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Abstract—This paper presents the hardware implementation 

of the Elliptic Curve Digital Signature Algorithm (ECDSA) by 

considering the NIST recommended elliptic curve in binary 

fields GF(2409) and the NIST recommended Secure Hash 

Algorithm-3 (SHA-3). In this case, four modules are 

implemented: modular arithmetic hardware, finite field 

arithmetic hardware, an elliptic curve cryptoprocessor over 

GF(2409), and SHA-3 module. The implementation is described 

in VHDL language, synthesized on the Cyclone V 

5CSEMA4U23C6N using Intel-Quartus II V 19.1, and verified 

using Signal Tap II Logic Analyzer. The synthesis and 

performance results show a good area-throughput trade-off, 

and it is suitable for high-performance cryptographic 

applications for embedded systems. 

 
Index Terms—ECDSA, finite fields, elliptic curve 

cryptography, hash functions, FPGAS.  

 

I. INTRODUCTION 

Cryptography plays an important role in the security of the 

information and specially to protect or exchange confidential 

information among constrained devices such as wireless 

sensor network (WSN), radio frequency identifier (RFID), 

and devices for the Internet of Things (IoT).  

The Internet of Things represents a network of devices that 

are interconnected, and the amount of information must be 

securely stored and processed. Securing this information is a 

challenge in IoT. Many IoT devices are inexpensive with 

restrains in memory and computational resources. Some 

devices are unable to support the implementation of 

asymmetric cryptography. Therefore, designers of such 

devices must create their own protocols. 

Elliptic Curve Cryptography (ECC) can be used to 

guarantee confidentiality and can be used in applications for 

ensure data integrity and authenticity by using Elliptic Curve 

Digital Signature Algorithm (ECDSA) [1] 

In this context, ECDSA is based on elliptic curve 

cryptography and was proposed by Victor Miller [2], and 

Neal Koblitz [3] in 1985, where ECC is a good alternative to 

RSA, the conventional public-key system used on the 

Internet today. The main advantage is that ECC offers 

equivalent security with smaller key sizes over other 

public-key systems, that means ECC provides the same level 
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of security as RSA and uses fewer computational resources.  

Due to its computational advantages, ECC is particularly 

well suited for mobile and wireless applications where the 

computational platforms are constrained in the amount of 

available computational capacity, memory capacity, and 

battery power. 

In cryptography, a digital signature scheme is a number, 

which has been created using the signer’s secret key and the 

contents of the message that is being signed. In this case, 

ECDSA enables the sender to attach a signature to a message 

or document, which is processed by a hash function and then 

is signed using the sender’s private key. The signature must 

be verified for a third-party without the knowledge of the 

signer’s secret key. Additionally, the signature must be 

linked with the message so that a forger cannot copy it to 

another message. The receiver decrypts the signature and 

checks for its validity.  

ECDSA is a variant of the Digital Signature Algorithm 

(DSA) [4] and it is based on Elliptic curve cryptography. It 

was accepted as an ISO standard (ISO 14888-3 in 1998), as 

an ANSI standard (ANSI X9.62 in 1999) [5], and as an IEEE 

standard (IEEE P1363-2000) and a FIPS standard (FIPS 

186-2[4], FIPS 186-3[6], and FIPS 186-4 [7]). 

Due to the performance of cryptographic algorithms is 

crucial for real world applications, the hardware technologies 

can be used for implementing with high performance and low 

cost. It is accepted that cryptographic algorithms 

implemented in hardware are physically more secure and 

cannot be easily read or modified by an external agent.  

In this paper, it is presented a modified implementation of 

the Elliptic Curve Digital Signature Algorithm using a binary 

extension field recommended by NIST and the NIST 

recommended secure hash algorithm 3 (SHA-3)[8], which 

specifies a family of functions based on Keccak, the winning 

algorithm selected from NIST's SHA-3 Competition. 

 

II. BACKGROUND 

A. Elliptic Curve Cryptography 

Elliptic curves are described by the set of solutions to 

certain equations in two variables. In particular, elliptic 

curves defined over a finite field are of central importance in 

public-key cryptography. 

For the binary field GF(2m), the standard or (Weierstrass) 

equation for a non-supersingular elliptic curve is as shown 

                             y2+xy=x3+ax2+b             (1) 

where a and b ϵ GF(2m), b ≠ 0. It is well known that the set of 

points G = (x, y), where x, y ϵ GF(2m), that satisfy the 
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equation (1), together with the point O, call the point at 

infinity, form an additive abelian group Ea,b with O serving as 

its identity. 

