
  

 
Abstract—Looking for the spatial co-location that appears 

frequently in nearby space is widely used in many areas, 

including mobile phone services and traffic management. To 

achieve this goal, the SGCT algorithm improves other 

algorithms which use tables to discover candidate sets. It uses 

an undirected graph to mine candidates of the maximal 

co-location patterns first, then uses a condensed-tree structure 

to store instance cliques of candidates. However, as the amount 

of data grows, the SGCT algorithm may store large number of 

nodes in the process of generating the tree. In this paper, we 

propose a new strategy which will consider the number of 

instances of each event. We propose a Count-Ordered 

Instances-tree to record candidates of relation sets. From our 

experimental results, we show that our approach needs shorter 

time and costs less storage space than the SGCT algorithm. 

 
Index Terms—Maximal co-location patterns, spatial 

co-location patterns, spatial co-location rules, spatial database, 

spatial data mining.  

 

I. INTRODUCTION 

Given a set of boolean spatial features, the co-location 

pattern discovery process finds the subsets of features 

frequently located in close geographic proximity. Boolean 

spatial features describe the presence or absence of 

geographic object types at different locations in the two 

dimensional or three dimensional metric space, such as the 

surface of the earth. Examples of boolean spatial features 

include plant or animal species, mobile service request, road 

types, diseases, climate crime, and business types. Fig. 1 

shows a data set consisting of instances of several boolean 

spatial features, each represented by a distinct shape. A 

careful review reveals two co-location patterns: (‘o’, ‘x’) and 

(‘+’, ‘◇’). 

Co-location rule discovery is a process to identify 

co-location patterns from a spatial dataset. Co-location rule 

mining presents challenges due to the following reasons. 

First, it is important to adopt association rule mining 

algorithms [1, 2] to mine co-location instances, since spatial 

objects are embedded in the continuous space and share a 

variety of spatial relationships. A large fraction of the 

computation time is devoted to identifying the instances of 

co-location patterns. Second, it is non-trivial to reuse 
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association rule mining algorithms which may require 

transactionizing spatial datasets for co-location pattern 

mining. It is a challenge due to the risk of transaction 

boundaries splitting co-location pattern instances across 

distinct transactions. Unlike market-basket data, spatial 

datasets often have no predefined transactions. 

 

 
Fig. 1. Co-location patterns illustration: (o, x) and (+, ◇). 

 

In spatial data mining, discovering maximal co-location 

patterns is an important issue. Huang et al. [3] purposed a 

general mining approach called the full-join approach. This 

Apriori-like method do well for sparse spatial datasets, but it 

is inefficient for dense spatial datasets. Because with the 

increasing number of co-location patterns, the computation 

time would be expensive. Huang and Shekhar proposed two 

approaches called the partial join approach [4] and the 

join-less approach [5] to improve the computation time. For 

the two approaches which are also join-based approaches, 

they use table instances as their data structures. Different 

from those join-based approaches, Wang et al. [6] proposed 

an order-clique approach, which uses four trees (P2-tree, 

CPm-tree, Neib-tree, Ins-tree) to mine the maximal 

co-location patterns and get the better performance than those 

join based approaches. To address the problems in other 

maximal co-location methods [6], [7], Yao et al. [8] proposed 

SGCT algorithm. They convert the prevalent size-2 

co-locations into a sparse undirected graph to find maximal 

co-location candidates. Moreover, they devise a 

condensed-tree structure to store the instance clique of the 

candidate. The performance of the SGCT algorithm is better 

than the two algorithms [6], [7]. However, their method has a 

problem which stores instances in an alphabetic order in 

building the condensed-tree, and it is not efficient in some 

situations. 

Therefore, in this paper, we propose the Count-Ordered 

Instances-Tree algorithm to mine maximal spatial co-location 
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patterns. In our proposed method, we have three advantages. 

First, we propose a new approach to prune the candidates 

whose participation indices are smaller than the threshold 

defined by the user before we construct the tree for mining. 

