
  

 

Abstract—Female breast shape is significantly essential for 

female healthcare, bra design, etc. However, there is no 

authoritative standard for breast shape classification. In this 

paper, we analysis the female breast category by unsupervised 

clustering the horizontal female breast contours. Specifically, 

the Elliptic Fourier Descriptors (EFDs), extracted from breast 

contour, are employed as the contour features. Subsequently, 

we use PCA to reduce the feature into lower dimensions. 

Experiments demonstrate that the lower dimensions are enough 

to present the original features. Then, we employ two widely 

used clustering algorithms, K-Means++ and FCM, to cluster the 

female breast contours, and deeply analyze and compare the 

results of two clustering results in terms of effectiveness. 

Experimental results demonstrate that the K-Means++ is more 

suitable for female breast contour clustering, and the results are 

more reasonable than FCM. 

 
Index Terms—Elliptic Fourier Analysis, elliptic fourier 

descriptor, female breast clustering, clustering validation, PCA.  

 

I. INTRODUCTION 

Female brassiere plays a vital role in female daily life, 

which supports female breasts to provide concealment and to 

prevent the breasts from sagging [1]. However, the 

complexity in breast shape and variations in shape and size 

make it difficult to design a fit brassiere. According to studies, 

about 70% of females are wearing incorrectly sized 

brassieres [2]-[4]. Thus, it is worth to research and analyze 

the shape of the female breasts, which will contribute to the 

development of improved sizing systems of brassiere 

products that work for consumers and manufacturers. For the 

female breast shape, the horizontal contour is the most 

important parameter [5], which contains lots of valuable 

information such as width, depth, girth, etc. Thus, in this 

paper, we try to classify the female breast shape according to 

breast contour. Unlike other studies with the ground-truth 

dataset, there is no authoritative standard for breast shape, i.e., 

no ground-truth, and we cannot train a supervised network to 

categorize the shape according to some features or images. 

All the actual work that focuses on the classification of the 

female breast is based on unsupervised clustering. However, 
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most of the work does not explain why a particular 

classification is reasonable. Instead, we deeply compare and 

analyze the results of two widely used clustering algorithms 

on female breast classification using mathematical tools. 

Early work on female breast sizing classification employs 

the girth of the breast, under-breast to identify the bra size, 

and introduce A, B, C, and D to the breast sizing system [6]. 

With the development of computer hardware and 3D sensor, 

more research relies on 3D scanning. Zheng et al. [5] cluster 

the female breast shape into eight clusters based on 3D body 

scans. They use under-breast girth and the breast depth-width 

ratio as the parametric features. Morris et al. [7] study 50 

female body shapes and develop a range of 18 various breast 

shapes. However, the number of clustering is too large to be 

applied in practice. Dong and Zhang [8] use K-Means to 

divide the female breast into four categories according to the 

size of the bar, whereas the method they use to decide the 

number of clusters is not robust, and they do not study the 

correctness of this classification. Wang et al. [9] subjectively 

divide the female breast shape into five categories according 

to anthropometric measurement and do not explain the 

reasons for such classification.  

Generally, much work proposes an approach to classify the 

female breast but without an in-depth analysis of the results. 

The main concern of clustering is to reveal the organization 

of patterns into “sensible” groups, which allows us to 

uncover the similarities and differences [10]. The results of 

unsupervised clustering may be different depending on the 

proprieties of data and input parameters. Evaluating and 

assessing the results of the clustering methods is referred to 

as clustering validation [11]. In this paper, we employ two 

widely used unsupervised clustering algorithms to cluster the 

female breast shape according to the breast contour. 

Subsequently, we carefully analyze and compare the 

clustering results using mathematical methods. Specifically, 

we employ the Elliptic Fourier Analysis [12] to extract 

features (Elliptic Fourier Operators, EFDs) from the breast 

contours and then utilize K-Means++ and Fuzzy C-Means to 

cluster the female breast shape according to the extracted 

EFDs. We also prove that the extracted features can 

reconstruct the original breast curve very well. Subsequently, 

the two clustering results are analyzed and compared in depth 

by Scatter and Density between clusters validity index 

(S_Dbw) [13] and Silhouette Width (SW) [14]. Both of these 

indices can evaluate the clustering quality from inter-cluster 

and intra-cluster. 