Point addition and doubling can be computed in terms of 

the basic finite field operations (addition, multiplication, 

squaring and inversion), which define the overall efficiency 

of elliptic curve calculations. Namely, point addition 

(doubling) requires the following GF(2m) operations: (two 

additions, one squaring (two for doubling), one inversion, 

and nine (five for doubling) additions. For situations where 

inversion in GF(2m) is relative expensive to multiplication, it 

may be advantageous to represent elliptic points using 

projective coordinates [9].  

In a cryptographic application, the elliptic curve will be 

selected so that Ea,b will contain a large subgroup of prime 

order. NIST has recommended elliptic curves over the finite 

fields GF(2m), where m = {163, 233, 283, 409, 571}. 

The fundamental and most expensive operation underlying 

the elliptic curve cryptographic schemes is the point 

multiplication or scalar multiplication kG where k is an 

integer and G is an elliptic point, and the point multiplication 

kG can be decomposed into point additions and point 

doublings. 

The basic technique for point multiplication is the 

double-and-add method, also known as the binary method, 

which is the additive version of the repeated-square-multiply 

method for exponentiation. This algorithm requires, in 

average, t/2 point additions and t point doublings, where t= 

⌊log2K⌋ + 1. In [9], the authors describe several algorithms to 

efficiently compute kG. Our design uses López and Dahab 

method [10], which does not have any extra storage 

requirements and the same operations (an addition and 

doubling) are performed in each iteration of the main loop, 

thereby potentially increasing resistance to timing attacks. In 

terms of finite field multiplication, the approximate cost of 

computing kG using López and Dahab method is 6m + 20. 

B. Elliptic Curve Digital Signature 

The Elliptic Curve Digital Signature is a variant of the 

Digital Signature Algorithm, which provides same security 

level as DSA for smaller key size and it provides 

authentication, integrity, and non-repudiation of messages. 

The ECDSA consists of key generation, signature generation 

and signature validation that are presented in Algorithm 1, 

Algorithm 2 and Algorithm 3, respectively. 

 

Algorithm 1. ECDSA key pair generation [7] 

Input: A valid set of elliptic curve domain parameters 

Output: A key pair (Q,d) 

1. Select a random integer d in the interval [1, n-1] 

2. Compute the point Q=(xQ, yQ)=dG 

3. The key pair is (Q, d), where Q is the public key and d is 

the private key. 

Algorithm 2. ECDSA Signature generation [7] 

Input: message M, n, d 

Output: (r, s) 

1. Compute the hash value e = H(M) (in this paper SHA-3) 

2. Select a random integer k in the interval [1, n-1] 

3. Compute the point (x1, y1)=kG 

4. Convert the field element x1 to an integer  , 

5. Set r = mod  n 

6. If r = 0, then go to step 2 

7. Compute s = k -1 (e + dr) mod n 

8. If s = 0, then go to step 2 

Algorithm 3. ECDSA Signature verification [7] 

Input: message M’, (r’, s’), Q 

Output: Signature valid  

1. Compute e’ = H(M’) 

2. Check r’, s’ are integers in the interval [1, n-1] 

3. Compute c = (s’)-1 mod n 

4. Compute u1 = e’c mod n and u2 = r’c mod n 

5. Compute the EC point (x1, y1) = u1G + u2Q. (If u1G + u2Q 

is the point at infinity, then reject the signature.) 

6. Convert the field element x1 to an integer  

7. Compute v = mod  n 

8. If r’ = v, then the signature is verified  

Else signature invalid 

 

III. PROCEDURE PROPOSED ECDSA HARDWARE 

ARCHITECTURE 

This section presents the hardware architecture for the 

ECDSA processor. As it is mentioned before, the 

implementation of ECDSA can be divided into 4 modules: 

modular arithmetic GF(p), Finite field arithmetic GF(2m), 

Elliptic Curve arithmetic over GF(2m), and the hash function 

H(m). Therefore, the hardware implementation of ECDSA 

requires special attention.   

A. Modular Arithmetic GF(p) 

The modular arithmetic refers to operations that require the 

mod n operation presented in ECDSA algorithm. In this case, 

modular addition is the operation wherein if the addition 

result is greater or equal to the number n, then it is performed 

the subtraction by the number n. The modular multiplication 

uses the Montgomery multiplication algorithm, and the 

inversion is performed by using the modified Montgomery 

inversion algorithm presented in [11]. 

B. Finite Field Arithmetic over GF(2m) 

Finite field multiplier plays an important role and 

determines the performance of the cryptoprocessors due to 

the elliptic curve point multiplication involves intensive field 

multiplications operations. 

In this work it is presented a modified version of the 

multiplier presented in [11], which has a systolic architecture 

where every Processing Element (PE) computes a partial 

result of the multiplication. Fig. 1 illustrates the internal 

architecture for a PE, which includes: 

 The Unity-degree Reduction Cell that corresponds to the 

modular reduction. 