Second, we use the formula in 9D-SPA [9] to represent the 

relation of event pairs by an unique key value and then store 

its instance of such event pairs in a hash table. Thus, the 

advantage is that we can use the key to find the information 

which we want in the hash table that records each instance 

relation in constant time. Moreover, we propose the 

Count-Ordered Instances-Tree, which stores the instance 

relationships of maximal co-location candidates. The 

advantage of the Count-Ordered Instances-Tree is that the 

number of nodes of such a tree is much smaller than that of 

the SGCT algorithm when generating the tree of the maximal 

co-location candidate. From our experimental results, we 

show that our approach to mine co-location patterns requires 

shorter time and costs less storage space than the SGCT 

method both in dense and sparse spatial datasets. 

The rest of paper is organized as follows. In Section II, we 

give a survey of the SGCT algorithm. In Section III, we 

present our proposed approach. Section IV presents the 

performance study of our approach and make a comparison 

between our approach and the SGCT algorithm. Finally, we 

give a conclusion in Section V. 

 

II. A SURVEY OF THE SGCT ALGORITHM 

In this section, we give a brief description of the SGCT 

algorithm [8]. In the spatial dataset, each point contains a 

feature (event) type, an instance, and the coordinate of its 

location. The SGCT algorithm proposed by Yao et al. [8] 

uses a two-dimensional table, the size-2 instance table 

InsTable2. First, according to the distance threshold defined 

by the user, they store the information of instance pairs of 

different types which have neighbor relationships in space. In 

table InsTable2, the instance pairs will be stored in the 

corresponding types. The candidate of size-2 co-location is 

used to calculate the prevalence index defined later and prune 

those candidates whose prevalence indices are less than the 

minimum prevalence threshold defined by the user. Then, 

they use a modified sparse graph from prevalent size-2 

co-locations to find all candidates of the maximal 

co-locations. The SGCT algorithm uses a condensed instance 

tree to store the information and gets its instance cliques of 

each maximal co-location candidate. Next, they calculate its 

prevalence index, and verify whether it is not smaller than the 

prevalence threshold, and reserve the candidate as a real 

co-location pattern. Otherwise, they replace it with its subsets. 

Next, they construct the condense instance tree (CInsT ree) 

based on the size-2 instance table to confirm the instance 

cliques of the maximal co-location candidates that actually 

exist in the spatial database. Then, they build a two-level tree 

containing instance pairs of two types according to 

InsTable2( A, B), i.e. the alphabetical order. Later, for nodes 

of type B in level 2, they search for their neighbor instances 

of type C from InsTable2(B, C) and store them in a list. Then, 

the hierarchical verification is performed between instances 

of event types A and C. The similar step is processed for 

event types D and E. 

III. THE PROPOSED ALGORITHM  

In this section, we present our proposed Instances-Tree 

based on Count-Ordered to find the instances of candidate 

patterns and describe how to prune the large number of 

co-location candidates using CountEP. 

In the preprocessing step for the input of the spatial 

Database, we use an example of the spatial dataset to 

illustrate our method. Fig. 2 contains a number of points in a 

database with two-dimensional coordinates. These points are 

composed of five different event/feature types (ES), A, B, C, 

D, and E. Each event type may have different number of 

instances. Moreover, for such a set of instances in Fig. 2, we 

record them in a table IS which lists all instances of each 

event type and their count (i.e., the number of instances for 

each type). For example, A has four instances A.1, A.2, A.3 

and A.4. The total instances of each event type B, C, D, and E 

are 4, 6, 5, 3, respectively. 

 

 
Fig. 2. An example of spatial points.  

 

In the input data, there are two threshold values defined by 

the user. One is the distance threshold (dis_thr) and the other 

one is minimum prevalence threshold (Min_prev). The range 

of Min_prev is defined between 0 and 1. In our example, the 

dist_thr and Min_prev are set as 15cm and 0.3, respectively. 

First of all, we calculate the distance between two distinct 

points in Fig. 2 through the formula of Euclidean Distance. 

