑔𝑏𝑒𝑠𝑡 ← 𝑁     

17 

         else if 𝑅𝑎𝑛𝑑𝑜𝑚[0,1] >  𝑒−
∆𝑓

𝑇    then        

𝑔𝑏𝑒𝑠𝑡 ← 𝑁 

18      end if 

19     end for 

20 end for 
 

Step 1. Let the iteration  𝑡𝑚𝑎𝑥 , weight  𝑤, the cooling rate 

𝛼 and system equilibrium 𝐾. 

Step 2. Initialize position of the particles with randomly. 

Step 3. Evaluate the fitness value of all particles which 

determine abest by the each particle. 

Step 4. Determine the initial temperature 𝑇0  with the 

difference between the maximum and minimum fitness of the 

initial particle in the swarm by the acceptance probability. 

Step 5.  Calculate the new position for each particle. 

Step 6.  If abest is better than gbest then update gbest and 

return to Step 5. 

Step 7.  If abest is less than  gbest and 𝑇0 more than frozen 

value 𝜀, set the current solution 𝐶   is 𝑔𝑏𝑒𝑠𝑡. 

Step 8.  Calculate the delta fitness ∆𝑓𝑡   the candidate 

solution 𝑁  is better than current solution 𝐶 , update 𝑔𝑏𝑒𝑠𝑡 
with the candidate solution 𝑁  and return to Step 5. 

Step 9.  If the candidate solution 𝑁   is not better than 

current solution 𝐶  and the random number more than certain 

probability update 𝑔𝑏𝑒𝑠𝑡 with the candidate solution 𝑁 and 

return to Step 5. 

Step 10.  If the evolution process not met the end criterion 

return to step 5. 
Step 11. Output the best solution 𝑔𝑏𝑒𝑠𝑡 and its fitness value. 
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E. Solution Representation 

To solve the MKPs, a candidate solution represent as the 
dimension is the number of items n, as shown in Fig. 7. For 

the example in Fig. 7, we have seven items and after the 

position of a particle is updated, the position representation 
is: 0.20, 0.90, 0.10, 0.70, 0.05, 0.65 and 0.80.  

 

j
0
 j

1
 j

2
 j

3
 j

4
 j

5
 j

6
 

0.20 0.90 0.10 0.70 0.05 0.65 0.80 

Fig. 7. Representation of the position in each dimension for MKPs. 

 

F. Random Transfer Mechanism 

The position update for the framework of H-DRPSOSA 

for the MKPs is taken from position update equation of 
DRPSO. If a random number value is more than the sigmoid 

value of the velocity then the position of particle takes the 

value 0. On the other hand, if a random number value is less 

than the sigmoid value of the velocity then the position of 
particle takes the value 1, as shown in Fig. 8.  

 

𝑣𝑖,𝑗(𝑡 + 1) 0.20 0.90 0.10 0.70 0.05 0.65 

𝑆 (𝑣𝑖,𝑗(𝑡 + 1)) 0.55 0.71 0.52 0.67 0.51 0.66 

Random number 0.63 0.55 0.97 0.09 0.47 0.26 

𝑥𝑖,𝑗(𝑡 + 1) 0 1 0 1 1 1 

Fig. 8. Representation of random transfer mechanism of positions for MKPs. 

IV. EXPERIMENTS AND RESULTS 

The MKPs are taken from [23] (See in Table I). The 

benchmarks are selected from MP-Test-data SAC-94 

suite.Therefore, the proposed method is tested using four 

different numbers of items (m x n). For RPSO, the size of 

swarm is 60, iteration number is 4000 or 240000 function 

evaluations, 𝑥𝑚𝑎𝑥  and 𝑣𝑚𝑎𝑥 are set to equal and within the 
range of [-4, 4], 𝑤 is 0.98, µ is 0.4 (Scale factor of RPSO). 

For the SA, the cooling rate α is 0.95 and frozen ε is 0.001 the 

system equilibrium K is 1. Therefore, the comparison is made 
on the basic of optimum rate, best fitness, and average fitness. 

