

Abstract—Looking for the spatial co-location that appears

frequently in nearby space is widely used in many areas,

including mobile phone services and traffic management. To

achieve this goal, the SGCT algorithm improves other

algorithms which use tables to discover candidate sets. It uses

an undirected graph to mine candidates of the maximal

co-location patterns first, then uses a condensed-tree structure

to store instance cliques of candidates. However, as the amount

of data grows, the SGCT algorithm may store large number of

nodes in the process of generating the tree. In this paper, we

propose a new strategy which will consider the number of

instances of each event. We propose a Count-Ordered

Instances-tree to record candidates of relation sets. From our

experimental results, we show that our approach needs shorter

time and costs less storage space than the SGCT algorithm.

Index Terms—Maximal co-location patterns, spatial

co-location patterns, spatial co-location rules, spatial database,

spatial data mining.

I. INTRODUCTION

Given a set of boolean spatial features, the co-location

pattern discovery process finds the subsets of features

frequently located in close geographic proximity. Boolean

spatial features describe the presence or absence of

geographic object types at different locations in the two

dimensional or three dimensional metric space, such as the

surface of the earth. Examples of boolean spatial features

include plant or animal species, mobile service request, road

types, diseases, climate crime, and business types. Fig. 1

shows a data set consisting of instances of several boolean

spatial features, each represented by a distinct shape. A

careful review reveals two co-location patterns: (‘o’, ‘x’) and

(‘+’, ‘◇’).

Co-location rule discovery is a process to identify

co-location patterns from a spatial dataset. Co-location rule

mining presents challenges due to the following reasons.

First, it is important to adopt association rule mining

algorithms [1, 2] to mine co-location instances, since spatial

objects are embedded in the continuous space and share a

variety of spatial relationships. A large fraction of the

computation time is devoted to identifying the instances of

co-location patterns. Second, it is non-trivial to reuse

Manuscript received July 12, 2020; revised December 5, 2020.

The authors are with National Sun Yat-Sen University, Taiwan (e-mail:

linkc@db.cse.nsysu.edu.tw).

association rule mining algorithms which may require

transactionizing spatial datasets for co-location pattern

mining. It is a challenge due to the risk of transaction

boundaries splitting co-location pattern instances across

distinct transactions. Unlike market-basket data, spatial

datasets often have no predefined transactions.

Fig. 1. Co-location patterns illustration: (o, x) and (+, ◇).

In spatial data mining, discovering maximal co-location

patterns is an important issue. Huang et al. [3] purposed a

general mining approach called the full-join approach. This

Apriori-like method do well for sparse spatial datasets, but it

is inefficient for dense spatial datasets. Because with the

increasing number of co-location patterns, the computation

time would be expensive. Huang and Shekhar proposed two

approaches called the partial join approach [4] and the

join-less approach [5] to improve the computation time. For

the two approaches which are also join-based approaches,

they use table instances as their data structures. Different

from those join-based approaches, Wang et al. [6] proposed

an order-clique approach, which uses four trees (P2-tree,

CPm-tree, Neib-tree, Ins-tree) to mine the maximal

co-location patterns and get the better performance than those

join based approaches. To address the problems in other

maximal co-location methods [6], [7], Yao et al. [8] proposed

SGCT algorithm. They convert the prevalent size-2

co-locations into a sparse undirected graph to find maximal

co-location candidates. Moreover, they devise a

condensed-tree structure to store the instance clique of the

candidate. The performance of the SGCT algorithm is better

than the two algorithms [6], [7]. However, their method has a

problem which stores instances in an alphabetic order in

building the condensed-tree, and it is not efficient in some

situations.

Therefore, in this paper, we propose the Count-Ordered

Instances-Tree algorithm to mine maximal spatial co-location

Mining Maximal Co-location Patterns Based on the

Count-Ordered Instances-Tree in Spatial Databases

Ye-In Chang, Wen-Hsiu Chung, and Kuan-Chieh Lin

International Journal of Machine Learning and Computing, Vol. 12, No. 1, January 2022

23doi: 10.18178/ijmlc.2022.12.1.1074

patterns. In our proposed method, we have three advantages.

First, we propose a new approach to prune the candidates

whose participation indices are smaller than the threshold

defined by the user before we construct the tree for mining.