We choose pairs of points whose distances are not larger than 

the dist_thr. Then, for those neighbor relations, we connect 

the related points with a solid line in Fig. 3. Note that we are 

only interested in the relation between different types. We 

represent the points in relation as relations of size-2 instances 

pair by pair, for example, (A.1, B.2) and record them (i.e. 30 

edges) in Table RI2. 

After finding all relations in Fig. 2, we want to find out the 

candidate sets whose participation indices are larger than or 

equal to Min_prev. The definitions are shown as follows. 

The participation index Pi(C) of a co-location C = {E1, ..., 

Es} is defined as Pi(C) = minEi∈C {Pr(C, Ei)}, 1 ≤ i ≤ k [8]. 

Participation ratio Pr(C, Ei) is defined as Pr(C, Ei) = 

i

i

E

CE

 of objects ofNumber 

 of instancesin   of objectsdistinct  ofNumber 

. 

Before calculating the participation index of a collocation 

{D, E}, we must calculate the participation ratio of each 

event in the co-location at first. In Fig. 3, (D.3, E.2) and (D.5, 

E.3) are neighbor relations. There are two distinct instances 
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D.3 and D.5 in the co-location, so we can calculate Pr({D,E}, 

D)= 2/5. Similarly, we can calculate Pr({D,E}, E)= 2/3. 

Therefore, Pi(D, E) is 2/5 , which is the minimum value 

between Pr({D,E}, D) and Pr({D,E}, E). 

 

 
Fig. 3. A graph of five events and their neighbor relations.  

 

Now, we will describe our proposed steps and followed by 

an example to illustrate the idea. Table I shows the variables 

used in our method. 

 
TABLE I: VARIABLES 

 
 

Step 1: (Determine an Event Order) 

First, we use the counts of instances from IS (the set of 

spatial instances) to determine an Event Order. In our 

example, there are five event types. Among the five event 

types, event C has the largest count. Event A has the same 

count of instances as Event B, so we sort them by the alphabet 

order, A > B. Finally, we get the Event Order [C, D, A, B, E]. 

 
TABLE II: STEP 2: REARRANGING RI2 BY Event Order 

 
 

Step 2: (Sort RI2) 

Based on the Event Order decided from Step 1, in each 

related instance pair of RI2 (the relations of size-2 instances), 

we exchange the position of the two instances if necessary. 

We mark a ‘*’ sign on the modified pairs. We use the Event 

Order [C, D, A, B, E] to rearrange RI2. First, we rearrange the 

position of the two instances in each neighboring pair. For 

example, for relation (A.1, C.3), we exchange the two 

instances and get (C.3, A.1). Then, we mark the modified 

pairs with a ‘*’ sign, and the result is shown in Table II. 

Step 3: (Construct a size-2 instance table) 

Based on the RI2, we construct a hash table to store the 

relations between different event types. 

(a) We use the formula used in the 9D-SPA 

representation [9] as the hash function to get the unique 

value of each combination of different event types. 

(b) We add all the neighboring pairs into the hash table 

according to the corresponding unique value which represent 

the event-pair (E1, E2). 

Given two events Ei and Ej, where j > i, then the unique 

value of Eij can be easily computed by using the following 

formula [9]: Eij = i
jj




2

)2)(1( . 

In Table II, we use RI2 to show the neighboring pairs. Then, 

we will convert RI2 into a hash table in Step 3. We use the 

above rule to calculate the unique value of Eij. Due to the 

input of the function F(Ei, Ej), where Ej must be larger than Ei, 

we need to assign the smaller event to Ei, and the other one to 

Ej. Then, we record the event-pair and its instances into the 

corresponding unique value of the hash table. In our example, 

we know ES = {A, B, C, D, E}, and we get A=1, B=2, C=3, 

D=4 and E=5 by the rule. Then we calculate the unique value 

of ECA where C is larger than A, and we put the larger event 

C into Ej and the other one into Ei. The formula is derived as 

Eij= (j-1)(j-2)/2 +i = (3-1)(3-2)/2 +1 = 2. Therefore, we 

calculate all the corresponding unique value of two spatial 

events. From RI2, we add the event-pair (C, A) and its 

instances pairs into the hash table as shown in Fig. 4. 

