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Abstract—This paper presents an application of the hybrid 

Machine Learning (ML) techniques to real-time detection of 

unsafe personal safety equipment (e.g., helmet and safety vest) 

of construction workers on site, so that the unsafe behaviors can 

be corrected timely to reduce safety risks. Three different 

Convolutional Neural Network (CNN) based Deep Learning 

(DL) techniques were adopted for worker position locating, 

object classification, and subtle feature detection, including 

Faster R-CNN, YOLO and DenseNet. The lab testing showed 

high detectability with the Recall of 95% and the Precision of 

90%. In in-situ implementation of a real-world construction site, 

a moderately acceptable detectability was achieved, with the 

Cleanness of 85% and Correctness of 80%. It is concluded that 

the proposed method quotes profound potentials to enhance the 

current safety management practice of construction site. 

 
Index Terms—Construction safety management, computer 

visualization, machine learning, convolutional neural networks.  

 

I. INTRODUCTION 

Construction accidents on site play the major role in 

vocational disasters of all industries worldwide [1]-[5]. 

Personal safety equipment, e.g., helmet and safety vest, 

provide the first line protection to the workers [6], [7]. Due to 

the harsh and hot environment of construction site, it usually 

makes the workers uncomfortable and thus refusing to wear 

such personal safety equipment correctly. Traditional safety 

management practice requires experienced safety personnel 

in monitoring and correcting the unsafe behaviors of the 

workers. However, the limited experienced safety personnel 

available for most construction projects, the traditional safety 

management practice is usually ineffective in improving such 

workers’ unsafe behaviors. 

Thanks to the advancement of the state-of-the-art Deep 

Learning (DL) based Machine Learning (ML) techniques for 

auto-identification by computer visualization, such as Deep 

Convolutional Neural Network (DCNN) [8], [9], Region 
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based Convolutional Neural Network (R-CNN) [10], Fast 

Region based Convolutional Neural Network (Fast R-CNN) 

[11], Faster Region based Convolutional Neural Network, 

Faster R-CNN) [12], YOLO [13], etc. It provides a promising 

solution to the unsolved long existing safety monitoring 

problems on the construction site [6], [14]- [16]. 

Although the previous works showed promising results on 

successful application of the state-of-the-art DL techniques 

for construction site safety management, some studies also 

show that the complicated and dynamic environment of 

construction sites cause difficulties in real-world 

implementation [6], [14]. To attack such a limitation, this 

research proposed a model of hybrid ML techniques for 

real-time identification of construction worker’s personal 

safety equipment, e.g., helmet and safety vest, etc. With such 

an improvement, many hazards due to construction worker’s 

unsafe behaviors during construction phase can be reduced 

and prevented, and thus the construction safety management 

practice can be improved.  

 

II. MODEL OF SAFETY ACCIDENT PREVENTION 

The earliest work on analyzing the causes of occupational 

safety accidents (including construction accidents) was 

conducted by the American researcher, Herbert William 

Heinrich, in his famous Domino Theory [17]. In that theory, 

Heinrich addressed that 88% of all accidents were caused by 

unsafe acts of people, 10% by unsafe actions and 2% by “acts 

of God”. He suggested the “Five-Factor Accident Sequence”, 

shown in Fig. 1, and described as follows: ‘Ancestry and 

social environment’→‘Worker fault’→‘Unsafe act together 

with mechanical and physical 

hazard’→‘Accident’→‘Damage or injury’. Each factor in the 

previous step would actuate the next step in the manner of 

toppling dominoes. By eliminating any of the first four 

factors can stop the occurrence of the last one— ‘Damage or 

injury’. 
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Fig. 1. The five-factor accident sequence of domino theory [17]. 

 

Widner [18] and some other researchers modified 

Heinrich’s original theory, but maintained the essential 

concept for accident prevention by eliminating the unsafe 

behaviors of the worker in actuating the end result. It is 

believed that effective external supervision can not only 

prevent unsafe behavior in the first place, but can also 

gradually improve the level of safety awareness and attitude 
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of workers [6], [19].  