Second, we use the formula in 9D-SPA [9] to represent the

relation of event pairs by an unique key value and then store

its instance of such event pairs in a hash table. Thus, the

advantage is that we can use the key to find the information

which we want in the hash table that records each instance

relation in constant time. Moreover, we propose the

Count-Ordered Instances-Tree, which stores the instance

relationships of maximal co-location candidates. The

advantage of the Count-Ordered Instances-Tree is that the

number of nodes of such a tree is much smaller than that of

the SGCT algorithm when generating the tree of the maximal

co-location candidate. From our experimental results, we

show that our approach to mine co-location patterns requires

shorter time and costs less storage space than the SGCT

method both in dense and sparse spatial datasets.

The rest of paper is organized as follows. In Section II, we

give a survey of the SGCT algorithm. In Section III, we

present our proposed approach. Section IV presents the

performance study of our approach and make a comparison

between our approach and the SGCT algorithm. Finally, we

give a conclusion in Section V.

II. A SURVEY OF THE SGCT ALGORITHM

In this section, we give a brief description of the SGCT

algorithm [8]. In the spatial dataset, each point contains a

feature (event) type, an instance, and the coordinate of its

location. The SGCT algorithm proposed by Yao et al. [8]

uses a two-dimensional table, the size-2 instance table

InsTable2. First, according to the distance threshold defined

by the user, they store the information of instance pairs of

different types which have neighbor relationships in space. In

table InsTable2, the instance pairs will be stored in the

corresponding types. The candidate of size-2 co-location is

used to calculate the prevalence index defined later and prune

those candidates whose prevalence indices are less than the

minimum prevalence threshold defined by the user. Then,

they use a modified sparse graph from prevalent size-2

co-locations to find all candidates of the maximal

co-locations. The SGCT algorithm uses a condensed instance

tree to store the information and gets its instance cliques of

each maximal co-location candidate. Next, they calculate its

prevalence index, and verify whether it is not smaller than the

prevalence threshold, and reserve the candidate as a real

co-location pattern. Otherwise, they replace it with its subsets.

Next, they construct the condense instance tree (CInsT ree)

based on the size-2 instance table to confirm the instance

cliques of the maximal co-location candidates that actually

exist in the spatial database. Then, they build a two-level tree

containing instance pairs of two types according to

InsTable2(A, B), i.e. the alphabetical order. Later, for nodes

of type B in level 2, they search for their neighbor instances

of type C from InsTable2(B, C) and store them in a list. Then,

the hierarchical verification is performed between instances

of event types A and C. The similar step is processed for

event types D and E.

III. THE PROPOSED ALGORITHM

In this section, we present our proposed Instances-Tree

based on Count-Ordered to find the instances of candidate

patterns and describe how to prune the large number of

co-location candidates using CountEP.

In the preprocessing step for the input of the spatial

Database, we use an example of the spatial dataset to

illustrate our method. Fig. 2 contains a number of points in a

database with two-dimensional coordinates. These points are

composed of five different event/feature types (ES), A, B, C,

D, and E. Each event type may have different number of

instances. Moreover, for such a set of instances in Fig. 2, we

record them in a table IS which lists all instances of each

event type and their count (i.e., the number of instances for

each type). For example, A has four instances A.1, A.2, A.3

and A.4. The total instances of each event type B, C, D, and E

are 4, 6, 5, 3, respectively.

Fig. 2. An example of spatial points.

In the input data, there are two threshold values defined by

the user. One is the distance threshold (dis_thr) and the other

one is minimum prevalence threshold (Min_prev). The range

of Min_prev is defined between 0 and 1. In our example, the

dist_thr and Min_prev are set as 15cm and 0.3, respectively.

First of all, we calculate the distance between two distinct

points in Fig. 2 through the formula of Euclidean Distance.

We choose pairs of points whose distances are not larger than

the dist_thr. Then, for those neighbor relations, we connect

the related points with a solid line in Fig. 3. Note that we are

only interested in the relation between different types. We

represent the points in relation as relations of size-2 instances

pair by pair, for example, (A.1, B.2) and record them (i.e. 30

edges) in Table RI2.

After finding all relations in Fig. 2, we want to find out the

candidate sets whose participation indices are larger than or

equal to Min_prev. The definitions are shown as follows.

The participation index Pi(C) of a co-location C = {E1, ...,

Es} is defined as Pi(C) = minEi∈C {Pr(C, Ei)}, 1 ≤ i ≤ k [8].