 

 
Fig. 4. Step 3: A hash table with size-2 instances. 

 

Step 4: (Generate CountEP) 

In order to build CountEP (the count of event pairs with 

size = 2) from size-2 instances table in Step 3, we use the 

strategy below. 

(a) Calculate the number of different instances of each 

event pairs in size-2 instance table, and record them in 

CountEP. 

(b) The number of the second instance minus the number 

of the first instance in CountEP and save the result as cmp 

(compare). There are three cases for the value of cmp: (1) 

cmp = 0, (2) cmp > 0, (3) cmp < 0 (We marked the case with 

‘*’). 
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(c) If cmp is greater than or equal to 0, we update the 

number of first instance in the record of size-2 instances table 

with the value of the corresponding event in IS. 

The purpose of computing cmp is to avoid the computation 

of the following step for getting the result of Pi, if cmp ≥ 0. In 

the cases of cmp ≥ 0, we let the number of instances of the 

first event in the pair be the number of instances of such an 

event in the whole database. 

The objective of constructing CountEP is to show the 

relations of the events from size-2 instances table. In Step 4, 

we use Table III to show the process (4-(a), 4-(b)), and our 

goal is to get rid of the size-2 candidates whose participation 

indexes are smaller than Min_prev. In Step 4-(c), if cmp ≥ 0 

in CountEP, we update the count of first event with the value 

of event D in IS. Therefore, event pair (C, D) is changed to 

(C.6, D.4) in CountEP. The minimum of result (C.6, D.4) is 4, 

and it means that C and D appear together four times. Table 

IV shows those relations in CountEP. 

 
TABLE III: STEP 4-(A) AND STEP 4-(B): THE COUNT OF EVENT PAIRS 

(COUNTEP) 

 
 

TABLE IV: STEP 4-(C): UPDATING THE COUNT OF EVENT PAIRS (COUNTEP) 

 
 

Step 5: (Generate RatioEP) 

(a) If the pair is marked with ‘*’ in CountEP which means 

that its cmp is less than 0, we calculate 

),(
in ISond event of the secthe count 

ond eventof the secthe count 

in ISrst event of the f ithe count 

st eventof the firthe count 
min

; 

otherwise, we calculate 
)( 

 - 

in ISrst eventof the f ithe count 

cmpond eventof the secthe count . 

Then, we store the result into RatioEP (the ratio of event 

pairs). Note that in Step 4-(c), we record the count of the first 

event with the count of corresponding event in IS. Moreover, 

(the count of the second event) – cmp = (the count of the 

second event) – (the count of the second event - the count of 

the first event) = the count of the first event. That is, for the 

case of cmp ≥ 0, we care the count of the first event which will 

be the numerator of Pi. Furthermore, the denominator of Pi 

will be the count of the first event in IS, which is recorded in 

the updated EC in Step 4-(c). The key point is that we list the 

instance pairs in the descending order of counts of events. In 

the previous step, we have sorted the event pair according to 

Event Order, so the count of the first event is greater than or 

equal to the second event (x  ̧y). 

(b) We compare all the values in RatioEP with Min_prev. 

Then, we remove the pair if the value is smaller than 

Min_prev, and also delete the entire data of the event pair in 

the size-2 instance table. 

In Step 5, our goal is to calculate the participation index(Pi) 

and delete those candidates whose participation index are 

smaller than Min_prev. We can derive participation index 

from the information stored in CountEP. In most cases, due 

to the same numerator, we can compare the fraction values by 

only comparing their denominators. Which means, if the 

denominator is larger, then the value would be smaller. The 

minimum of the participation ratio is produced by the largest 

event count placed in the denominator. 

Additionally, we propose a method to calculate the result. 