 

II. METHOD 

A. Feature Extraction 

Given a horizontal breast contour cutting from a 3D human 
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mesh, we extract the Elliptic Fourier Descriptors (EFDs) 

using Elliptic Fourier Analysis. The y-coordinates of each 

vertex on this horizontal contour are the same. Thus, the 

breast contour can be approximated at X-Z plane as: 
 

𝑥𝑝 = 𝐴0 + ∑ 𝑎𝑛𝑐𝑜𝑠
2𝑛𝜋𝑡𝑝

𝑇
+ 𝑏𝑛𝑠𝑖𝑛

2𝑛𝜋𝑡𝑝

𝑇
𝑁
𝑛=1                (1) 

 

𝑧𝑝 = 𝐶0 + ∑ 𝑐𝑛𝑐𝑜𝑠
2𝑛𝜋𝑡𝑝

𝑇
+ 𝑑𝑛𝑠𝑖𝑛

2𝑛𝜋𝑡𝑝

𝑇
𝑁
𝑛=1                (2) 

 

where 𝑡𝑝 is the length from the starting point to the p-th point, 

and the perimeter of the curve is denoted as T. N is the 

number of Fourier harmonics requiring to approximate the 

contours.𝑎𝑛 , 𝑏𝑛 , 𝑐𝑛  and 𝑑𝑛  are the coefficients of Elliptic 

Fourier for n-th harmonic. 𝐴0  and 𝐶0  are the basis 

coefficients, corresponding to 0 frequency. The Elliptic 

Fourier Descriptors (EFDs) then could be denoted as a row 

vector: 
 

𝐸𝐹𝐷𝑠 = (𝐴0, 𝐶0, 𝑎1, 𝑏1, 𝑐1, … , 𝑎𝑛, 𝑏𝑛, 𝑐𝑛)                (3) 
 

B. Principal Component Analysis 

Technically, the more the harmonics employed in EFA, the 

higher the dimensions in EFDs. However, excessive 

harmonic numbers will contain lots of redundant information 

and increase the complexity of clustering computation. Thus, 

we employ PCA to reduce the dimensions by representing the 

features of a subject with a set of principal components (PCs). 

PCs are a linear combination of the original EFDs and are 

demonstrated the real source of variation between shapes. 

For each EFDs, the input of PCA can be formatted as a 

𝑀 × 4𝑁 matrix: 
 

𝐸𝐸𝐹𝐷𝑠 = [
𝑎11𝑏11𝑐11𝑑11 ⋯ 𝑎1𝑁𝑏1𝑁𝑐1𝑁𝑑1𝑁

⋮ ⋱ ⋮
𝑎𝑀1𝑏𝑀1𝑐𝑀1𝑑𝑀1 ⋯ 𝑎𝑀𝑁𝑏𝑀𝑁𝑐𝑀𝑁𝑑𝑀𝑁

]      (4) 

 

where M is the number of the human model in our dataset. 

Typically, the PCA involved four steps: 

1) Calculating the covariance matrix 𝐶𝐸𝐹𝐷𝑠  of the input 

𝐸𝐸𝐹𝐷𝑠. 

2) Computing the eigenvalues and eigenvectors of 𝐶𝐸𝐹𝐷𝑠. 

3) Space spanned by the eigenvectors corresponding to the 

first k largest eigenvalues are denoted as a projection 

matrix 𝑇4𝑁×𝑘. 

4) 𝑃𝐶𝑠 = 𝐸𝐹𝐷𝑠 × 𝑇4𝑁×𝑘 reduces the dimensions from 4N 

to k, where 𝑘 ≤ 4𝑁. 

