



Abstract—This paper presents the hardware implementation

of the Elliptic Curve Digital Signature Algorithm (ECDSA) by

considering the NIST recommended elliptic curve in binary

fields GF(2409) and the NIST recommended Secure Hash

Algorithm-3 (SHA-3). In this case, four modules are

implemented: modular arithmetic hardware, finite field

arithmetic hardware, an elliptic curve cryptoprocessor over

GF(2409), and SHA-3 module. The implementation is described

in VHDL language, synthesized on the Cyclone V

5CSEMA4U23C6N using Intel-Quartus II V 19.1, and verified

using Signal Tap II Logic Analyzer. The synthesis and

performance results show a good area-throughput trade-off,

and it is suitable for high-performance cryptographic

applications for embedded systems.

Index Terms—ECDSA, finite fields, elliptic curve

cryptography, hash functions, FPGAS.

I. INTRODUCTION

Cryptography plays an important role in the security of the

information and specially to protect or exchange confidential

information among constrained devices such as wireless

sensor network (WSN), radio frequency identifier (RFID),

and devices for the Internet of Things (IoT).

The Internet of Things represents a network of devices that

are interconnected, and the amount of information must be

securely stored and processed. Securing this information is a

challenge in IoT. Many IoT devices are inexpensive with

restrains in memory and computational resources. Some

devices are unable to support the implementation of

asymmetric cryptography. Therefore, designers of such

devices must create their own protocols.

Elliptic Curve Cryptography (ECC) can be used to

guarantee confidentiality and can be used in applications for

ensure data integrity and authenticity by using Elliptic Curve

Digital Signature Algorithm (ECDSA) [1]

In this context, ECDSA is based on elliptic curve

cryptography and was proposed by Victor Miller [2], and

Neal Koblitz [3] in 1985, where ECC is a good alternative to

RSA, the conventional public-key system used on the

Internet today. The main advantage is that ECC offers

equivalent security with smaller key sizes over other

public-key systems, that means ECC provides the same level

Manuscript received November 5, 2020; revised February 11, 2021. This

work was supported in part by Universidad del Valle under the Grant CI

21068, and the Colombian Ministry of Science, Technology, and Innovation

(Minciencias).

V. Trujillo-Olaya is with Universidad de San Buenaventura, Cali,

Colombia (e-mail: vtrujillo1@ usbcali.edu.co).

J. Velasco-Medina is with Universidad del Valle, Cali, Colombia (e-mail:

jaime.velasco@correounivalle.edu.co).

of security as RSA and uses fewer computational resources.

Due to its computational advantages, ECC is particularly

well suited for mobile and wireless applications where the

computational platforms are constrained in the amount of

available computational capacity, memory capacity, and

battery power.

In cryptography, a digital signature scheme is a number,

which has been created using the signer’s secret key and the

contents of the message that is being signed. In this case,

ECDSA enables the sender to attach a signature to a message

or document, which is processed by a hash function and then

is signed using the sender’s private key. The signature must

be verified for a third-party without the knowledge of the

signer’s secret key. Additionally, the signature must be

linked with the message so that a forger cannot copy it to

another message. The receiver decrypts the signature and

checks for its validity.

ECDSA is a variant of the Digital Signature Algorithm

(DSA) [4] and it is based on Elliptic curve cryptography. It

was accepted as an ISO standard (ISO 14888-3 in 1998), as

an ANSI standard (ANSI X9.62 in 1999) [5], and as an IEEE

standard (IEEE P1363-2000) and a FIPS standard (FIPS

186-2[4], FIPS 186-3[6], and FIPS 186-4 [7]).

Due to the performance of cryptographic algorithms is

crucial for real world applications, the hardware technologies

can be used for implementing with high performance and low

cost. It is accepted that cryptographic algorithms

implemented in hardware are physically more secure and

cannot be easily read or modified by an external agent.

In this paper, it is presented a modified implementation of

the Elliptic Curve Digital Signature Algorithm using a binary

extension field recommended by NIST and the NIST

recommended secure hash algorithm 3 (SHA-3)[8], which

specifies a family of functions based on Keccak, the winning

algorithm selected from NIST's SHA-3 Competition.

