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Abstract—Intrinsic motivation is one of the potential 

candidates to help improve performance of reinforcement 

learning algorithm in complex environments. The method 

enhances exploration capability without explicitly told by the 

creator. This is suitable for the case of multi-agent 

reinforcement learning where the environment complexity is 

beyond standard. In this paper, the Random Network 

Distillation method is applied to implement intrinsic motivation 

in the multi-agent environment. Two intrinsic motivation 

architectures are developed and compared with the benchmark 

in different scenarios. The experiments show an increase in 

performance of the very complex environments while little to no 

improvement over the non-complex ones. Although there exists 

some overhead which results in less sample efficiency, the 

centralized intrinsic motivation architecture shows a long-term 

on par or even better optimization performance as it could 

explore on more states. The performance of the centralized 

architecture shows a solid improvement in 2s3z environment 

and achieves almost 70%win rate over the benchmark of 43%. 

 
Index Terms—Reinforcement learning, multi-agent learning, 

curiosity exploration, intrinsic reward. 

 

I. INTRODUCTION 

Reinforcement learning (RL) is becoming more and more 

popular as it can solve very complex problems given a 

direction in terms of reward functions. Although, it is not 

easy to interpret the thought process of the algorithm, the 

self-learning without given specific labels is less labor 

intensive and it may come up with the alternative solutions 

that achieve the same or even better performances. 

The potential for a wide-open sequential solution is come 

at the cost of complexity optimization. In RL, the objective 

function is to maximize the expected sum of reward [1]. 

Hence, it is required a good walkthrough path that achieves a 

good reward to get an optimization performance. Then, the 

better policy will get a better walkthrough path again. The 

process repeats until achieving an acceptable solution. 

However, getting the first good one is challenging. It is not 

easy to apply reinforcement learning for most complex 

environments as the rewards are either sparse [2] or too 

complex. In case of complex rewards, it is probable that 

agents would get stuck in the loop of suboptimal rewards as 

they have never seen any better paths. In literature, there are 
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many studies related to this issue. One of the solutions is the 

reward shaping where the researcher handcrafted the reward 

function that would be abundant and easy to pick up and 

optimize. However, the simulation may be very complex, and 

it may not be a good idea to handcraft the reward as it may 

lead to the suboptimal solution. 

Intrinsic Motivation is an alternative method that could 

enhance exploration capability without relying on domain 

knowledge of the creator [3], and thus scalable for the usage 

[4]. The idea of Intrinsic motivation is from the 

self-generated curiosity of humans where it encourages a 

software agent to explore new things while no effect to the 

known states [2], [5]. The concept can be applied to 

encourage a software agent to better explore unknown areas 

and to find the optimal path in the process. 

In real-world applications, there are many simulations that 

are multi-agent in nature. This incurs even more complexity 

to find the optimal solution for such a task. The problem is 

not only very challenging, but also has high impact on 

real-world use cases. While other researchers are interested 

in communication protocol between the agents [6], some 

disagree as the cooperative centralized learning may prevent 

inefficiency by sharing information internally and certainly 

avoid exploring on the same area [7]. 

This research aims to explore the effect of intrinsic 

motivation using random network distillation (RND) on 

multi-agent setup. The experimental investigation has been 

carried out on different RND architectures of multi-agent 

reinforcement learning (MARL), namely centralized intrinsic 

motivation architecture and individual intrinsic motivation 

architecture, each of which using different clipping ratios. 

The ratio is used to optimize the agent policy. It is the limit 

ratio between environment reward and self-generated. The 

preliminary experiments were conducted on The StarCraft 

Multi Agent Challenge (SMAC) environment to compare the 

performance in many multi-agent scenarios with some 

selected clipping ratios. 

 

II. BACKGROUND 

A. StarCraft Multi-Agent Challenge (SMAC) 

The SMAC is a customized multi-agent environment 

based on StarCraft 2 game engine. The environment is rich 

and complex where it focuses on unit’s micromanagement 

perspective instead of full resources macro-management on 

the standard StarCraft2 game [8]. The SMAC allows 

independently individual unit control to the extreme level. 

Each unit has its own local observation and actions which are 

crucial to multi-agent experiments. Nevertheless, the goal of 
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the SMAC is to achieve the highest team rewards which 

definitely require agents to cooperative in complex strategy. 