 NAND cell consists of m NAND gates in parallel to 

perform the NAND operations of one bit of operand B 

and all the bits of the reduced operand A corresponds to 

the bit-multiplication node. 

 XOR cell consists of m XOR gates to perform the 

addition of two elements. 

Due to a design of a pure systolic array presents more 

hardware consumption. Fig. 2 shows the design of a 

sequential multiplication using the PEs presented in [11]. 

Where, the intermediate partial multiplication results are 

computed by using the same PE.  
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Fig. 1. Hardware architecture of a regular PE. a) Internal architecture of PE. b) NAND cell architecture. c) XOR cell. d) URC block architecture. 

 

 
Fig. 2. Hardware architecture for the polynomial basis multiplication. 

The processing element PE[i] performs the m-2 partial 

products, while PE [1] and PE[m] have irregular forms. 

The operand B is stored in a shift register and its LSB is an 

input of the block PE[i]. In this case, the execution time of the 

polynomial basis multiplier is m clock cycles. The inversion 

operation over GF(2m) is performed by using the Itoh-Tsujii 

algorithm [12]. 

C. Elliptic Curve Cryptoprocessor over GF(2m) 

The cryptoprocessor architecture using polynomial basis 

has two register files and several functional blocks, which 

allow to calculate the addition, squaring, multiplication and 

inversion arithmetic over GF(2409). In order to carry out the 

point multiplication kG [9], one FSM is used to realize the 

point addition and doubling operations. Additionally, a main 

controller is used to control the I/O registers to generate the 

control sequences for the scalar multiplication to process the 

key and to initialize the cryptoprocessor. The architecture is 

oriented to carry out parallel processing by considering the 

duplication of functional blocks. The processor architecture 

is shown in Fig. 3, shows the multiplexor blocks that are 

designed to select the stored data from the register files. The 

register files store the elliptic curve parameters and the results 

of the GF(2m) operations. 

D. Secured Hash Algorithm (SHA – 3) 

Algorithm-3 Keccak was selected because in 2004 SHA-1 

was found to be weak, and the threat was carried to SHA-2 

also. In this case, Federal Information Processing Standard 

(FIPS) 202[8], SHA-3 Standard, specifies the Secure Hash 

Algorithm-3 (SHA-3) family of functions on binary data. The 

SHA-3 functions are based on the KECCAK algorithm that 

NIST selected as the winner of the SHA-3 Cryptographic 

Hash Algorithm Competition. Hash functions are used in 

many important information security applications, including 

the generation and verification of digital signatures, key 

derivation, and pseudorandom bit generation. In this work, it 

is used the SHA3-512, where the state for the Keccak-f[1600] 

permutation is comprised of 1600 bits and uses 24 rounds.  In 

this case, Federal Information Processing Standard (FIPS) 

202 [8], SHA-3 Standard, specifies the Secure Hash 

Algorithm-3 (SHA-3) family of functions on binary data. 

The SHA-3 functions are based on the KECCAK 

algorithm that NIST selected as the winner of the SHA-3 

Cryptographic Hash Algorithm Competition. Hash functions 

are used in many important information security applications, 

including the generation and verification of digital signatures, 

key derivation, and pseudorandom bit generation. In this 

work, it is used the SHA3-512, 1600 bits and uses 24 rounds. 

This Standard also specifies the KECCAK-p family of 

mathematical permutations, including the permutation that 

underlies KECCAK, to facilitate the development of 

additional permutation-based cryptographic functions. 

Fig. 4 shows the structure of the Keccak function, and Fig. 

5. shows the algorithm for the Keccak function. 
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Fig. 3. Elliptic curve cryptoprocessor using polynomial basis. 

 

 
Fig. 4. Structure of the Keccak function. 

 

Where the block f is an iterative structure, and it consists of 

a sequence of rounds. The algorithm for the rounds is shown 

in Table I. 

TABLE I: ALGORITHM FOR SPONGE FUNCTION KECCAK 

Algorithm for sponge function Keccak [r,c](M) 

1. Padding 

 P=M||pad[r](|M|) 

2. Initialization 

 s=0b 

3. Absorbing Phase 

 for i=0 to |P|r-1 do 

 s=s⊕(Pi || 0b-r) 

 s=Keccak-f[b](s) 

 end for 

4. Squeezing phase 

 Z=⌊s⌋r 
 While |Z|rr<l do 

 s=Keccak-f[b](s) 

 Z=Z||⌊s⌋r  
 end while  

Return ⌊Z⌋l 

E. Hardware Architecture for ECDSA over GF(2m) 

The hardware implementation of the ECDSA is based on 

Algorithms 1-3. The datapath is mainly conformed by elliptic 

curve processor, the modular arithmetic processor, and the 

SHA-3 block, as it is shown in Fig. 6. 