Participation ratio Pr(C, Ei) is defined as Pr(C, Ei) =

i

i

E

CE

 of objects ofNumber

 of instancesin of objectsdistinct ofNumber

.

Before calculating the participation index of a collocation

{D, E}, we must calculate the participation ratio of each

event in the co-location at first. In Fig. 3, (D.3, E.2) and (D.5,

E.3) are neighbor relations. There are two distinct instances

International Journal of Machine Learning and Computing, Vol. 12, No. 1, January 2022

24

D.3 and D.5 in the co-location, so we can calculate Pr({D,E},

D)= 2/5. Similarly, we can calculate Pr({D,E}, E)= 2/3.

Therefore, Pi(D, E) is 2/5 , which is the minimum value

between Pr({D,E}, D) and Pr({D,E}, E).

Fig. 3. A graph of five events and their neighbor relations.

Now, we will describe our proposed steps and followed by

an example to illustrate the idea. Table I shows the variables

used in our method.

TABLE I: VARIABLES

Step 1: (Determine an Event Order)

First, we use the counts of instances from IS (the set of

spatial instances) to determine an Event Order. In our

example, there are five event types. Among the five event

types, event C has the largest count. Event A has the same

count of instances as Event B, so we sort them by the alphabet

order, A > B. Finally, we get the Event Order [C, D, A, B, E].

TABLE II: STEP 2: REARRANGING RI2 BY Event Order

Step 2: (Sort RI2)

Based on the Event Order decided from Step 1, in each

related instance pair of RI2 (the relations of size-2 instances),

we exchange the position of the two instances if necessary.

We mark a ‘*’ sign on the modified pairs. We use the Event

Order [C, D, A, B, E] to rearrange RI2. First, we rearrange the

position of the two instances in each neighboring pair. For

example, for relation (A.1, C.3), we exchange the two

instances and get (C.3, A.1). Then, we mark the modified

pairs with a ‘*’ sign, and the result is shown in Table II.

Step 3: (Construct a size-2 instance table)

Based on the RI2, we construct a hash table to store the

relations between different event types.

(a) We use the formula used in the 9D-SPA

representation [9] as the hash function to get the unique

value of each combination of different event types.

(b) We add all the neighboring pairs into the hash table

according to the corresponding unique value which represent

the event-pair (E1, E2).

Given two events Ei and Ej, where j > i, then the unique

value of Eij can be easily computed by using the following

formula [9]: Eij = i
jj

2

)2)(1(.

In Table II, we use RI2 to show the neighboring pairs. Then,

we will convert RI2 into a hash table in Step 3. We use the

above rule to calculate the unique value of Eij. Due to the

input of the function F(Ei, Ej), where Ej must be larger than Ei,

we need to assign the smaller event to Ei, and the other one to

Ej. Then, we record the event-pair and its instances into the

corresponding unique value of the hash table. In our example,

we know ES = {A, B, C, D, E}, and we get A=1, B=2, C=3,

D=4 and E=5 by the rule. Then we calculate the unique value

of ECA where C is larger than A, and we put the larger event

C into Ej and the other one into Ei. The formula is derived as

Eij= (j-1)(j-2)/2 +i = (3-1)(3-2)/2 +1 = 2. Therefore, we

calculate all the corresponding unique value of two spatial

events. From RI2, we add the event-pair (C, A) and its

instances pairs into the hash table as shown in Fig. 4.

Fig. 4. Step 3: A hash table with size-2 instances.

Step 4: (Generate CountEP)

In order to build CountEP (the count of event pairs with

size = 2) from size-2 instances table in Step 3, we use the

strategy below.

(a) Calculate the number of different instances of each

event pairs in size-2 instance table, and record them in

CountEP.

(b) The number of the second instance minus the number

of the first instance in CountEP and save the result as cmp

(compare). There are three cases for the value of cmp: (1)

cmp = 0, (2) cmp > 0, (3) cmp < 0 (We marked the case with

‘*’).

International Journal of Machine Learning and Computing, Vol. 12, No. 1, January 2022

25

(c) If cmp is greater than or equal to 0, we update the

number of first instance in the record of size-2 instances table

with the value of the corresponding event in IS.

The purpose of computing cmp is to avoid the computation

of the following step for getting the result of Pi, if cmp ≥ 0. In

the cases of cmp ≥ 0, we let the number of instances of the

first event in the pair be the number of instances of such an

event in the whole database.