B. Counterfactual Multi-Agent (COMA) 

The COMA (Fig. 1) is the baselined algorithm of 

policy-based MARL that is implemented in the SMAC 

research paper [8]. The algorithm is based on the actor-critic 

model with the modification of the critic network which is 

adjusted based on each individual agent’s contributions 

instead of all equally weighted [9]. The COMA is categorized 

as centralized learning and decentralized execution paradigm 

where the critic is centralized taking all information from 

many agents while the agents individually act based on their 

local observations. In details, the critic network calculates 

agents weighting using counterfactual baseline which is the 

action value of an agent when the particular agent is idle. 
 

  
Fig. 1. COMA architecture [8]. 

 

III. METHODOLOGY 

A. Random Network Distillation 

The RND is one of the methods to create intrinsic 

motivation. The method is the subset of the prediction-based 

method where the model generates the prediction error 

between the benchmark and the predictor that will be used to 

represent intrinsic motivation. The idea is that in the 

unfamiliar state the curiosity is high and otherwise in the 

familiar state. Therefore, the algorithm is trained to achieve 

better prediction or reduce the error of the state it had been 

through. As a result, the prediction yields low error on the 

familiar state and high error on the unfamiliar state. 
 

  
Fig. 2. Random network distillation architecture. 

 

In case of the RND (Fig. 2), the input is the converted 

features from the next state and passed through the networks. 

There are two neural networks called Target network and 

Predictor network [10], [11]. The Target network is used as 

the benchmark hence the parameter is fixed, so the only 

adjustable network parameter is Predictor network. During 

the training process, the objective function, which is also an 

intrinsic reward, is the Squared Error of the two outputs. 

However, the error is only propagated through the predictor 

parameters. 

B. Intrinsic Advantage with Clipping Ratio 

The notion of Clipping Intrinsic Motivation is based on the 

intrinsic motivation of RND and Advantages value in 

Advantage Actor Critic (A2C) setup. To begin with, the 

advantage is the value of how the action is better compared to 

the others at a given state and it uses to optimize policy neural 

network in policy based RL. In details, the advantage is 

derived from the state action value, which is, in turn, derived 

from the reward. In this case, we would call it extrinsic 

advantage. To combine the intrinsic term, we should make it 

in the form of intrinsic advantage first. The idea for Clipping 

Intrinsic Advantage is that we should scale the Intrinsic 

advantage to the same scale as extrinsic advantage. Using 

Clipping method helps clipping the excessive amount to suit 

the needed level after having been normalized by other 

methods. Therefore, it allows intrinsic advantage component 

to never have too much impact on extrinsic advantage, and 

thus, appropriate for optimization. The steps of computing 

intrinsic advantage are as follow:  

 

The algorithm starts with sampling a batch of experiences 

from interactions with the environment. In a batch, sampled 

extrinsic rewards is equivalent to episode length multiplied 

by the number of agents in parallel setting to eight in this case. 

The sampled batch will be used for a single iteration of 

optimization. The intrinsic reward generated by the RND is 

recorded in the batch in the same length. However, the 

intrinsic reward is scaled down by standard deviation of the 

batch as shown in the benchmark research [11]. The intrinsic 

advantage is derived from the different between the Intrinsic 

reward and the baselined predictor which is a prediction from 

neural networks. The predictor attempts to predict the scale 

down intrinsic reward by using observation as an input. In the 

next step, the intrinsic advantage is clipped by product of 

extrinsic advantage of each individual agents and clipping 

ratio of that particular element in the rollout. Lastly, the total 

advantage is computed as the sum of intrinsic advantage and 

extrinsic advantage, where extrinsic advantages are the sum 

of all agent extrinsic values in case of Centralized Intrinsic 

Motivation, while separate for each agent in case of 
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Individual Intrinsic Motivation. 

For optimization, the algorithm uses standard COMA 

formula except that the variable advantages is defined as a 

combination of both components, extrinsic and intrinsic part. 

C. Individual Intrinsic Motivation Architecture (IIMA) 

The IIMA is the simple architecture extended from the 

single agent version. Previously, the single agent RND 

networks contain the Predictor and Target networks used to 

predict the intrinsic reward from the output deviation. Based 

on IIMA (Fig. 3), the individual set of RND networks is built 

for each individual agent, resulting in different intrinsic 

motivation advantage for each agent. IIMA is one version 

used to explore the multi-agent setup. 
 

 
Fig. 3. Individual intrinsic motivation architecture. 

 

 
Fig. 4. Centralized intrinsic motivation architecture. 