In order to speed up the process of pruning, we sort the event 

types by the count (the number of instances for each event 

type). We induce two formula to calculate the participation 

indices by using the information of CountEP. For the case of 

cmp < 0, we still must compare the participation ratio of the 

event pair and decide which one is the minimum value and 

such a result is still larger than the threshold. For the cases of 

cmp ≥ 0, we only have to care of the participation ratio of the 

first event in the event pair and the value is same as 

)(i.e., ISe databasen the wholst event iof the firthe count 

- cmpond event of the secthe count . 

Note that the numerator, the count of the second event - 

cmp, is equal to the count of first event participating in the 

event pair. The reason of such a reduced computation step 

could be explained as follows. 

In our example, we set Min_prev = 0.3. Candidates (A, E) 

and (B, E) are pruned, because the index of (A, E) and (B, E) 

are both (1-0)/4 = 1/4, which is less than our defined 

threshold 0.3. 

The result of Step 5-(b) before the pruning process is 

shown in Table V. After the pruning process, candidates (A, 

E) and (B, E) are pruned from the hash table. 
 

TABLE V: STEP 5-(A): THE RATIO OF EVENT PAIRS (RATIOEP) 

 
 

 
Fig. 5. Step 6: The graph of size-2 co-location.  

 

Step 6: (Construct the graph) 

Using the event types of the candidate set in the hash table 

to construct the graph. If two vertices event i and event j are 

related, then there will be an edge en between them. We 

calculate n by the formula used in 9D-SPA representation in 

Step 3. Our goal is to find the maximal cliques. 

By using the prevalent size-2 co-location, we can get the 

graph as shown in Fig. 5 and learn that (A, B, C, D) is one of 

the maximal co-location candidates. 

Step 7: (Build the Count-Ordered Instrances-Tree) 

(a) According to the size of each neighbor relation in the 

hash table, we find out the least two event pairs. 

(b) We use the least two event pairs to change the Event 

Order and rearrange a new order to build the Count-Ordered 

Instances-Tree with the root ”COIT”. 
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(c) Based on the new order, we can use the hash table to 

get the information of instances pairs and generate the nodes 

level by level. 

(d) We make sure that each stored node has a relationship 

with its ancestors. 

The rules of the Count-Ordered Instrances-Tree are as 

follows. (1) The depth of COITree is equal to the length of 

MCan. (2) The types of instances at each level i are the same 

as Mcan(i). 
 

 
Fig. 6. Step 7: Building the two-level Count-Ordered Instrances-Tree: (a) the 

related hash table (C,A); (b) two-level tree containing instances of events C 

and A. 

 

 
Fig. 7. Step 7: Building the third-level Count-Ordered Instrances-Tree: (a) 

the related hash table (D,A) and (C,D); (b) two-level tree containing instances 

of event (C,A); (c) searching the neighbor instances of type D connected with 

type A in level 2. 

 

In Step 6, we have found out the candidates of the maximal 

co-location patterns, and now we will build the 

Count-Ordered Instances-Tree to represent the relations 

between instances. First, we know that {A,B,C,D} is one of 

the candidates maximal co-location patterns. Then, we get 

the information of the two event pairs {C,A} and {D,B} which 

appear the least times from size-2 hash table Ins_HT2. We 

exchange the Event Order from CDAB to CADB. For each 

instance pair of the event types of {C,A}, first, we 

store ”COIT” as the root. Then, determine whether the 

current instance exists in the first layer. If it exists, we add the 

related nodes as the child of the current instance. Otherwise, 

we add the instance pair as a new branch of the root. For 

example, we get the instance pairs (C.1, A.2), (C.2, A.3) and 

(C.3, A.1) of event pair {C,A} from Ins_HT2 and add them as 

the children of the root ”COIT”. Then, we determine A.2 has 

relationships with D.2 and D.4. We confirm whether D.2 and 

D.4 have relationship with their ancestor C.1, respectively. If 

not, we will not add them into the tree. On the other hand, A.3 

has a relationship with D.2, and D.2 has a relationship with 

its ancestor C.2. Therefore, we add D.2 as the child of current 

instance A.3. We show Step 7 in Fig. 6, Fig. 7, Fig. 8. (Note 

that in Fig. 7, we also check whether the instances between 

events C and D exist. We find that only instance pairs (C.2, 

D.2) and (C.3, D.3) exist. Moreover, in Fig. 8, we also check 

whether the instances between events A, C and B exist. We 

find that instance pairs (B.1, A.3), (B.1, C.2), (B.2, A.1) and 

(B.2, C.3) exist.) 