Some previous studies suggested that video surveillance 

system for monitoring unsafe behaviors of workers on 

construction may provide a solution to improve the safety 

awareness and attitude of workers and offer an effective tool 

to timely correct the unsafe behaviors, thus reduce the 

probability of accident occurrence [14], [16]. As a result, a 

DL-based computer visualization surveillance system for 

unsafe behavior detection can offer an effective method to 

stop the domino that actuate accidents on construction site. 

 

III. CHALLENGES FACING CONSTRUCTION VISUAL 

RECOGNITION 

As described previously, there were existing works on 

development of DL-based computer visualization 

surveillance systems for unsafe behavior detection. However, 

challenges still exist with the available visual recognition 

systems, including [6], [14], [16], [20], [21]: (1) the effects of 

complicated and dynamic environment of construction sites 

that affect the detectability of unsafe behaviors; (2) the 

requirement on the real-timeliness of unsafe behavior 

detection; (3) the difficulty in detecting subtle features that 

are meaningful for safety management. 

There are several factors that may contribute to the 

complicated and dynamic environment of construction sites, 

e.g., the moving construction equipment and workers, 

changing temporary facilities, changeable weather conditions, 

sunlight and shadows that affect computer visualization, the 

dusts and fogs that block video images, etc.  

The real-timeliness of unsafe behavior detection affects 

the effectiveness and usefulness of the unsafe behaviors 

detected, since there is usually limited time for preventing the 

occurrence of a construction accident after an unsafe 

behavior is detected. A primary challenge to the 

real-timeliness of visual recognition resides in computational 

efficiency of the visual recognition algorithm as well as the 

associated hardware. The state-of-the-art DL-based visual 

recognition methods combined with GPU computational 

device may be efficient in object identification (e.g., human 

worker or moving equipment), but the time required to 

accurately determine the behavior types (especially the subtle 

feature difference of target images) is usually the bottleneck 

to real-time unsafe behavior detection. Although some 

complementary techniques (e.g., the real-time 

image-skeleton-based method proposed by Yu et al. [16]), 

the results reported were still unstable. 

The subtle features of target image are most difficult to 

detect. However, the subtle feature difference of an image 

usually implies significantly in identifying unsafe behaviors. 

For example, the fastness of chin strap on helmet is a subtle 

feature of a helmet image (see Fig. 2); while it tells the 

difference between the safe and unsafe helmet wearing 

behaviors. Traditional CNN methods are efficient in 

detecting features in a bounding box, but they are very 

inefficient in identifying subtle features. Regressing based 

methods, such as YOLO [13], [22] is efficient in determining 

the specific type of the features but is unable to detect the 

subtle difference of a feature in the image. A newly 

developed DL technique, namely DenseNet [23], is 

inefficient in locating the position of target object in a wide 

image frame, but it is very efficient in finding the subtle 

difference of features in an image. 

 

  

  

  

  
Fig. 2. Samples of unclear and undetectable helmet wearing images. 

 

 
Fig. 3. The Faster R-CNN model for worker position locating. 

 

IV. HYBRID MACHINE LEARNING MODEL FOR REAL-TIME 

IDENTIFICATION OF PERSONAL SAFETY EQUIPMENT 

Base on the discussion in previous sections, the 

complicated construction site environment causes challenges 

for real-time visual recognition of the worker’s unsafe 

behaviors. In order to overcome such challenges, this paper 

proposes a hybrid ML model that combines the following 

three different CNN-based DL techniques: 
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A. The Faster R-CNN for Fast Worker Position Locating 

The adopted Faster R-CNN [12] is shown in Fig. 3 with the 

following network structure: 

1) Input Layer—RGBs channels with image size of 

1280×720; 

2) Hidden Layers—5 layers of ‘convolutional + ReLU + 3

× 3 Max Pooling’, 32 3 × 3 Fiters, Padding =1, Stride 

=2; 

3) Output Layer—1 fully connected layer with size = 256, 1 

ReLU layer, 1 fully connected classification layer with 

size = 2 (‘worker’ or ‘non-worker’) and activation = 

‘Sigmoid’. 