The objective of constructing CountEP is to show the

relations of the events from size-2 instances table. In Step 4,

we use Table III to show the process (4-(a), 4-(b)), and our

goal is to get rid of the size-2 candidates whose participation

indexes are smaller than Min_prev. In Step 4-(c), if cmp ≥ 0

in CountEP, we update the count of first event with the value

of event D in IS. Therefore, event pair (C, D) is changed to

(C.6, D.4) in CountEP. The minimum of result (C.6, D.4) is 4,

and it means that C and D appear together four times. Table

IV shows those relations in CountEP.

TABLE III: STEP 4-(A) AND STEP 4-(B): THE COUNT OF EVENT PAIRS

(COUNTEP)

TABLE IV: STEP 4-(C): UPDATING THE COUNT OF EVENT PAIRS (COUNTEP)

Step 5: (Generate RatioEP)

(a) If the pair is marked with ‘*’ in CountEP which means

that its cmp is less than 0, we calculate

),(
in ISond event of the secthe count

ond eventof the secthe count

in ISrst event of the f ithe count

st eventof the firthe count
min

;

otherwise, we calculate
)(

 -

in ISrst eventof the f ithe count

cmpond eventof the secthe count .

Then, we store the result into RatioEP (the ratio of event

pairs). Note that in Step 4-(c), we record the count of the first

event with the count of corresponding event in IS. Moreover,

(the count of the second event) – cmp = (the count of the

second event) – (the count of the second event - the count of

the first event) = the count of the first event. That is, for the

case of cmp ≥ 0, we care the count of the first event which will

be the numerator of Pi. Furthermore, the denominator of Pi

will be the count of the first event in IS, which is recorded in

the updated EC in Step 4-(c). The key point is that we list the

instance pairs in the descending order of counts of events. In

the previous step, we have sorted the event pair according to

Event Order, so the count of the first event is greater than or

equal to the second event (x ̧y).

(b) We compare all the values in RatioEP with Min_prev.

Then, we remove the pair if the value is smaller than

Min_prev, and also delete the entire data of the event pair in

the size-2 instance table.

In Step 5, our goal is to calculate the participation index(Pi)

and delete those candidates whose participation index are

smaller than Min_prev. We can derive participation index

from the information stored in CountEP. In most cases, due

to the same numerator, we can compare the fraction values by

only comparing their denominators. Which means, if the

denominator is larger, then the value would be smaller. The

minimum of the participation ratio is produced by the largest

event count placed in the denominator.

Additionally, we propose a method to calculate the result.

In order to speed up the process of pruning, we sort the event

types by the count (the number of instances for each event

type). We induce two formula to calculate the participation

indices by using the information of CountEP. For the case of

cmp < 0, we still must compare the participation ratio of the

event pair and decide which one is the minimum value and

such a result is still larger than the threshold. For the cases of

cmp ≥ 0, we only have to care of the participation ratio of the

first event in the event pair and the value is same as

)(i.e., ISe databasen the wholst event iof the firthe count

- cmpond event of the secthe count .

Note that the numerator, the count of the second event -

cmp, is equal to the count of first event participating in the

event pair. The reason of such a reduced computation step

could be explained as follows.

In our example, we set Min_prev = 0.3. Candidates (A, E)

and (B, E) are pruned, because the index of (A, E) and (B, E)

are both (1-0)/4 = 1/4, which is less than our defined

threshold 0.3.

The result of Step 5-(b) before the pruning process is

shown in Table V. After the pruning process, candidates (A,

E) and (B, E) are pruned from the hash table.

TABLE V: STEP 5-(A): THE RATIO OF EVENT PAIRS (RATIOEP)

Fig. 5. Step 6: The graph of size-2 co-location.

Step 6: (Construct the graph)

Using the event types of the candidate set in the hash table

to construct the graph. If two vertices event i and event j are

related, then there will be an edge en between them. We

calculate n by the formula used in 9D-SPA representation in

Step 3. Our goal is to find the maximal cliques.

By using the prevalent size-2 co-location, we can get the

graph as shown in Fig. 5 and learn that (A, B, C, D) is one of

the maximal co-location candidates.

Step 7: (Build the Count-Ordered Instrances-Tree)

(a) According to the size of each neighbor relation in the

hash table, we find out the least two event pairs.

(b) We use the least two event pairs to change the Event

Order and rearrange a new order to build the Count-Ordered

Instances-Tree with the root ”COIT”.