C. Error Metric 

A contour can be represented by the above features, and 

the contour can also be reconstructed using the 

reduced-dimensional EFDs. To evaluate the reconstruction, 

we employ three metrics to measure the error between the 

original breast contour and reconstructed contour: mean 

distance, standard deviation, and maximum distance between 

the original and the reconstructed contour. 

Taking O as the original breast contour and F as the 

reconstructed contour, the mean deviation extent between the 

original and reconstructed shape,  
 

�̅� =
1

𝑁
∑ 𝑑𝑖𝑠𝑡(𝑂𝑖 , 𝐹𝑖)

𝑁
𝑖                                (5) 

where N is the total number of the vertices on a contour. 

The standard deviation of the distance between the original 

points and reconstructed points 𝜎𝑑 is the measure of 

variability, i.e., 𝜎𝑑 = 𝑠𝑡𝑑(𝐷𝑖) .The maximum distance 

between sampling points and fitting points is denoted as 

𝐷𝑚𝑎𝑥 = 𝑚𝑎𝑥 {𝑑𝑖𝑠𝑡(𝑂𝑖 , 𝐹𝑖)}, 𝑖 = 1,2, … , 𝐾. 

D. Clustering 

The final objective of our work is to classify the female 

breast contours into K clusters, which is a typical 

unsupervised classification problem since the cluster number 

K is unknown. With the extracted PCs, we employ two 

widely used clustering algorithms, K-Means++ and FCM, to 

classify the breast shape, and analyze the clustering results of 

these two methods in depth. 

K-Means++ cluster can automatically partition the breast 

contours into K groups, which is an improved K-means 

algorithm proposed by [15]. Compared to the traditional 

K-Means, the initialization of the K centroids is optimized. 

In our approach, the number of clusters K is estimated by 

visualizing the error measure 𝑊𝑘 , which is an easy-to-use 

method and demonstrates the inter-cluster dispersion [16]. It 

is defined as follow, 
 

𝑊𝑘 = ∑
1

𝑛𝑟
𝐷𝑟

𝐾
𝑘=1                                  (6) 

 

where 𝐷𝑟 = ∑ 𝑑𝑖,𝑖′𝑖,𝑖′∈𝑆𝑟
 is the num of the pairwise distances 

for all the samples in cluster r. 𝑊𝑟 is the inter-cluster sum of 

the squared distance around the cluster center.  

Once K is determined, for a given dataset 𝑋 ⊂ 𝑅𝑑 , 𝑥 ∈ 𝑋, 

the K-Means++ clustering can be performed according to the 

following steps: 

1) Selecting a cluster center 𝑆𝑙  from the input dataset 

randomly; 

2) For each sample x, calculating the squared Euclidian 

Distance 𝐷(𝑥) to its near cluster center; 

3) Selecting a new cluster center 𝑆𝑖, which maximize the 

probability 
𝐷(𝑥′)

∑ 𝐷(𝑥)
, where 𝑆𝑖 = 𝑥′ ∈ 𝑋; 

4) Repeating 2) and 3) until the number of clusters equals 

K; 

5) Using the traditional K-Means clustering to minimize 

the objective function 𝐽𝑘 = ∑ ∑ ∥ 𝑥𝑖 − 𝑐𝑘 ∥2𝑁
𝑖

𝐾
𝑘 , where 

𝑐𝑘 is the k-th cluster center, N is the number of samples 

in each cluster, and K is the number of clusters. 

According to [17], K-Means++ will preserve the structure 

and distribution of the original data. As an effect to screen the 

suitable clustering methods for shape categorization, FCM is 

used to divide the same dataset in the same number of clusters 

K. In order to ensure the robustness of the clustering, the 

initial centroids are selected randomly rather than using the 

same initial centroids in K-Means++. The goal of FCM is to 

minimize the following objective function 𝐽𝑚, 
 

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑘
𝑚𝐶

𝑘=1 ∥ 𝑥𝑖 − 𝑐𝑘 ∥2𝑁
𝑖=1          

𝑠. 𝑡.  ∑ 𝑢𝑖𝑘 = 1𝐶
𝑘=1 , 𝑖 = 1,2, … , 𝑁

                  (7) 

 

where m is the fuzzifier that determines the level of clustering 

fuzziness.
ik

u is the degree of membership of
i

x in the cluster 

k.
k

c is the k-th cluster centroid. C is the number of clusters 

with C=K. The step-by-step FCM follows. 

