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Abstract—In recent years, with the development of deep 

learning technology, neural networks play an increasingly 

important role in more and more fields. However, research 

shows that neural networks are vulnerable to the attack of 

adversarial examples. The purpose of this paper is to study the 

principle of adversarial examples generation and propose a new 

method of generating adversarial examples. Compared with 

existed methods, our method achieves better deception rate and 

perturbs less pixels of images. During an epoch in batch 

dimension iteration, multiple pixels are perturbed while 

Manhattan-Distance constraints are added to them. Our 

algorithm performs well in experiments. Compared with 

Carlini-Wagner method, only 60 more dimensions are 

perturbed, which indicates that the computation cost of our 

algorithm is completely acceptable. Besides, compared with 

FGSM algorithm, the deception rate increases by 12% while the 

generation times of them are almost same. 

 
Index Terms—Adversarial attacks, deep learning, 

adversarial examples, distance constraints.  

 

I. INTRODUCTION 

The extensive application of deep learning [1] in fields of 

national defense, finance [2], medical treatment [3], 

agriculture [4], transportation [5] has benefited the society 

greatly. However, some researches reveal the vulnerability of 

deep neural networks under the attack of adversarial 

examples [6]. Facing the security problem underlying neural 

networks, the study of adversarial examples and 

corresponding anti-attack methods is of great significance. 

Adversarial example is a kind of input which has been 

designedly adjusted based on normal input to induce neural 

networks to make wrong inference. In the field of image 

recognition, an adversarial example can be considered as an 

input image whose pixels are applied subtle changes that can 

 
 

 

Manuscript received July 20, 2020; revised March 12, 2021. This work 

was supported by the National Natural Science Foundation of China under 

Grant 61671151 and Grant 61728103.  

D. Liu is with the Key Laboratory of Measurement and Control of CSE, 

Ministry of Education, Southeast University, Nanjing 210096, China (e-mail: 

11973053@qq.com).  

Z. Song is with the College of Electronic and Optical Engineering,  

Nanjing University of Posts and Telecommunications, Nanjing 210023, 

China (e-mail: szian@hotmail.com). 

S. Ren is with the Oversea Education College, Nanjing University of 

Posts and Telecommunications, Nanjing 210023, China (e-mail: 

Rensy1121@outlook.com). 

S. Xia is with the Key Laboratory of Measurement and Control of CSE, 

Ministry of Education, Southeast University, Nanjing 210096, China, and 

also with the School of Automation, Southeast University, Nanjing 210096, 

China (Corresponding author; e-mail: xia081@gmail.com). 

be hardly perceived by human eyes. Though the changes are 

slight, the adversarial examples are given the ability to 

misguide neural networks [7]. 

As shown in Fig. 1, the dotted line represents the inference 

function of a given model, which has divided test samples 

into two parts. Once some subtle changes have been added 

into an example (the light red one) near the curve, which has 

made it cross the curve and become an adversarial example, 

the existed inference function could no longer classify it 

correctly.  
 

 
Fig. 1. Error classification caused by adversarial examples. 

 

This defect of neural networks will bring a lot of potential 

safety hazards. Therefore, the study of adversarial examples 

is of great significance in the field of neural networks security 

[8]. 

A traditional pattern of adversarial example generation is 

to add perturbations on a fixed number of dimensions of input 

vector. A tradeoff underlying the pattern is that more 

disturbed dimensions bring higher attack success rate but less 

disturbed dimensions cost less computation. Therefore, 

inevitably, traditional methods [9] show various weaknesses, 

such as bad performance on non-linear decision function, 

complex calculation and low speed. 

To avoid this tradeoff and overcome the shortcomings of 

existed algorithms, a new algorithm for generating 

adversarial examples is proposed in this paper, a 

Manhattan-Distance Constraint algorithm is proposed and 

added into the process of batch dimension iteration, which 

limits the number disturbed dimensions and pixels. The 

algorithm is able to ensure the attack success rate while costs 

less computation. Also, the adversarial samples yielded are 

not easily perceived by human eyes. 

In this paper, we will describe the details of our methods 

and according experiment results on MNIST and CIFAR-10 

data sets. Comparing with Fast Gradient Sign Method 

(FGSM) and Carlini-Wagner (C&W) method, our method 

shows good attack success rate, better speed and less 

dimensions of perturbation. 
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II. RELATED WORK 

In recent years, anti-attack has become a hot topic in the 

field of artificial intelligence. With the deepening of research, 

the methods of anti-attack can be roughly divided into the 

following categories. 

A. Large Broy-den Fletcher Goldforb Shanno Method 

The concept of adversarial examples was first proposed by 

Szegedy [10]. At the same time, he also put forward the first 

method of manufacturing adversarial examples: Large 

Broy-den Fletcher Goldforb Shanno Method (L-BFGS). Its 

main idea is to find a minimum perturbation term r  and add 

it to the original example x. Thus, an adversarial example  

'x  can be produced. Suppose the output label corresponding 

to sample x is t, then the output label corresponding to 

sample 'x  is 't . And it must satisfy condition '' tt  . 