II. BACKGROUND

A. Elliptic Curve Cryptography

Elliptic curves are described by the set of solutions to

certain equations in two variables. In particular, elliptic

curves defined over a finite field are of central importance in

public-key cryptography.

For the binary field GF(2m), the standard or (Weierstrass)

equation for a non-supersingular elliptic curve is as shown

 y2+xy=x3+ax2+b (1)

where a and b ϵ GF(2m), b ≠ 0. It is well known that the set of

points G = (x, y), where x, y ϵ GF(2m), that satisfy the

Hardware Implementation of Elliptic Curve Digital

Signature Algorithm over GF(2409) Using SHA-3

Vladimir Trujillo-Olaya and Jaime Velasco-Medina

International Journal of Machine Learning and Computing, Vol. 12, No. 3, May 2022

73doi: 10.18178/ijmlc.2022.12.3.1082

equation (1), together with the point O, call the point at

infinity, form an additive abelian group Ea,b with O serving as

its identity.

Point addition and doubling can be computed in terms of

the basic finite field operations (addition, multiplication,

squaring and inversion), which define the overall efficiency

of elliptic curve calculations. Namely, point addition

(doubling) requires the following GF(2m) operations: (two

additions, one squaring (two for doubling), one inversion,

and nine (five for doubling) additions. For situations where

inversion in GF(2m) is relative expensive to multiplication, it

may be advantageous to represent elliptic points using

projective coordinates [9].

In a cryptographic application, the elliptic curve will be

selected so that Ea,b will contain a large subgroup of prime

order. NIST has recommended elliptic curves over the finite

fields GF(2m), where m = {163, 233, 283, 409, 571}.

The fundamental and most expensive operation underlying

the elliptic curve cryptographic schemes is the point

multiplication or scalar multiplication kG where k is an

integer and G is an elliptic point, and the point multiplication

kG can be decomposed into point additions and point

doublings.

The basic technique for point multiplication is the

double-and-add method, also known as the binary method,

which is the additive version of the repeated-square-multiply

method for exponentiation. This algorithm requires, in

average, t/2 point additions and t point doublings, where t=

⌊log2K⌋ + 1. In [9], the authors describe several algorithms to

efficiently compute kG. Our design uses López and Dahab

method [10], which does not have any extra storage

requirements and the same operations (an addition and

doubling) are performed in each iteration of the main loop,

thereby potentially increasing resistance to timing attacks. In

terms of finite field multiplication, the approximate cost of

computing kG using López and Dahab method is 6m + 20.

B. Elliptic Curve Digital Signature

The Elliptic Curve Digital Signature is a variant of the

Digital Signature Algorithm, which provides same security

level as DSA for smaller key size and it provides

authentication, integrity, and non-repudiation of messages.

The ECDSA consists of key generation, signature generation

and signature validation that are presented in Algorithm 1,

Algorithm 2 and Algorithm 3, respectively.

Algorithm 1. ECDSA key pair generation [7]

Input: A valid set of elliptic curve domain parameters

Output: A key pair (Q,d)

1. Select a random integer d in the interval [1, n-1]

2. Compute the point Q=(xQ, yQ)=dG

3. The key pair is (Q, d), where Q is the public key and d is

the private key.

Algorithm 2. ECDSA Signature generation [7]

Input: message M, n, d

Output: (r, s)

1. Compute the hash value e = H(M) (in this paper SHA-3)

2. Select a random integer k in the interval [1, n-1]

3. Compute the point (x1, y1)=kG

4. Convert the field element x1 to an integer ,

5. Set r = mod n

6. If r = 0, then go to step 2

7. Compute s = k -1 (e + dr) mod n

8. If s = 0, then go to step 2

Algorithm 3. ECDSA Signature verification [7]

Input: message M’, (r’, s’), Q

Output: Signature valid

1. Compute e’ = H(M’)

2. Check r’, s’ are integers in the interval [1, n-1]

3. Compute c = (s’)-1 mod n

4. Compute u1 = e’c mod n and u2 = r’c mod n

5. Compute the EC point (x1, y1) = u1G + u2Q. (If u1G + u2Q

is the point at infinity, then reject the signature.)