B. The YOLO v3 for Objects Classification 

The adopted YOLO v3 [22] is adopted for objects (e.g., 

helmet and safety vest) classification and shown in Fig. 4 

with the following network structure: 
 

 
Fig. 4. The YOLO model for helmet and safety vest classification. 

 

 
Fig. 5. The DenseNet model for fastness of chin strap on helmet recognition. 

 

1) Input Layer—RGBs channels with image size of 

240×150; 

2) Hidden Convolutional Layers—6 layers of ‘3×3 conv, 

stride 1, filters 16’ + ‘2×2 max pooling stride 2’; 

3) Output Layers—2 output branches—Branch (1): ‘3×3 

conv, stride 1, filters 256’ + ‘3×3 conv, stride 1, filters 

512’ + ‘Output size 10×10×512’; Branch (2): ‘3×3 conv, 

stride 1, filters 128’ + ‘3×3 conv, stride 1, filters 256’ + 

‘Output size 20×20×256’. 

C. The DenseNet v1.2.1 for Subtle Feature Detection 

The adopted DenseNet v1.2.1 [23] is adopted for subtle 

feature detection (e.g., fastness of chin strap on helmet) and 

shown in Fig. 5 with the following network structure: 

1) Input Layer—RGBs channels with image size of 64 × 

64; 

2) Hidden Layers—1 layer of ‘7 × 7 conv, stride 2’ + ‘3 × 3 

max pool, stride 2’ + 4 Dense Blocks + 3 Transition 

Layers; 

3) Output Layer—1 classification layer of ‘7 × 7 global 

average pool’ + ‘fully connected, activation = Sigmoid’. 
 

V. MODEL TRAINING AND TESTING 

The proposed hybrid ML model has been trained with 

sample datasets collected from real-world construction sites. 

The details of model training and testing are described in the 

following. 

A. Data Acquisition 

The training image datasets were collected from real-world 

projects via camera of mobile phone, videos of IP Cams, 

CCTV and the installed PTZ devices. Totally, 3,108 clear 

helmet images were collected, with 83% (2,639 images) used 

for training and the rest 17% (528 images) for testing; 1,173 

clear safety vest images were collected, with 65% (762 

images) used for training and the rest 35% (411 images) for 

testing. 

B. Parameter Setting 

Following training parameters were selected: (1) for 

helmet recognition— the initial learning rate was set as 7 × 

10-5, iterations = 13, an exponential decay coefficient is 

selected as 0.1 for iteration = 10, the minimum learning rate = 

1 × 10-5, the image size was normalized to 64 × 64 × 3 (RGB), 

batch size = 128; (2) for safety vest recognition—the initial 

learning rate was set as 1 × 10-3, iterations = 13, the minimum 

learning rate = 5 × 10-4, batch size = 2, other parameters were 

selected similar to (1). 

C. Detectability Analysis 

In order to measure the performance of the proposed 

model, the Confusion Matrix with 2 performance indexes, 

Recall and Precision, were calculated for both helmet and 

safety vest recognitions. The Confusion Matrix is shown in 

Table I. The Confusion Matrix shown in Table I is commonly 

adopted measure for evaluating the performance of pattern 

recognition, information retrieval and classification (for 

machine learning) tasks. In Table I, Recall is defined in Eq. 

(1) as: “the fraction of the total amount of relevant instances 

(‘Actual with target’) that were actually retrieved (or 
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‘Predicted with target’); Precision is defined in Eq. (1) as: 

“the fraction of relevant instances among the retrieved 

instances.” There are four parameters defined in Table I: (1) 

True Positive (TP)— Observation is positive, and is 

predicted as positive; (2) False Negative (FN) —Observation 

is positive (‘Actual with target’), but is predicted as negative 

(‘Predicted without target’); (3) True Negative 

(TN)—Observation is negative (‘Actual without target’), and 

is predicted as negative; and (4) False Positive 

(FP)—Observation is negative, but is predicted as positive 

(‘Predicted with target’). The performance criteria for the 

two detection tasks were set via a focused group meeting with 

the domain experts in construction safety management. The 

acceptance performance level for Recall is 95% and 

Precision is 90%. 
 