Therefore, it can be expressed by the following formula: 

 
')( trxf   

(1) 

 mrx ]1,0[  (2) 

The problem is solved by L-optimization algorithm and the 

minimum perturbation term r  can be obtained finally. By 

adding r  to the initial input example x, the adversarial 

example 'x  can be obtained. 

B. Fast Gradient Sign Method 

Fast Gradient Sign Method (FGSM) algorithm was first 

proposed by Good Fellow in 2014 [11]. The origin of this 

method can be traced back to the earliest gradient descent 

algorithm in pattern recognition. The idea is to change the 

predictive probability of the classifier by adding a 

perturbation   to a pure sample x, or to make the value of 

loss as large as possible. That is to say, each iteration 

increases the error along the opposite direction of gradient, 

and then achieves the effect of error classification. It is worth 

mentioning that the disturbance itself should be limited to a 

person's eyes and cannot be detected, or produce greater 

damage to the pure sample. Therefore, norm restrictions are 

usually imposed on  . It can be expressed by the following 

formula: 

 
)),((sign* yJ xx    

(3) 

where   is the parameters of a model, x is the input to the 

model, y is the targets associated with x (for machine learning 

tasks that have targets) and ),( yJ x  is the cost used to train 

the neural network. As the name implies, the advantage of 

this method is that the speed of constructing countermeasure 

samples is very fast. When the decision function is linear, it 

performs well. The biggest problem is that the   is manually 

chosen. So, when the decision function is not linear, FGSM 

will not work well. 

C. Jacobian-Based Saliency Map Attack 

Jacobian-based Saliency Map Attack (JSMA) [12] 

constructs adversarial examples by adding a limited number 

of pixels to the original image. It is a targeted attack method. 

Given target category yy ett arg
, it chooses the most 

effective two pixels for iteration each time until the target 

class is reached. The perturbed pixels are selected according 

to their saliency mapping:  
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In each iteration, the pair of pixels ),( ji   with the largest 

])[,(])[,( jyxSiyxS   is selected and the same   is 

modified. Repeat the process until etty
adv

xF arg)(   . 

JSMA method has high success rate, but the calculation of 

saliency mapping is complicated. 

D. Deep Fool 

Deep Fool was first proposed by S.Moosavi Dezfuli and P. 

Frossard [13]. Deep Fool algorithm is based on the idea of 

FGSM. It generates adversarial examples by iteration. At the 

same time, a method for quantitatively expressing the robustness of 

the network to adversarial examples by using the average 

disturbance amplitude of adversarial examples is proposed, as 

shown in formula (5) 
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(5) 

where )(adv f  represents the average robustness, T represents the 

whole test set, and )(xr  is the smallest perturbation to generate 

adversarial examples. Deep Fool algorithm can produce deception 

effect similar to FGSM while exerting smaller perturbation on 

examples. However, this method makes the perturbation distributed 

in almost every dimension of the sample. Not only is the calculation 

heavy, but also the deception effect is not very good. 

E. Carlini-Wagner 

Carlini-Wagner method (C&W) [14] is an attack method 

using optimization method to generate adversarial samples. 

Its optimization objective is: 

 
)(*||||min 2

2   x  

dxts ]1,0[..   

 

(6) 

where )( x  represents the constraint of error 

classification,  is the equilibrium parameter between 

disturbance and resistance strength. It is also an iterative 

attack algorithm. But it has too many optimization 

parameters, which leads to excessive calculation and slow 

speed. 

 

III. OUR METHOD 

This section will introduce our method in detail.  

A. Gradient Descent 

For an input sample x, the connection weights of its 

dimensions vary. Therefore, changing values of different 

dimension always yields different results [15]. The gradient 

of values of different dimensions can indicate that what 

results would be yielded for us, which can be explained with 

an output saliency map.  
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As shown in Fig 2, for an input x, its corresponding 

classification is y and suppose his evaluation function is 

)(xF , the ordinates represent the gradient vector of the input 

X. As can be seen from Fig 2, for a point, if its partial 

derivatives in some directions are positive, that 

is 0)),,_(/())),,_(((  kjixkjixF , it shows that the 

value of output discriminant function F increases with the 

increase of X, Conversely, if the value of partial derivatives in 

some directions is negative, that is 

0)),,_(/())),,_(((  kjixkjixF , it shows that the 

discriminant function decreases with the increase of X. When 

the partial derivative is zero, F does not change. 
 

 
Fig. 2. Three-dimensional view of gradient descent. 

 

As shown in Fig. 2, the gradient value of direction AC is 

the largest and rises fastest along this direction, while the 

gradient value of direction AB is the smallest and falls fastest 

along this direction. 

Based on the above ideas, this paper proposes a new idea, 

that is, to select a part of the dimension which has the most 

obvious influence on discriminant function F and add 

disturbance to it. Batch dimension perturbation algorithm is 

not easy to fall into local minimum, so its deception ability is 

stronger. And the upper limit of pixel perturbation is limited 

by Manhattan-Distance to improve the robustness of the 

algorithm. 