6. Convert the field element x1 to an integer

7. Compute v = mod n

8. If r’ = v, then the signature is verified

Else signature invalid

III. PROCEDURE PROPOSED ECDSA HARDWARE

ARCHITECTURE

This section presents the hardware architecture for the

ECDSA processor. As it is mentioned before, the

implementation of ECDSA can be divided into 4 modules:

modular arithmetic GF(p), Finite field arithmetic GF(2m),

Elliptic Curve arithmetic over GF(2m), and the hash function

H(m). Therefore, the hardware implementation of ECDSA

requires special attention.

A. Modular Arithmetic GF(p)

The modular arithmetic refers to operations that require the

mod n operation presented in ECDSA algorithm. In this case,

modular addition is the operation wherein if the addition

result is greater or equal to the number n, then it is performed

the subtraction by the number n. The modular multiplication

uses the Montgomery multiplication algorithm, and the

inversion is performed by using the modified Montgomery

inversion algorithm presented in [11].

B. Finite Field Arithmetic over GF(2m)

Finite field multiplier plays an important role and

determines the performance of the cryptoprocessors due to

the elliptic curve point multiplication involves intensive field

multiplications operations.

In this work it is presented a modified version of the

multiplier presented in [11], which has a systolic architecture

where every Processing Element (PE) computes a partial

result of the multiplication. Fig. 1 illustrates the internal

architecture for a PE, which includes:

 The Unity-degree Reduction Cell that corresponds to the

modular reduction.

 NAND cell consists of m NAND gates in parallel to

perform the NAND operations of one bit of operand B

and all the bits of the reduced operand A corresponds to

the bit-multiplication node.

 XOR cell consists of m XOR gates to perform the

addition of two elements.

Due to a design of a pure systolic array presents more

hardware consumption. Fig. 2 shows the design of a

sequential multiplication using the PEs presented in [11].

Where, the intermediate partial multiplication results are

computed by using the same PE.

International Journal of Machine Learning and Computing, Vol. 12, No. 3, May 2022

74

Fig. 1. Hardware architecture of a regular PE. a) Internal architecture of PE. b) NAND cell architecture. c) XOR cell. d) URC block architecture.

Fig. 2. Hardware architecture for the polynomial basis multiplication.

The processing element PE[i] performs the m-2 partial

products, while PE [1] and PE[m] have irregular forms.

The operand B is stored in a shift register and its LSB is an

input of the block PE[i]. In this case, the execution time of the

polynomial basis multiplier is m clock cycles. The inversion

operation over GF(2m) is performed by using the Itoh-Tsujii

algorithm [12].

C. Elliptic Curve Cryptoprocessor over GF(2m)

The cryptoprocessor architecture using polynomial basis

has two register files and several functional blocks, which

allow to calculate the addition, squaring, multiplication and

inversion arithmetic over GF(2409). In order to carry out the

point multiplication kG [9], one FSM is used to realize the

point addition and doubling operations. Additionally, a main

controller is used to control the I/O registers to generate the

control sequences for the scalar multiplication to process the

key and to initialize the cryptoprocessor. The architecture is

oriented to carry out parallel processing by considering the

duplication of functional blocks. The processor architecture

is shown in Fig. 3, shows the multiplexor blocks that are

designed to select the stored data from the register files. The

register files store the elliptic curve parameters and the results

of the GF(2m) operations.

D. Secured Hash Algorithm (SHA – 3)

Algorithm-3 Keccak was selected because in 2004 SHA-1

was found to be weak, and the threat was carried to SHA-2

also. In this case, Federal Information Processing Standard

(FIPS) 202[8], SHA-3 Standard, specifies the Secure Hash

Algorithm-3 (SHA-3) family of functions on binary data. The

SHA-3 functions are based on the KECCAK algorithm that

NIST selected as the winner of the SHA-3 Cryptographic

Hash Algorithm Competition. Hash functions are used in

many important information security applications, including

the generation and verification of digital signatures, key

derivation, and pseudorandom bit generation. In this work, it

is used the SHA3-512, where the state for the Keccak-f[1600]

permutation is comprised of 1600 bits and uses 24 rounds. In

this case, Federal Information Processing Standard (FIPS)

202 [8], SHA-3 Standard, specifies the Secure Hash

Algorithm-3 (SHA-3) family of functions on binary data.