1) Initializing 𝑈 = [𝑢𝑖𝑘] matrix, 𝑈(0); 

International Journal of Machine Learning and Computing, Vol. 12, No. 1, January 2022

38



  

2) At j-step, calculating the centroid vectors 𝐶(𝑗) = [𝑐𝑘] 

with 𝑈(𝑗); 

3) Updating 𝑈(𝑗) and 𝑈(𝑗+1)  according to the following 

formula: 

 

𝑢𝑖𝑘 = (∑ (
∥𝑥𝑖−𝑐𝑘∥

∥𝑥𝑖−𝑐𝑗∥
)

2

𝑚−1𝐶
𝑗=1 )

−1

                             (8) 

 

4) Repeating 2) and 3) until ∥ 𝑈(𝑗) − 𝑈(𝑗+1) ∥< 𝜖, where 

𝜖 = 0.0001 is the threshold in our experiments. 

E. Cluster Validation  

The reason we chose two different unsupervised cluster 

methods is that various clustering algorithms may result in 

different but similar partitions due to the configuration of 

parameters. Mathematically, it is possible that these two 

clustering results are invalid even if both of them look good. 

There are two reasons for this. The first one is that both 

results may be improper due to unanticipated occasions 

caused by parameter configurations. Another one is that the 

error measure function 𝑊𝑘  only evaluate inter-cluster 

dispersion. Recent studies demonstrates that S_Dbw is more 

effective than other clustering validity indices[13], [14], [18]. 

S_Dbw validity index combines inter-cluster and 

intra-cluster similarity and enabled a reliable evaluation of 

clustering results [18]. The smaller the S_Dbw, the more 

similar the inter-cluster properties, and meanwhile, the more 

the distinct intra-cluster properties. S_Dbw is calculated as 

follow, 
 

𝑆_𝐷𝑏𝑤(𝑐) = 𝐷𝑒𝑛𝑠(𝑐) + 𝑆𝑐𝑎𝑡(𝑐)                       (9) 
 

where 𝐷𝑒𝑛𝑠(𝑐) is the inter-cluster density, and 𝑆𝑐𝑎𝑡(𝑐)  is 

the intra-cluster variance. 𝐷𝑒𝑛𝑠(𝑐) is calculated as 
 

𝐷𝑒𝑛𝑠(𝑐) =
1

𝐶(𝐶+1)
∑ ∑

𝜌(𝑚𝑖𝑗)

max{𝜌(𝑣𝑖),𝜌(𝑣𝑗)}

𝐶
𝑗=1

𝐶
𝑖=1                 (10) 

 

where 𝑣𝑖 and 𝑣𝑗 are centroids of cluster 𝑐𝑖  and 𝑐𝑗 , 

respectively. 𝑚𝑖𝑗  is the middle point of the line segment 

defined by 𝑣𝑖and 𝑣𝑗.𝜌(𝑚) is the density function and defined 

as 
 

𝜌(𝑚) = ∑ 𝑓(𝑥𝑙 , 𝑚)
𝑛𝑖𝑗

𝑙=1
                              (11) 

 

where 𝑛𝑖𝑗is the number of samples that belong to centroid 𝑣𝑖 

and 𝑣𝑗. 𝑓(𝑥, 𝑚) is defined as a piecewise function: 
 

𝑓(𝑥, 𝑚) = {
1    𝑖𝑓 𝑑(𝑥, 𝑚) > 𝑠𝑡𝑑𝑒𝑣
0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   (12) 

 

where 𝑑(𝑥, 𝑚) is the squared Euclidean distance. stdev is the 

average standard deviation of the clusters. 𝑆𝑐𝑎𝑡(𝑐)  is 

calculated as 
 

𝑆𝑐𝑎𝑡(𝑐) =
1

𝐶
∑ ∥

𝜎(𝑣𝑖)

𝜎(𝑆)
∥𝐶

𝑖=1                           (13) 

 

where 𝜎(𝑆) is the variance of cluster 𝑐𝑖. 