 

D. Centralized Intrinsic Motivation Architecture (CIMA) 

The CIMA, as shown in Fig. 4, is built by following the 

idea of the centralized learning and decentralized execution 

paradigm where the learner is centralized and can learn 

off-policy. In this case, we would like to centralize the 

intrinsic of all the agents by combining all of their 

observations to obtain an integrated observation and use it as 

an input to create the intrinsic reward. It is expected that the 

architecture should be the more suitable for multi-agent in the 

long run as it is built close to the paradigm. 

E. Environments 

Due to the perfect setups with rich and complex states for 

exploration, the SMAC Environment stages are selected as 

the main environments for multi-agent experiments. Based 

on the benchmark experimental results, we selected the top 5 

easiest environments (see Table I) which also contain all 

types from the list to improve with intrinsic motivation. 

The environments are about the micromanagement task 

where an individual software agent has to collaborate with 

other agents to attack enemy units. The SMAC have 6 action 

spaces which are move up, move down, move left, move 

right, attack, and idle. It is necessary for the active unit to 

choose one of the actions. Each individual unit also has its 

own local observation space which is used as inputs for the 

agent policy. 

To win the game, it is required to attack enemy units to 

reduce enemy hit point to zero before the opposite happened. 

The name of the map explicitly tells us about the unit in the 

game. The followings are the brief description for the unit in 

experiments. “s” stands for stalker which is a range unit, “sc” 

stands for spine crawler which is a power tower, “z” stands 

for zealot which is a powerful melee units, “c” stands for 

colossus which is a power area attack range unit, and “m” 

stands for marine which is weak range unit. These unit 

combination and match up require a special technique of 

collaboration to win. For example, the 2s_vs_1sc requires 

both stalkers to take turn attack the spine crawler that will 

result in its take turn attack stalkers. This causes the stalker to 

stay in game longer thus higher damage overall. 

There are three main micromanagement types which can 

be used to evaluate how the intrinsic motivation helps 

improve cooperation of complex tasks. The first type is 

symmetric which is the most basic where the units on both 

sides are at equal number. This type only requires the agent to 

perform just better than AI from in-game game engine. The 

next type is asymmetric which is to give a handicap to 

opposite AI by reducing our units by one. There is another 

type which is called micro-trick where the agent must learn 

the clue or some specific patterns to win the scenarios, 

although some patterns are hard to find. 
 

TABLE I: SMAC ENVIRONMENT DESCRIPTION 

Name Ally Units Enemy Units Type c 

2s_vs_1sc 2 Stalkers  1 Spine Crawler  micro-trick 
2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots symmetric 

3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots symmetric 

1c3s5z 1 Colossus, 3 Stalkers & 5 Zealots 1 Colossus, 3 Stalkers & 5 Zealots symmetric 

10m_vs_11m 10 Marines 11 Marines asymmetric 

 

IV. EXPERIMENTS 

The algorithm is implemented on different scenarios to 

compare the effectiveness of different architectures and 

clipping ratios. Based on the assumptions mentioned in the 

environments section, the investigation on 5 different maps: 

2s_vs_1sc, 2s3z, 3s5z, 1c3s5z, and 10m_vs_11m was carried 

out. There are 3 different scenarios: no intrinsic Motivation 

(green), Individual Intrinsic Motivation or IIM (blue), and 

Centralized Intrinsic Motivation or CIM (red). These 

scenarios aim to compare the performances of each different 

intrinsic motivation architectures in multi-agent setup in 

combination with various clipping ratios: 0.2, 0.5, and 1 to 

find out how the magnitude of intrinsic advantages impacts 
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on different scenarios. 

In case of clipping ratio=0.5, the graphs (Fig. 5-Fig. 9) 

show that IIM and CIM may not outperform the standard 

benchmark unless the simulation is very hard to explore in 

which the CIM shows the win rate up to 2% instead of 0%. 

The CIM shows a more powerful exploration in the case of 

multi-agent setup as shown in 3s5z environment. However, 

the CIM usually requires larger training episodes to achieve 

the same performance compared to the IIM and No intrinsic 

motivation in the easier environment. 
 

 
Fig. 5. Win rate of 2s_vs_1sc with Clipping Ratio = 0.5. 

 

 
Fig. 6. Win rate of 2s3z with Clipping Ratio = 0.5. 

 

 
Fig. 7. Win rate of 3s5z with Clipping Ratio = 0.5. 

 

The results with 0.2 clipping ratio are shown in Fig. 10-14. 