The SHA-3 functions are based on the KECCAK

algorithm that NIST selected as the winner of the SHA-3

Cryptographic Hash Algorithm Competition. Hash functions

are used in many important information security applications,

including the generation and verification of digital signatures,

key derivation, and pseudorandom bit generation. In this

work, it is used the SHA3-512, 1600 bits and uses 24 rounds.

This Standard also specifies the KECCAK-p family of

mathematical permutations, including the permutation that

underlies KECCAK, to facilitate the development of

additional permutation-based cryptographic functions.

Fig. 4 shows the structure of the Keccak function, and Fig.

5. shows the algorithm for the Keccak function.

International Journal of Machine Learning and Computing, Vol. 12, No. 3, May 2022

75

Fig. 3. Elliptic curve cryptoprocessor using polynomial basis.

Fig. 4. Structure of the Keccak function.

Where the block f is an iterative structure, and it consists of

a sequence of rounds. The algorithm for the rounds is shown

in Table I.

TABLE I: ALGORITHM FOR SPONGE FUNCTION KECCAK

Algorithm for sponge function Keccak [r,c](M)

1. Padding

 P=M||pad[r](|M|)

2. Initialization

 s=0b

3. Absorbing Phase

 for i=0 to |P|r-1 do

 s=s⊕(Pi || 0b-r)

 s=Keccak-f[b](s)

 end for

4. Squeezing phase

 Z=⌊s⌋r
 While |Z|rr<l do

 s=Keccak-f[b](s)

 Z=Z||⌊s⌋r
 end while

Return ⌊Z⌋l

E. Hardware Architecture for ECDSA over GF(2m)

The hardware implementation of the ECDSA is based on

Algorithms 1-3. The datapath is mainly conformed by elliptic

curve processor, the modular arithmetic processor, and the

SHA-3 block, as it is shown in Fig. 6.

In addition, there are other blocks such as 16 × 409-bits

RAM memory, which stores parameters and operation results

from other blocks, also the block comp which is used to

verify some data are in the range stablished by the

algorithms.

The size of input signal parameters is 64-bits and the block

parameter buffer stores and shift the data to obtain 409-bit

size for each data that is stored into RAM memory. The block

control generates all control signals to store data, to make an

elliptic curve operation or modular arithmetic operation and

has signals to know the state of each block. The output data

are stored in the signature block which is built by a shift

register with 409-bits input data and 64-bits output data.

During the execution, the results are verified to validate the

signature and to generate error codes that verify if data r or s

are equal to zero.

Fig. 5. Hardware architecture for the SHA-3 function.

IV. HARDWARE VERIFICATION AND SYNTHESIS RESULTS

The ECDSA processor is described in structural VHDL,

synthesized on the Cyclone V 5CSEMA4U23C6N using

Intel-Quartus II V 19.1, and verified using Signal Tap II

Logic Analyzer. Besides, the hardware implementation of the

ECDSA was verified by using the Modelsim-Intel to

performs functional simulations and the results were verified

by the Matlab software. Then, it is used Signal Tap II for

in-system hardware verification. In this case, the respective

digital signature generation and verification using Signal Tap

II are presented in Fig. 7. Where, some stored data in memory

are r and s signals, respectively. The signature generation

requires 2.176 ms and the Signature verification requires

4.032 ms. Table II presents the synthesis results for the

ECDSA hardware implementation.

International Journal of Machine Learning and Computing, Vol. 12, No. 3, May 2022

76

Fig. 6. ECDSA architecture.

Fig. 7. ECDSA results in SignalTap II. a) ECDSA generation. b) ECDSA verification.

TABLE II: SYNTHESIS RESULTS FOR THE ECDSA HARDWARE

IMPLEMENTATION ON CYCLONE V 5CSEMA4U23C6N

Modular Arithmetic Finite Field and Elliptic Curve

Arithmetic

Module ALUTs FFs Module ALUTs FFs

ModuleP 985 821 Adder 1.227 1.227

AdderP 1.394 820 Squarer 818 818

MultiplierP 6.579 5.339 Multiplier 3.332 2.872

InverterP 12.749 5.749 ASMI 7.933 6.233

IntOp 21.947 13.151 ECC 13.798 1.3351

HASH Function ECDSA Implementation

Keccak 4784 2230 ECDSA 43749 38869

Table III presents the comparison for hardware

implementations of ECDSA.