 
TABLE I: THE MKPS DATASET 

Id Dataset m n Optimum (Opt) 

1 Weish20 3 70 9450 

2 Pb6 30 20 776 

3 Sent1 30 40 7772 

4 Sent2 30 60 8722 

 

TABLE II: COMPARISON OPTIMUM RATE OF H-DRPSOSA, BPSO AND SA 

ALGORITHM FOR MKPS DATASET  

Dataset Algorithm Opt. (%) Best Average 

Weish20 H-DRPSOSA 95 9450 9356 

 BPSO 60 9450 9014 

 SA 0 7787 7078 

Pb6 H-DRPSOSA 90 776 760 

 BPSO 15 776 652 

 SA 5 776 642 

Sent1 H-DRPSOSA 87 7772 7750 

 BPSO 34 7772 7758 

 SA 0 6939 6272 

Sent2 H-DRPSOSA 86 8722 8610 

 BPSO 5 8722 8112 

 SA 0 8311 7995 

TABLE III: COMPARISON OPTIMUM RATE OF H-DRPSOSA AND ANOTHER 

ALGORITHM FOR MKPS 

 

 
Fig. 9.  Comparison optimum rate of H-DRPSOSA, BPSO and SA algorithm 

for MKPs dataset. 
 

 
Fig. 10.  Comparison optimum rate of H-DRPSOSA and another algorithm 

for MKPs. 

 

Concerning the fitness function, it should note that in the 

MKPs, the fitness of each particle is related to the expected 
profit value of the selected items. Since the problem is to find 

the maximum profit. When the global optimum is achieved or 

the procedure reaches the maximum number of iterations, the 

selected items with maximum profit obtained by the 

H-DRPSOSA is returned as the result. 
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Dataset Algorithm Reference Opt. (%) 

Weish20 H-DRPSOSA This study 95 

 CBPSOTVA Chih et al. [24] 78 

 BPSOTVAC Chih et al. [24] 69 

 BPSO Cho et at. [25] 53 

Pb6 

 

H-DRPSOSA This study 90 

 CBPSOTVA Chih et al. [24] 50 

 BPSOTVAC Chih et al. [24] 54 

 BPSO Cho et at. [25] 28 

Sent1 H-DRPSOSA This study 87 

 CBPSOTVA Chih et al. [24] 57 

 BPSOTVAC Chih et al. [24] 39 

 BPSO Cho et at. [25] 16 

Sent2 H-DRPSOSA This study 86 

 CBPSOTVA Chih et al. [24] 27 

 BPSOTVAC Chih et al. [24] 2 

 BPSO Cho et al. [25] 3 
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The experimental result of the MKPs datasets (in Table I) 
are illustrated in Table II-Table III. In Table II and Fig. 9 

show the result of MKPs, it is clear that H-DRPSOSA is more 

reliable than BPSO and SA in term of optimum rate, best and 
average fitness. The result of MKPs, it is obvious that 

H-DRPSOSA performs better than BPSO and SA algorithm 

in all aspects (optimum rate and average fitness). 

Regarding to optimum rate, the H-DRPSOSA outperforms 

the heuristic methods, which previously published in the 
literature under the same dataset. Therefore, it seem to be that 

Table III and Fig. 10 show the optimum rate increases as the 
all the test case.  Moreover, all test case show that the 

H-DRPSOSA is very robust. 

 

V. CONCLUSION 

In this paper, the discrete radius particle swarm 

optimization (DRPSO) algorithm is modified with adaptive 

mutation for discrete domain, in which particles are 

regrouped within a given radius and the agent particle is 

determined, which is the best particle of the group for each 
local optimum. The DRPSO can maintain appropriate swarm 

diversity and jump out the local optimum using the agent 
particle to achieve the global optimum. Subsequently, the 

DRPSO can be combined with adaptive mutation to solve the 

impact on the maximum or minimum velocity in searching 

for the discrete regional solution, such that the diversity 
among particles moderately decreases. Also this paper 

provided a further test on the DRPSO algorithm using 
difficult well-known problems (Knapsack Problems) in order 

to verify its effectiveness and efficiency. By hybrid of the 

DRPSO and SA algorithm (H-DRPSOSA), the structure of 

our method employs the advantages of the DRPSO algorithm, 

including strong global search ability with those of the SA 

algorithm, which has a strong local search ability to obtain a 
good solution rapidly and accurately.Addition, we present the 

adaptive temperature of SA with the particle of DRPSO for 
solve each MKPs dataset.  In conclusion, the performance of 

the H-DRPSOSA algorithm is proven using well-known 

large scale complex problems, the computational results of 
the proposed algorithm were compared with state-of-the-art 

heuristics. The result demonstrates that the proposed 

algorithm outperforms existing procedures in the literature in 

terms of optimum rate on the standard instance sets. 
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