Observing that the performance of IIM and CIM should be 

more similar with the benchmark (green line) as the ratio is 

decreased. The results show overall higher performance for 

intrinsic motivation. Observing that CIM shows a solid trend 

to outperform IIM in the long run, but it always shows a 

higher overhead cost. The intrinsic motivation also shows a 

significant higher result than the benchmark especially in the 

map of 2s3z where the benchmark results only show 43% 

win rate as shown in [8]. Overall, the type of environments 

still has no significant relationship on the condition of 

difficulty of the environment. The findings show that the Win 

rate performance is merely the reflection of environment 

complexity in terms of exploration and optimization, not the 

human defined environment type. 
 

 
Fig. 8. Win rate of 1c3s5z with Clipping Ratio = 0.5. 

 

 
Fig. 9. Win rate of 10m_vs_11m with Clipping Ratio = 0.5. 

 

 
Fig. 10. Win rate of 2s_vs_1sc with Clipping Ratio = 0.2. 

 

 
Fig. 11. Win rate of 2s3z with Clipping Ratio = 0.2. 
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Fig. 12. Win rate of 3s5z with Clipping Ratio = 0.2. 

 

 
Fig. 13. Win rate of 1c3s5z with Clipping Ratio = 0.2. 

 

 
Fig. 14. Win rate of 10m_vs_11m with Clipping Ratio = 0.2. 

 

 
Fig. 15. Win rate of 2s_vs_1sc with Clipping Ratio = 1. 

 

Fig. 15-Fig. 19 illustrate the comparisons of win rates 

using clipping ratio of 1. The results show diminishing 

performances of IIM compared to those using lower clipping 

ratio situations. The broader clipping value allows more 

extrinsic advantage of an individual agent to the optimizer 

and its directions, intuitively, are less likely to align with each 

other’s. Imagine that each individual agent has different 

curiosity, some different states may have the same of intrinsic 

motivation but with the different intrinsic distribution. In the 

case of CIM, the combined intrinsic value is generated from 

associated observations. Its value thus reflects on the overall 

curiosity at once. Therefore, the intrinsic advantages are 

gradually changed and become more deterministic than the 

other setups. 
 

 
Fig. 16. Win rate of 2s3z with Clipping Ratio = 1. 

 

 
Fig. 17. Win rate of 3s5z with Clipping Ratio = 1. 

 

 
Fig. 18. Win rate of 1c3s5z with Clipping Ratio = 1. 

 

 
Fig. 19. Win rate of 10m_vs_11m with Clipping Ratio = 1. 
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V. CONCLUSION 

The research has explored the effectiveness of Intrinsic 

Motivation on multi-agent setups in 2 different dimensions: 

architecture and clipping ratio of the advantage values. The 

intrinsic motivation derived from the RND technique is 

constructed in two architectures: Individual and Centralized 

Intrinsic Motivation and tested on each architecture with 

three different values of clipping ratios: 0.2, 0.5, and 1. 

The experimental results show the win rate improvement 

over the benchmark algorithm (COMA) in the more complex 

environment as the intrinsic motivation helps better 

exploring an unknown state and it is more likely to move out 

of local optimal path. The CIMA even achieved almost 70% 

win rate on 2s3z with 0.2 clipping ratio while the benchmark 

record is only 43% in the benchmark, SMAC paper. 

Although, the optimal clipping ratio is not yet explored, we 

do know that the appropriate scale of intrinsic advantage 

could help improve overall long run performance of the 

algorithm. The main optimization objective relies on the 

designed reward function in terms of extrinsic motivation. It 

is intuitive that the magnitude of extrinsic motivation should 

be more than that of intrinsic motivation in the long run, 

especially at the end. Therefore, the value of clipping ratio 

greater than one shows a significant drop in performance for 

both CIM and IIM because this allows intrinsic motivation to 

have a greater magnitude than extrinsic motivation. Whereas 

setting intrinsic ratio to zero in either CIM or IIM means the 

case of none of intrinsic motivation. 

Further investigation on other clipping ratios or some other 

aspects rather than win rate may reveal more underlying 

insight of intrinsic motivation in the optimization. There are 

also many more aspects of the intrinsic motivation on 

multi-agent reinforcement learning for further research 

conduct. For example, the area of architecture of intrinsic 

network, the distribution of intrinsic motivation to each 

individual agent, and the study on impact of shared 

knowledge agents, competitive agent with intrinsic 

motivation in general. 
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