International Journal of Machine Learning and Computing, Vol. 12, No. 1, January 2022

26

(c) Based on the new order, we can use the hash table to

get the information of instances pairs and generate the nodes

level by level.

(d) We make sure that each stored node has a relationship

with its ancestors.

The rules of the Count-Ordered Instrances-Tree are as

follows. (1) The depth of COITree is equal to the length of

MCan. (2) The types of instances at each level i are the same

as Mcan(i).

Fig. 6. Step 7: Building the two-level Count-Ordered Instrances-Tree: (a) the

related hash table (C,A); (b) two-level tree containing instances of events C

and A.

Fig. 7. Step 7: Building the third-level Count-Ordered Instrances-Tree: (a)

the related hash table (D,A) and (C,D); (b) two-level tree containing instances

of event (C,A); (c) searching the neighbor instances of type D connected with

type A in level 2.

In Step 6, we have found out the candidates of the maximal

co-location patterns, and now we will build the

Count-Ordered Instances-Tree to represent the relations

between instances. First, we know that {A,B,C,D} is one of

the candidates maximal co-location patterns. Then, we get

the information of the two event pairs {C,A} and {D,B} which

appear the least times from size-2 hash table Ins_HT2. We

exchange the Event Order from CDAB to CADB. For each

instance pair of the event types of {C,A}, first, we

store ”COIT” as the root. Then, determine whether the

current instance exists in the first layer. If it exists, we add the

related nodes as the child of the current instance. Otherwise,

we add the instance pair as a new branch of the root. For

example, we get the instance pairs (C.1, A.2), (C.2, A.3) and

(C.3, A.1) of event pair {C,A} from Ins_HT2 and add them as

the children of the root ”COIT”. Then, we determine A.2 has

relationships with D.2 and D.4. We confirm whether D.2 and

D.4 have relationship with their ancestor C.1, respectively. If

not, we will not add them into the tree. On the other hand, A.3

has a relationship with D.2, and D.2 has a relationship with

its ancestor C.2. Therefore, we add D.2 as the child of current

instance A.3. We show Step 7 in Fig. 6, Fig. 7, Fig. 8. (Note

that in Fig. 7, we also check whether the instances between

events C and D exist. We find that only instance pairs (C.2,

D.2) and (C.3, D.3) exist. Moreover, in Fig. 8, we also check

whether the instances between events A, C and B exist. We

find that instance pairs (B.1, A.3), (B.1, C.2), (B.2, A.1) and

(B.2, C.3) exist.)

Fig. 8. Step 7: Building the fourth-level Count-Ordered Instrances-Tree: (a)

the related hash table (A,B), (C,B) and (D,B); (b) third-level tree; (c)

searching the neighbor instances of type B connected with type D in level 3.

For the comparison part, we make a comparison to discuss

the difference between our proposed Count- Ordered

Instances-Tree and the SGCT algorithm [8]. In our example,

the candidates of maximal co-location are [CADB] and

[CDE]. Fig. 9 illustrates the process of generating the

instances-tree of the maximal co-location patterns in our

approach. It contains 3 paths and 10 nodes. Then, Fig. 10

shows the process of condensed-instances tree in the SGCT

International Journal of Machine Learning and Computing, Vol. 12, No. 1, January 2022

27

algorithm containing 5 paths and 13 nodes. Therefore, when

we generate the instances-tree of maximal co-location

patterns, our approach would be more efficient than the

SGCT algorithm.

Fig. 9. The Count-Ordered Instances-Tree containing only 3 paths (10 nodes)

to find the instances of maximal co-location candidate A, B, C, D.

Fig. 10. The tree based on SGCT algorithm containing 5 paths (13 nodes) to

find the instances of maximal co-location candidate A, B, C, D.

IV. PERFORMANCE

In this section, we will compare the performance between

our approach and the SGCT algorithm.

In this performance study, we generate the objects and

their corresponding locations in a two-dimensional

coordinate as the input data. An object contains an event and

an instance. The parameters used in the process of generating

synthetic data are described as follows. Parameter dis_thr

means the distance threshold of the neighbor relation. We use

the parameter dis_thr to obtain relations. If the distance of

two objects is smaller than dis_thr which is given by the user,

it represents the two objects as neighbor relation. Parameter

Min_prev means the prevalence threshold which is defined

by the user. The range of Min_prev is generated between 0

and 1. Parameter |D| is a flag bit and represents the density of

the spatial dataset. When the spatial data is sparse, Parameter

|D| is 0. Otherwise, Parameter |D| is 1, when the spatial data

is dense. We use two parameters which are defined by the

user: parameter |EN| to represent the total number of events

and the parameter |IN| to represent the total number of

instances in the spatial dataset. Parameter |RN| means the

number of relation pairs and is affected by parameter dis_thr

and parameter |D|.