F. Comparison of Clustering 

In practice, the clustering results of K-Means++ and FCM 

might be similar. Silhouette Width (SW) is used to determine 

the optimal one for breast clustering. For each sample i, its 

SW is defined as: 

 

𝑠(𝑖) =
𝑑𝑜𝑢𝑡(𝑖)−𝑑𝑖𝑛(𝑖)

max{𝑑𝑜𝑢𝑡(𝑖)−𝑑𝑖𝑛(𝑖)}
                            (14) 

 

where 𝑑𝑜𝑢𝑡(𝑖) is the mean distance of sample i to samples in 

its nearest neighbor cluster. 𝑑𝑖𝑛(𝑖) is the mean distance of the 

i-th sample in its cluster. In our experiments, squared 

Euclidean distance is used as the distance function. The 

averaged 𝑠(𝑖), called the score, reflected the overall quality 

of clustering. The higher the score, the better the quality of 

the clustering. 

 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Dataset 

We have scanned 100 female volunteers, aged from 18-45, 

using Microsoft Kinect V2 to obtain the 3D mesh under 

A-pose, and the breast contour curve is extracted according to 

an automatic human body measurement algorithm proposed 

by Zhong et al.[19]. Body scanning and curve extraction are 

out of the scope for this paper, and for more details, please 

refer to [19] and [20]. 
 

 
Fig. 1. Reconstruction results of a breast contour with different harmonics. 

 

 
Fig. 2. Relationship between the harmonics and error metric. 

 

B. Breast Contour Reconstruction 

As we describe above, the features of breast contours can 

be used to reconstruct the original breast contours, and the 

reconstruction error can be used to determine the final 

number of harmonics preserved. For a single contour, 

different harmonics result in different reconstructions. Fig. 1 

demonstrates the changes in reconstruction under various 

harmonics for a given breast contour. It is clear that as the 

number of harmonics increase, the reconstruction results are 

getting better and better. As shown in Fig. 2, the 

reconstruction errors decrease with the increase of harmonics 

N. For the breast contours, the maximum distance 𝐷𝑚𝑎𝑥 , 
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mean distance �̅�  and standard deviation 𝜎𝐷 at N=23 are 

0.65mm, 0.16mm, and 0.12 mm. From our observation, 

N=23 is sufficient as replicas for downstream clustering. 

C. PCA Results 

The EFDs of the entire 100 contours are subject to PCA 

without any pre-treatment. The first three PCs with 

maximum variance contributions are computed from the 

EFDs matrix. PC1, PC2 and PC3 demonstrate 64.21%, 20.12% 

and 10.35% of the total variation. The total sum (contribution) 

of them is up to 94.68%, as shown in Fig. 3, which implies 

that we could use these three components to represent the 

original features without loss of generality. 

 

 
Fig. 3. Contribution of each principal component. 

 

 
Fig. 4. Influences of PC1, PC2, and PC3 on the breast contour. 

 

 
Fig. 5. Relationship between the error metric (𝑊𝑘) and the number of 

clusters K. 

 

In order to illustrate the influence of each PC on the breast 

contour, the mean and ±2 std are used to compute a new 

EFD, which is used to reconstruct three new breast contours. 

As shown in Fig. 4, PC1 demonstrates the flatten degree of 

the breast contour. PC2 and PC3 illustrate the curvature 

variation of the breast curve. 

D. Results of Clustering Analysis and Validation 

Fig. 5 illustrates the relationship between the error metric 

𝑊𝑘 and the number of cluster K. Obviously, a turning point 

indicates that the optimal K value should be selected as K=4. 