TABLE III: COMPARISON OF ECDSA IMPLEMENTATIONS

 m ALUTs Time(ms) Device

[13] 163 64,870 sig-gen

25,50 sig-ver

0.8

0.4

XC6VLX760-2FF1760

[14] 163 23,675 sig-gen

27,791 sig-ver

0.615

0.672

XC6VLX240T-1FF1156

[15] 233 88,031 sig-gen

26,590 sig-ver

1.24

2.33

XC6VLX760-2FFL760

[16] 163 18,504 sig-gen

 sig-ver

0.782

1.5

VIRTEX5-ML50

This 409 43.749 sig -gen

 sig-ver

2.176

4.032

5CSEMA4U23C6N

From Table III, the number of ALUTS for different

implementations are discriminated according to the ECDSA

operation, however in this work, generation and verification

uses the same hardware. The execution time is not taken into

account due to this hardware was implemented to 409 bits,

while others works were implemented for 163 and 233 bits.

And other similar works does not present their results.

V. CONCLUSIONS

This work presents the hardware implementation of the

Elliptic Curve Digital Signature Algorithm over GF(2409),

using polynomial basis representation, were a systolic

architecture is implemented which less resource consumption,

the Montgomery point multiplication version for the ECC

uses GF(2m) inversion operation in the las part and it is

implemented in and the SHA-3 function, which make this

design different from others. This approach gives a trade-off

security, performance, and area.

The ECDSA implementation was described in generic

structural VHDL, synthesized on the Cyclone V

5CSEMA4U23C6N using Quartus II V 19.1, and verified

using modelsim-Intel and SignalTap II Logic Analyzer.

Despite of the m size of the finite field, the synthesis

results and comparisons show that the design uses few area

resources, and it can be suitable for cryptographic

applications on embedded systems.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Jaime Velasco-Medina conducted the research, did 40% of

analysis and design, and 40% of writing and did the proof

reading. Vladimir Trujillo-Olaya, did the 60% of analysis and

design, 100% of implementation and simulation, and wrote

60% of the paper; all authors has approved the final version.

ACKNOWLEDGMENT

The authors wish to thank the Colombian Ministry of

Science, Technology, and Innovation (Minciencias) and

Universidad del Valle for the project financial support CI

21068. Also, special thanks to Julian F. Bravo-Parra for

assistance with previous designs.

REFERENCES

[1] N. Koblitz, S. Vastone, and A. Menezes, “The state of elliptic curve

cryptography,” Designs, Codes and Cryptography, pp. 173–193,

March 2000.

International Journal of Machine Learning and Computing, Vol. 12, No. 3, May 2022

77

International Journal of Machine Learning and Computing, Vol. 12, No. 3, May 2022

78

[2] V. S. Miller, “Uses of elliptic curves in cryptography, advances in

cryptology,” Lecture Notes in Computer Science (LNCS), vol. 218, pp.

417-426, springer-verlag, New York, USA, 1986.

[3] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of

Computation, vol. 48, pp. 203-209, 1987.

[4] National Institute of Standards and Technology, Digital Signature

Standard. (February 2000). FIPS Publication 186-2. [Online].

Available:

https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-

01-27/documents/fips186-2.pdf

[5] ANSI, “Public key cryptography for the financial services industry,”

The Elliptic Curve Digital Signature Standard (ECDSA), ANSI X9.62,

American National Standard Institute, 1999

[6] National Institute of Standards and Technology. Digital Signature

Standard. (June 2009). FIPS Publication 186-3. [Online]. Available:

https://csrc.nist.gov/csrc/media/publications/fips/186/3/archive/2009-

06-25/documents/fips_186-3.pdf

[7] National Institute of Standards and Technology. Digital Signature

Standard (DSS). (July 2013). FIPS Publication 186-4.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

[8] National Institute of Standards and Technology. SHA-3 Standard:

Permutation-Based Hash and Extendable-Output Functions. FIPS

Publication 202. (August 2015). [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

[9] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve

Cryptography, Springer-Verlag, 2004.