The synthetic datasets are generated using a spatial data

generator similar to [3]. Moreover, the SGCT approach also

uses such kind of input (i.e., a 2-D coordinate). Furthermore,

we will give an example of synthetic data as follows. First,

we initialize the parameters as follows. We set dis_thr = 15,

Min_prev = 0.2, |EN| = 5, and |IN| =24. In this dataset, it

includes 5 events which are A, B, C, D and E and contains 24

instances which are randomly distributed to each event. We

assume that event A, B, C, D and E have 4, 7, 6, 5, and 2

instances, respectively. Second, we assume that the candidate

contains events A, B, C and E. In the co-location pattern,

event B has the largest number of instances in those events.

We use the instances of event B to calculate the count which

is ⌈7 * 0.2⌉ = 2. The co-location patterns can be larger than

the Min_prev, so it means that the relations of the co-location

patterns have to appear two times.

Here, we will show the experimental results which

compare the performance between our approach and the

SGCT approach. We have two datasets, and we will compare

the processing time and the number of nodes of the synthetic

database. The first dataset is dense with 25 spatial events and

1k instances. Those instances are distributed in a map with

size 100×100, resulting the density=0.1. The second dataset

is sparse with 25 spatial events and 5k instances. Those

instances are distributed in a map with size 500×500,

resulting the density=0.02. We first present the performance

experiment of comparing algorithms in dense datasets.

In Fig. 11 and Fig. 12, we set the upper bound of the

neighbor distance=15 (dis_thr=15, the dense dataset). From

Fig. 11, we show that as the number of relations increases in

the spatial dataset, our approach still generates less number of

nodes than the SGCT algorithm. From Fig. 12, we show that

the processing time of our approach is shorter than the SGCT

algorithm. The number of cliques under the change of

Min_prev is shown in Table VI.

Fig. 11. A comparison of the number of nodes of the dense dataset under

different Min_prev.

Fig. 12. A comparison of the processing time of the dense dataset under

different Min_prev.

TABLE VI: THE NUMBER OF CLIQUES OF THE DENSE DATASET UNDER

DIFFERENT MIN PREV

International Journal of Machine Learning and Computing, Vol. 12, No. 1, January 2022

28

In Fig. 13 and Fig. 14, we set the upper bound of the

neighbor distance=17 (dis_thr=17, the sparse case). From Fig.

13, we show that our approach is still generating less number

of nodes than the SGCT algorithm. As the Min_prev

increases, the number of nodes constructed in both

approaches changes. The number of nodes increases when

the Min_prev is changed from 0.25 to 0.4, and the number of

nodes decreases when the Min_prev is 0.45. However, our

approach always generates less number of nodes than the

SGCT algorithm. Note that when the Min_prev is too high,

many candidates of size-2 could be pruned in both algorithms,

resulting in decrease of constructed trees in both algorithms.

The main reason for less number of needed nodes for mining

in our approach than the SGCT algorithm is that we sort the

tree by the number of relations. That is, we do the sorting step

in the preprocess of constructing the Count-Ordered

Instances-tree for mining.

Fig. 13. A comparison of the number of nodes of the sparse dataset under

different Min_prev.

Fig. 14. A comparison of the processing time of the sparse dataset under

different Min_prev.

TABLE VII: THE NUMBER OF CLIQUES OF THE SPARSE DATASET UNDER

DIFFERENT MIN_PREV

In Fig. 14, we present the comparison of processing time

of the SGCT algorithm and our approach with the sparse

dataset under the change of minimum prevalence threshold.

From Fig. 14, we show that the processing time of our

approach is faster than that of the SGCT algorithm. The

processing time of the SGCT algorithm and our approach first

increases and then decreases because the processing time is

related to the Min_prev. For example, when the Min_prev is

changed from 0.25 to 0.35, the processing time of both

algorithms increases. However, when the Min_prev is

changed from 0.35 to 0.45, the processing time of both

algorithms decreases. When the Min_prev is too high, many

candidates of size-2 are pruned in both algorithms, resulting

in the decrease of the size of the constructed trees in both

algorithms to prune many candidates of size-2. So, the

number of cliques decreases. The number of cliques under

the change of Min_prev is shown in Table VII.