TABLE I: THE CONFUSION MATRIX 

 
Actual with 

target 

Actual 

without target 
Precision 

Predicted with target TP FP 
FPTP

TP



 

Predicted without target FN TN  

Recall 
FNTP

TP



 
  

FNTP

TP
ecall


R                               (1) 

FPTP

TP
ecision


Pr                           (2) 

 

TABLE II: THE CONFUSION MATRIX OF HELMET DETECTION 

 
Actual 

with target 

Actual 

without target 
Precision 

Predicted with target 187 (TP) 9 (FP) 93.9% 

Predicted without target 12 (FN) 308 (TN)  

Recall 95.4%   

 

D. Training Procedure 

The training procedure consists of the following: 1) 

collecting data—collecting data from cameras and mobile 

phones, e.g., IP Cams, CCTV, PTZ, etc.; 2) data 

cleaning—screening out the dirty, unclear or fuzzy images to 

preserve the clear and identifiable data (via human 

judgement); 3) bounding and labeling targets—selecting the 

targets in the image using ‘bounding box’ and labeling the 

targets; 4) separating training and datasets—randomly 

selecting training and testing datasets; 5) setting training 

parameters—setting the training parameters as described 

previously; 6) counting the frequencies of the four 

parameters in Confusion Matrix; 7) calculating the 

performance indexes—calculating Recall and Precision. 

The testing results of training processes for helmet and 

safety vest are shown in Table II and Table III, respectively. 

It is found that both the Recall and Precision of the two 

Confusion Matrixes have meet the preset performance 

criteria. As a result, the trained models were accepted and 

adopted for in-situ testing of real-world projects. The system 

interface for implementation of the proposed model is shown 

in Fig. 6, where the detected targets are captured in the 

sub-windows on the right-hand side of the interface. 
 

TABLE III: THE CONFUSION MATRIX OF HELMET DETECTION 

 
Actual 

with target 

Actual 

without target 
Precision 

Predicted with target 163(TP) 12(FP) 93.1% 

Predicted without target 0(FN) 435(TN)  

Recall 100%   

 

 
Fig. 6. System interface of the proposed model. 

 

VI. IN-SITU IMPLEMENTATION OF REAL-WORLD 

CONSTRUCTION PROJECT 

The pre-trained hybrid ML models were used for testing 

on real-world construction site to evaluate their applicability. 

A real-world case was selected from a public high-rise social 

residential building of the Taoyuan City Government, 

Taiwan, for the implementation and in-situ testing.   

A. In-situ Performance Evaluation 

A Confusion Matrix similar to the one defined in Table I 

was adopted for evaluating the model performance of the 

proposed method, excepting that Cleanness is used to replace 

Recall and Correctness is used to replace Precision for the 

in-situ testing. The acceptance criteria for in-situ detection 

testing were set via a focused group meeting with the domain 

experts in the construction safety management as Cleanness 

≧  85% and Correctness ≧  80%.   

B. Case Project Selection 

The selected case project is located in Taoyuan City near 

the intersection of the National Highways No. 1 and No. 2, 

namely the Chung-Lu No.3 Social Residential Building. The 

project aims at constructing a 20-story high-rise (3-floor 

basement) public social housing with 437 housing units for 

rent-only purpose to meet the shortage of housing in Taoyuan 

City. Total building area is 49,226.55 m2. Total budget equals 

USD$ 56,278,944. During the in-situ testing of the proposed 

method, the construction phase of the project proceeds to the 

2nd basement underground.   