Based on this configuration, we implement K-Means++ and 

FCM for the entire 100 samples, and Table I and Table II 

demonstrate the clustering results. The number of samples in 

each cluster is slightly different since the initialization 

centroids are selected randomly in our work. Fig. 6 

demonstrates the scatter diagram of the results. The 

ambiguous samples are always located at the boundaries of 

clusters. 

TABLE I: CLUSTERING RESULTS OF K-MEANS++ 

Cluster 
Instance nearest to the 

centroid 
Amount Description 

I 

 

20 

A narrower breast 

but with noticeable 

breast bulge. 

II 

 

25 

A flatter or wider 

contour without 

prominent breast 

bulge. 

III 

 

38 

A well-rounded 

breast contour with 

a natural bulge. 

IV 

 

17 

A flatter or wider 

contour with 

prominent breast 

bulge because of 

the concave 

sections on the left 

and right sides. 

 

TABLE II: CLUSTERING RESULT OF FCM 

Cluster 
Instance nearest to the 

centroid 
Amount Description 

I 

 

21 

A narrower breast but 

with noticeable breast 

bulge, similar to 

K-Means++. 

II 

 

24 

A flatter or wider 

con-tour without 

noticeable breast 

bulge, similar to 

K-Means++. 

III 

 

36 

A well-rounded 

breast contour with a 

natural bulge, similar 

to K-Means++. 

IV 

 

19 

A flatter or wider 

con-tour with 

prominent breast 

bulge because of the 

concave sections on 

the left and right 

sides, similar to 

K-Means++. 

 

 
Fig. 6. Clustering results of K-Means++ and FCM. 

E. Validation and Comparison of Clustering 

As an ambiguous instance, Fig. 7 illustrates a typical 

phenomenon in clustering. For a given subject, it could be 
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assigned to cluster IV according to K-Means++ but to cluster 

III according to FCM. Which result is sounder? To answer 

this question, S_Dbw and Silhouette Width (SW) are used to 

validate the clustering properties. Table III lists the results of 

the validation. 
 

 
Fig. 7. An ambiguous instance. It is assigned to cluster IV according to 

K-Means++, but to cluster III based on FCM. 

 
TABLE III: S_DBW FOR K-MEANS++ AND FCM 

K 2 3 4 5 6 7 8 

K-Means++ 0.82 0.62 0.52 0.9 0.71 0.93 0.86 

FCM 0.82 0.62 0.52 0.91 0.71 0.94 0.86 

 

It is shown that both minimum values of S_Dbw on these 

two cluster methods are obtained at K=4, which further 

proves that the cluster number K=4 is an optimal solution for 

both K-Means++ and FCM. With this number, the average 

SW of each method is calculated to assess the quality of 

clustering. Fig. 8 demonstrates that the score of K-Means++ 

is slightly higher than that of FCM. Hence, K-Means++ is 

more appropriate for the clustering of female breast shape, 

and the example demonstrated in Fig. 7 should be classified 

into clustering IV according to K-Means++. 

 
Fig. 8. Comparison of the score (average ( )s i ) between K-Means++ and 

FCM. 

 

IV. CONCLUSION 

In this paper, we investigate the methods of clustering the 

horizontal shape of female breasts. Female breast contours 

are extracted from 3D human mesh using previous 

algorithms, and we employ EFA to extract the original 

features of breast contour. Subsequently, in order to reduce 

the redundant information and the dimensions of features, the 

EFDs are feed into PCA to obtain a lower feature space. 

Experiments demonstrate that the first three principal 

components are enough to demonstrate the 23-D FEDs. Also, 

we employ two widely used clustering algorithm K-Means++ 

and FCM to cluster the breast contour. Unlike other works, 

we deeply analyze and compare the results of two clustering 

algorithm on female breast contours, and present that 

K-Means++ is more reasonable for the classification of 

female breast contours. Finally, the female breast can be 

clustered into four categories, and our work could contribute 

to the development of improved sizing systems of brassiere 

products that work for consumers and manufacturers. 
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