In addition, there are other blocks such as 16 × 409-bits 

RAM memory, which stores parameters and operation results 

from other blocks, also the block comp which is used to 

verify some data are in the range stablished by the 

algorithms. 

The size of input signal parameters is 64-bits and the block 

parameter buffer stores and shift the data to obtain 409-bit 

size for each data that is stored into RAM memory. The block 

control generates all control signals to store data, to make an 

elliptic curve operation or modular arithmetic operation and 

has signals to know the state of each block. The output data 

are stored in the signature block which is built by a shift 

register with 409-bits input data and 64-bits output data. 

During the execution, the results are verified to validate the 

signature and to generate error codes that verify if data r or s 

are equal to zero. 

 
Fig. 5. Hardware architecture for the SHA-3 function. 

 

IV. HARDWARE VERIFICATION AND SYNTHESIS RESULTS 

The ECDSA processor is described in structural VHDL, 

synthesized on the Cyclone V 5CSEMA4U23C6N using 

Intel-Quartus II V 19.1, and verified using Signal Tap II 

Logic Analyzer. Besides, the hardware implementation of the 

ECDSA was verified by using the Modelsim-Intel to 

performs functional simulations and the results were verified 

by the Matlab software. Then, it is used Signal Tap II for 

in-system hardware verification. In this case, the respective 

digital signature generation and verification using Signal Tap 

II are presented in Fig. 7. Where, some stored data in memory 

are r and s signals, respectively. The signature generation 

requires 2.176 ms and the Signature verification requires 

4.032 ms. Table II presents the synthesis results for the 

ECDSA hardware implementation. 
 

International Journal of Machine Learning and Computing, Vol. 12, No. 3, May 2022

76



  

 
Fig. 6. ECDSA architecture. 

 
Fig. 7. ECDSA results in SignalTap II. a) ECDSA generation. b) ECDSA verification. 

 

TABLE II: SYNTHESIS RESULTS FOR THE ECDSA HARDWARE 

IMPLEMENTATION ON CYCLONE V 5CSEMA4U23C6N 

Modular Arithmetic Finite Field and Elliptic Curve 

Arithmetic 

Module ALUTs FFs Module ALUTs FFs 

ModuleP 985 821 Adder 1.227 1.227 

AdderP 1.394 820 Squarer 818 818 

MultiplierP 6.579 5.339 Multiplier 3.332 2.872 

InverterP 12.749 5.749 ASMI 7.933 6.233 

IntOp 21.947 13.151 ECC 13.798 1.3351 

HASH Function ECDSA Implementation 

Keccak 4784 2230 ECDSA 43749 38869 

 

Table III presents the comparison for hardware 

implementations of ECDSA. 
 

TABLE III: COMPARISON OF ECDSA IMPLEMENTATIONS 

 m ALUTs Time(ms) Device 

[13] 163 64,870 sig-gen 

25,50 sig-ver 

0.8 

0.4 

XC6VLX760-2FF1760 

[14] 163 23,675 sig-gen 

27,791 sig-ver 

0.615 

0.672 

XC6VLX240T-1FF1156 

[15] 233 88,031 sig-gen 

26,590 sig-ver 

1.24 

2.33 

XC6VLX760-2FFL760 

[16] 163 18,504 sig-gen 

            sig-ver 

0.782 

1.5 

VIRTEX5-ML50 

This 409 43.749 sig -gen  

            sig-ver 

2.176 

4.032 

5CSEMA4U23C6N 

 

From Table III, the number of ALUTS for different 

implementations are discriminated according to the ECDSA 

operation, however in this work, generation and verification 

uses the same hardware. The execution time is not taken into 

account due to this hardware was implemented to 409 bits, 

while others works were implemented for 163 and 233 bits. 

And other similar works does not present their results. 

 

V. CONCLUSIONS  

This work presents the hardware implementation of the 

Elliptic Curve Digital Signature Algorithm over GF(2409), 

using polynomial basis representation, were a systolic 

architecture is implemented which less resource consumption, 

the Montgomery point multiplication version for the ECC 

uses GF(2m) inversion operation in the las part and it is 

implemented in and the SHA-3 function, which make this 

design different from others. This approach gives a trade-off 

security, performance, and area.  

The ECDSA implementation was described in generic 

structural VHDL, synthesized on the Cyclone V 

5CSEMA4U23C6N using Quartus II V 19.1, and verified 

using modelsim-Intel and SignalTap II Logic Analyzer. 

Despite of the m size of the finite field, the synthesis 

results and comparisons show that the design uses few area 

resources, and it can be suitable for cryptographic 

applications on embedded systems. 
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