[10] J. Lopez and R. Dahab, “Fast multiplication on elliptic curves over

GF(2n) without precomputation,” Cryptographic Hardware and

Embedded Systems, pp. 316-327, 1999.

[11] P. K. Meher, “Systolic and super-systolic multiplier for finite field

GF(2m) based on irreducible polynomials,” IEEE Transactions on

Circuits and Systems-I: Regular Papers, vol. 55, no. 4, May 2008.

[12] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative

inverses in GF(2m) using normal bases,” Information and Computation,

vol. 78, pp. 171-177, 1988.

[13] G. Nabil, K. Naziha, F. Lamia, and K. Lotfi, “Hardware

implementation of Elliptic Curve Digital Signature Algorithm (ECDSA)

on Koblitz Curves,” in Proc. 2012 8th International Symposium on

Communication Systems, Networks & Digital Signal Processing, July

2012 , pp. 1-6.

[14] B. Panjwani and D. C. Mehta, “Hardware-software co-design of elliptic

curve digital signature algorithm over binary fields,” in Proc. 2015

International Conference on Advances in Computing, Communications

and Informatics (ICACCI), Aug. 2015, pp. 1101-1106.

[15] N. Ghanmy, L. C. Fourati, and L. Kamoun, “Enhancement security

level and hardware implementation of ECDSA,” in Proc. 2013 IEEE

Symposium on Computers and Communications (ISCC), July 2013,

pp.000423-000429.

[16] A. Sghaier, M. Zeghid, C. Massoud, and M. Machout, “Design and

implementation of low area/power elliptic curve digital signature

hardware core,” Electronics, vol. 6. p. 46, June 2017.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Vladimir Trujillo-Oaya received his B.S, M.Sc and

PhD in Electronics Engineering from Universidad del

Valle, School of Electrical and Electronics

Engineering in 2004, 2009 and 2014 respectively. He

is currently an associate professor at Universidad de

San Buenaventura, Cali, Colombia. In 2007, he

received one grant from the European Union through

the Alfa/Nicron project at the TIMA-INPG, Grenoble,

France, working on fault injections on complex digital

circuits using VHDL.

Dr. Trujillo-Olaya is currently a professor at Universidad de San

Buenaventura, Cali-Colombia. His research interests include hardware

implementation of finite fields and cryptosystems, fault tolerant design and

complex digital systems design. He has been a reviewer of IEEE-CAS,

IEEE-LASCAS, IBERCHIP, the IEEE Transactions on VLSI System, the

IEEE Transactions on Circuits and Systems I, IEEE Transactions on Circuits

and Systems II, and some national publications.

Jaime Velasco-Medina received the BS degree in

electrical engineering from the Universidad del Valle,

Cali, Colombia, in 1985, and the M.Sc. and Ph.D.

degrees in microelectronics from the Institute National

Polytechnic of Grenoble, Joseph Fourier University,

Grenoble, France, in 1995 and 1999, respectively. He

held an internship position, for six months, as a

technical staff member at AT\&T BellLabs in

Allentown, PA, USA, in 1988.

He was the pioneer of the current-based testing for

analog and mixed signal circuits, and on-line testing of operational

amplifiers. He is currently a faculty professor with the School of Electrical

and Electronics Engineering, Universidad del Valle, where he is the director

with the Bionanoelectronics Research Group. He has authored more than 40

IEEE papers and 50 peer-reviewed papers in other scientific events and

journals. His current research interests include digital systems design for

computer arithmetic and digital signal processing, test of analog circuits, and

hardware architectures for cryptography, quantum computing, wireless

communications, citocomputation, modeling of biological systems, design of

graphene-based digital circuits, and computational design of bionanosensors

and bionanomachines for nano drug delivery systems.

Dr. Velasco Medina is a reviewer for the JETTA, the IEEE LATW, the

IEEE SPL, the IBERCHIP, the IEEE LASCAS, the IEEE Transactions on

VLSI System, the IEEE Transactions on Signal Processing, the IEEE

Transactions on Circuits and Systems I, and many other international

publications and conferences.

https://creativecommons.org/licenses/by/4.0/