 

 
Fig. 8. Step 7: Building the fourth-level Count-Ordered Instrances-Tree: (a) 

the related hash table (A,B), (C,B) and (D,B); (b) third-level tree; (c) 

searching the neighbor instances of type B connected with type D in level 3. 

 

For the comparison part, we make a comparison to discuss 

the difference between our proposed Count- Ordered 

Instances-Tree and the SGCT algorithm [8]. In our example, 

the candidates of maximal co-location are [CADB] and 

[CDE]. Fig. 9 illustrates the process of generating the 

instances-tree of the maximal co-location patterns in our 

approach. It contains 3 paths and 10 nodes. Then, Fig. 10 

shows the process of condensed-instances tree in the SGCT 
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algorithm containing 5 paths and 13 nodes. Therefore, when 

we generate the instances-tree of maximal co-location 

patterns, our approach would be more efficient than the 

SGCT algorithm. 
 

 
Fig. 9. The Count-Ordered Instances-Tree containing only 3 paths (10 nodes) 

to find the instances of maximal co-location candidate A, B, C, D. 

 

 
Fig. 10. The tree based on SGCT algorithm containing 5 paths (13 nodes) to 

find the instances of maximal co-location candidate A, B, C, D. 

 

IV. PERFORMANCE 

In this section, we will compare the performance between 

our approach and the SGCT algorithm. 

In this performance study, we generate the objects and 

their corresponding locations in a two-dimensional 

coordinate as the input data. An object contains an event and 

an instance. The parameters used in the process of generating 

synthetic data are described as follows. Parameter dis_thr 

means the distance threshold of the neighbor relation. We use 

the parameter dis_thr to obtain relations. If the distance of 

two objects is smaller than dis_thr which is given by the user, 

it represents the two objects as neighbor relation. Parameter 

Min_prev means the prevalence threshold which is defined 

by the user. The range of Min_prev is generated between 0 

and 1. Parameter |D| is a flag bit and represents the density of 

the spatial dataset. When the spatial data is sparse, Parameter 

|D| is 0. Otherwise, Parameter |D| is 1, when the spatial data 

is dense. We use two parameters which are defined by the 

user: parameter |EN| to represent the total number of events 

and the parameter |IN| to represent the total number of 

instances in the spatial dataset. Parameter |RN| means the 

number of relation pairs and is affected by parameter dis_thr 

and parameter |D|. 

The synthetic datasets are generated using a spatial data 

generator similar to [3]. Moreover, the SGCT approach also 

uses such kind of input (i.e., a 2-D coordinate). Furthermore, 

we will give an example of synthetic data as follows. First, 

we initialize the parameters as follows. We set dis_thr = 15, 

Min_prev = 0.2, |EN| = 5, and |IN| =24. In this dataset, it 

includes 5 events which are A, B, C, D and E and contains 24 

instances which are randomly distributed to each event. We 

assume that event A, B, C, D and E have 4, 7, 6, 5, and 2 

instances, respectively. Second, we assume that the candidate 

contains events A, B, C and E. In the co-location pattern, 

event B has the largest number of instances in those events. 

We use the instances of event B to calculate the count which 

is ⌈7 * 0.2⌉ = 2. The co-location patterns can be larger than 

the Min_prev, so it means that the relations of the co-location 

patterns have to appear two times. 