C. Establishment of Data Center for Construction Safety 

Management (DCCSM) 

In this case study the Data Center for Construction Safety 

Management (DCCSM) was located in Chaoyang University 

of Technology (CYUT), Taichung City, Taiwan. The 

computational device of DCCSM was equipped with the 

following hardware capacities: (1) CPU—Intel(R) Xeon®, 

E5-2620v4 @2.10GHz; (2) RAM—2400MHz 40GB RAM; 

(3) OS—Microsoft Windows 10®; (4) GPU—NVIDIA 

Quadro P2000 (5GB); (5) Hard drive capacity—2 tera bites.   
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D. In-situ Testing Procedure 

The in-situ implementation testing procedure consists of: 

(1) DCCSM establishment—established the Data Center for 

Construction Safety Management (DCCSM); (2) data 

collecting and processing—video streaming data collected 

on-site were transmitted via internet to the DCCSM in CYUT, 

the interested images were captured from video streaming 

data; (3) target detecting—the captured images were 

processed with the pre-trained DL-CNN models to count the 

TP, TN, FP, FN frequencies in the Confusion Matrix; (4) 

calculating performance indexes—the two performance 

indexes, Cleanness and Correctness, were computed to 

evaluate the model performance; (5) model improvement—if 

the model performance indexes were not satisfactory, go 

back to step (2) and (3) to enhance the model by adding 

training datasets and modifying the parameters; (6) model 

acceptance—stopped the training procedure while the 

performance indexes met the preset criteria. Fig. 7 shows the 

installation of PTZ device on site for the in-situ case project. 
 

  
(a) PTZ preparation (b) selection of PTZ installation location 

  
(c) PTZ installation (d) PTZ captured image 

Fig. 7. PTZ installation on site. 
 

  TABLE IV: IN-SITU PERFORMANCE EVALUATION OF HELMET DETECTION 

 
Actual with 

target 

Actual 

without target 
Correctness 

Predicted with target 28(TP) 6(FP) 82.4% 

Predicted without target 3(FN) 14(TN)  

Cleanness 90.3%   

 

TABLE V: IN-SITU PERFORMANCE EVALUATION OF SAFETY VEST 

DETECTION 

 
Actual with 

target 

Actual 

Without target 
Correctness 

Predicted with target 39(TP) 9(FP) 81.3% 

Predicted without target 1(FN) 2(TN)  

Cleanness 97.5%   

 

E. In-situ Testing Results 

The two pre-trained hybrid ML models were not 

performing well in the beginning of the in-situ testing, with 

unacceptable Cleanness and Correctness performance 

indexes. The results were discussed and analyzed by the 

research team and found that the training datasets collected 

previously were from construction site above the ground 

floors, while the construction work of the in-situ case project 

was still in underground level. It is suggested to collect some 

sample images to enhance the training datasets and re-train 

the models. After model improvements, the in-situ testing 

results are shown in Table IV and Table V for helmet and 

safety vest detections, respectively. It is found from the two 

Confusion Matrixes that both Cleanness and Correctness 

performance indexes have met the preset criteria and thus the 

in-situ testing were accepted. 
 

VII. SUMMARY 

Due to the complicated environment conditions of 

construction sites and the requirements on real-timeliness of 

construction safety management, the application of the 

traditional Machine Learning (ML) based computer 

visualization techniques for construction site safety 

management has faced several unsolved challenges. This 

paper presents a hybrid ML-based model integrating three 

Convolutional Neural Network (CNN) based Deep Learning 

techniques—including Faster R-CNN, YOLO, and 

DenseNet—to overcome the challenges of the complicated 

and dynamic environment conditions of construction sites, 

the requirements on real-timeliness of unsafe behavior 

detection, and the difficulty in detecting subtle features that 

are meaningful for construction safety management. Both the 

training and in-situ testing results show a profound potential 

of the proposed models in improving the practice of 

construction safety management. 

Although the preliminary results showed a promising 

potential, several future works need to be conducted in order 

to further validate the applicability of the proposed method, 

including: the evaluation of the detectability of videos under 

unfavorable conditions, e.g., nights, fogs/dusts, changeable 

weathers (e.g., raining), etc. Moreover, the Cleanness and 

Correctness performance indexes were set relatively low 

compared with human detection capability. Model 

improvements are desirable to meet the industry 

requirements. 
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