V. CONCLUSION

In this paper, we have proposed an approach which uses

the data structure Count-Ordered Instances-Tree for

generating the instances of the maximal co-location patterns

efficiently. In our approach, our Count-Ordered

Instances-Tree needs less number of nodes than the structure

of the SGCT algorithm and can get the same instances cliques.

Because the order of our generating tree is based on the

number of relations in the database. The experimental results

have shown that our approach is better than the SGCT

algorithm. Data increment may change the found maximal

co-location patterns; therefore, how to find the maximal

co-location patterns incrementally is the possible future

research direction.

ACKNOWLEDGMENT

This research was supported in part by the Ministry of

Science and Technology of Republic of China under Grant

No. MOST-107-2221-E-110-064.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association

rules in large databases,” in Proc. the 20th Int. Conf. on very Large

Data Bases, 1994, pp. 487-499.

[2] L. Wang, K. Xie, T. Chen, and X. Ma, “Efficient discovery of

multilevel spatial association rules using partitions,” Information

Software Technology, vol. 47, no. 13, pp. 829-840, 2005.

[3] Y. Huang, S. Shekhar, and H. Xiong, “Discovering colocation patterns

from spatial data sets: A general approach,” IEEE Trans. on Knowledge

and Data Engineering, vol. 16, no. 12, pp. 1472-1485, 2004.

[4] J. S. Yoo, S. Shekhar, J. Smith, and J. P. Kumquat, “A partial join

approach for mining co-location patterns,” in Proc. the 12th Annual

ACM Int. Workshop on Geographic Information Systems, 2004, pp.

241-249.

[5] J. S. Yoo and S. Shekhar, “A joinless approach for mining spatial

colocation patterns,” IEEE Trans. on Knowledge and Data

Engineering, vol. 18, no. 10, pp. 1323-1337, 2006.

[6] L. Wang, L. Zhou, J. Lu, and J. Yip, “An order-clique-based approach

for mining maximal co-locations,” Information Sciences, vol. 179, no.

19, pp. 3370-3382, 2009.

[7] J. S. Yoo and M. Bow, “Mining maximal co-located event sets,” in

Proc. of the 15th Pacific-Asia Conf. on Advances in Knowledge

Discovery and Data Mining, 2011, pp. 351-362.

[8] X. Yao, L. Peng, L. Yang, and T. Chi, “A fast space-saving algorithm

for maximal co-location pattern mining,” Expert Systems with

Applications, vol. 63, pp. 310-323, 2016.

[9] P. W. Huang and C. H. Lee, “Image database design based on 9D-SPA

representation for spatial relations,” IEEE Transactions on Knowledge

and Data Engineering, vol. 16, no. 12, pp. 1486-1496, 2004.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Ye-In Chang received her B.S. degree in computer

science and information engineering from National

Taiwan University, Taipei, Taiwan, in 1986. She

received her M.S. and Ph.D. degrees in computer and

information science from The Ohio State University,

Columbus, Ohio, in 1987 and 1991, respectively.

From August 1991 to July 1999, she joined the

Department of Applied Mathematics at National Sun

Yat-Sen University, Kaohsiung, Taiwan. From August 1997, she has been a

International Journal of Machine Learning and Computing, Vol. 12, No. 1, January 2022

29

https://creativecommons.org/licenses/by/4.0/

professor in the Department of Applied Mathematics at National Sun

Yat-Sen University, Kaohsiung, Taiwan. Since August 1999, she has been a

professor in the Department of Computer Science and Engineering at

National Sun Yat-Sen University, Kaohsiung, Taiwan. Her research interests

include database systems, distributed systems, multimedia information

systems, mobile information systems and data mining.

W. H. Chung received M.S. degrees in computer

science and engineering from National Sun Yat-Sen

University in 2017. She is currently a system designer

in Taiwan. Her research interests includes data mining

and distributed computing.

K. C. Lin received B.S. degree from Feng Chia

University in 2017. He is currently a M.S. student in

the Department of Computer Science and Engineering

at National Sun Yat-Sen University. His research

interests includes data mining and distributed

computing.

International Journal of Machine Learning and Computing, Vol. 12, No. 1, January 2022

30