Here, we will show the experimental results which 

compare the performance between our approach and the 

SGCT approach. We have two datasets, and we will compare 

the processing time and the number of nodes of the synthetic 

database. The first dataset is dense with 25 spatial events and 

1k instances. Those instances are distributed in a map with 

size 100×100, resulting the density=0.1. The second dataset 

is sparse with 25 spatial events and 5k instances. Those 

instances are distributed in a map with size 500×500, 

resulting the density=0.02. We first present the performance 

experiment of comparing algorithms in dense datasets. 

In Fig. 11 and Fig. 12, we set the upper bound of the 

neighbor distance=15 (dis_thr=15, the dense dataset). From 

Fig. 11, we show that as the number of relations increases in 

the spatial dataset, our approach still generates less number of 

nodes than the SGCT algorithm. From Fig. 12, we show that 

the processing time of our approach is shorter than the SGCT 

algorithm. The number of cliques under the change of 

Min_prev is shown in Table VI. 

 

 
Fig. 11. A comparison of the number of nodes of the dense dataset under 

different Min_prev. 

 

 
Fig. 12. A comparison of the processing time of the dense dataset under 

different Min_prev. 

 

TABLE VI: THE NUMBER OF CLIQUES OF THE DENSE DATASET UNDER 

DIFFERENT MIN PREV  
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In Fig. 13 and Fig. 14, we set the upper bound of the 

neighbor distance=17 (dis_thr=17, the sparse case). From Fig. 

13, we show that our approach is still generating less number 

of nodes than the SGCT algorithm. As the Min_prev 

increases, the number of nodes constructed in both 

approaches changes. The number of nodes increases when 

the Min_prev is changed from 0.25 to 0.4, and the number of 

nodes decreases when the Min_prev is 0.45. However, our 

approach always generates less number of nodes than the 

SGCT algorithm. Note that when the Min_prev is too high, 

many candidates of size-2 could be pruned in both algorithms, 

resulting in decrease of constructed trees in both algorithms. 

The main reason for less number of needed nodes for mining 

in our approach than the SGCT algorithm is that we sort the 

tree by the number of relations. That is, we do the sorting step 

in the preprocess of constructing the Count-Ordered 

Instances-tree for mining. 

 

 
Fig. 13. A comparison of the number of nodes of the sparse dataset under 

different Min_prev. 

 

 
Fig. 14. A comparison of the processing time of the sparse dataset under 

different Min_prev. 

 

TABLE VII: THE NUMBER OF CLIQUES OF THE SPARSE DATASET UNDER 

DIFFERENT MIN_PREV  

 
 

In Fig. 14, we present the comparison of processing time 

of the SGCT algorithm and our approach with the sparse 

dataset under the change of minimum prevalence threshold. 

From Fig. 14, we show that the processing time of our 

approach is faster than that of the SGCT algorithm. The 

processing time of the SGCT algorithm and our approach first 

increases and then decreases because the processing time is 

related to the Min_prev. For example, when the Min_prev is 

changed from 0.25 to 0.35, the processing time of both 

algorithms increases. However, when the Min_prev is 

changed from 0.35 to 0.45, the processing time of both 

algorithms decreases. When the Min_prev is too high, many 

candidates of size-2 are pruned in both algorithms, resulting 

in the decrease of the size of the constructed trees in both 

algorithms to prune many candidates of size-2. So, the 

number of cliques decreases. The number of cliques under 

the change of Min_prev is shown in Table VII. 

 

V. CONCLUSION 

In this paper, we have proposed an approach which uses 

the data structure Count-Ordered Instances-Tree for 

generating the instances of the maximal co-location patterns 

efficiently. In our approach, our Count-Ordered 

Instances-Tree needs less number of nodes than the structure 

of the SGCT algorithm and can get the same instances cliques. 

Because the order of our generating tree is based on the 

number of relations in the database. The experimental results 

have shown that our approach is better than the SGCT 

algorithm. Data increment may change the found maximal 

co-location patterns; therefore, how to find the maximal 

co-location patterns incrementally is the possible future 

research direction. 
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