B. Iteration with Batch Dimension and 

Manhattan-Distance Constraints 

The idea of this algorithm is: First, the gradient matrix of 

the output is calculated by calculating the current value of the 

input. A part of the maximum dimension of the gradient is 

selected to add perturbations. After a lot of experiments, the 

performance of the algorithm is the best when the size of 

maximum dimension is 3. So, we select three dimensions for 

iteration each time. Then perturbation is added to each 

selected pixel. The size of the perturbation is calculated by 

the following formula:  
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(7) 

Then, the remaining undisturbed dimensions are iterated 

until the discriminator outputs the correct results. Meanwhile, 

in order to be less easily perceived by the human eye and 

reduce the calculation cost, Manhattan-Distance [16] 

limitation is added to constraint the disturbance. In digital 

images, suppose there are two pixels ),( 11 yxi  and ),( 11 yxj , 

the Manhattan-Distance between them is: 

 ||||),( 2121 yyxxjiD   (8) 

Because it only needs simple addition and subtraction 

operations, and there is no complex floating-point operations 

compared with Euclidean distance, its calculation speed will 

be improved. 

A set D is used to record perturbed pixels. For example, 

 ),(),...,,(),,(),,( s332211 syxyxyxyxD   indicates that s 

pixels have been perturbed. Suppose the perturbation 

distance between pixels is thresholdd . When the next pixel is 

disturbed, the Manhattan-distance between the pixels and 

each point in set D is calculated first. When distances are not 

less than thresholdd , it can be disturbed. Otherwise, it will not 

be calculated and other pixels will be tried. The pseudo-code 

of the algorithm is shown below, where X is the original input 

sample, *Y  is the target output category, F is the mapping 

function of the classifier network, r  is the perturbation 

quantity, *X  is the input after the perturbation, x  is the 

total perturbation vector. Set Q is used to record whether the 

pixels in the sample have been traversed. 1),( jiQ  means 

pixel ),( ji  has been traversed, so it will no longer be 

calculated in all iterations after it. 

 

Algorithm 1: Iteration with batch dimension and 

Manhattan-distance constrains 

Input:  X , *Y ,  F , r  

Output: x , *X  

1  Let XX *
. 

2  Initialize D, which initial value is an empty set. 

3  Initialize Q, which initial value is a matrix of all zeros. 

4  While **)( YXF  : 

Computing gradient matrix F. 

Find the three pixels 
iii zyx ,, with the largest gradient 

in F. 

If nullD  : 

Put 
iii zyx ,, in set D. 

Else: 

          Calculate the Manhattan- Distances between them 

and each element in D. 

       If 
thresholddDdd  )( : 

           Add perturbation r  to 
iii zyx ,, . 

           Add the perturbed pixels to set D. 

           Set the values of  iii zyx ,,  in Q to 1. 

       End if 

    End while 

5  XXx -* . 

6  Return 
*X  and 

x  

 

First, the algorithm calculates the gradient matrix of the 

input current value to the output, which is also called saliency 

mapping. Then three dimensions with the largest gradient 

amplitude are selected for perturbation. And the remaining 

undisturbed dimensions are iterated repeatedly until the 

desired classification results can be successfully deceived by 

the network. 
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IV. EXPERIMENT 

A. Data Set 

In order to verify the effectiveness of this algorithm, two 

data sets MINIST and CIFAR-10 are selected. MINIST is a 

handwritten digital data set with ten classifications ranging 

from 0 to 9. CIFAR-10 data set is also a data set with ten 

classifications: airplane, automobile, bird, cat, deer, dog, frog, 

horse, ship and truck. In the experiment of this paper, we 

selected 1000 images for testing. Because MINIST and 

CIFAR-10 have ten categories, for each image in the test set, 

all other nine classes of targeted confrontation samples are 

generated. So, in the end, there will be 9000 adversarial 

examples. 

B. Network Model 

In this paper, we use the convolutional neural network [17] 

model to test the attack effect of adversarial examples. The 

specific parameters of the model are as follows. It consists of 

four convolution layers, each layer is recorded as Convi 

)41(  i , two pooling layers and two fully connected 

layers, and Rectified Linear Unit (ReLU) is chosen as the 

activation function [18]. 

 
TABLE I: NETWORK STRUCTURE 

Layer Type MINIST CIFAR-10 

Conv1+ReLU 3×3×32 3×3×64 

Conv2+ReLU 3×3×32 Channel 3 

Pool1 2×2 2×2 

Conv3+ReLU 3×3×64 3×3×128 

Conv4+ReLU 3×3×64 3×3×128 

Pool2 2×2 2×2 

Fully Connected1+ReLU 200 256 

Fully Connected2+ReLU 200 256 

 

 
Fig. 3. Relationship between reliability and dimension. 

C. Initial Perturbation Dimensions 

One of the innovative points of this paper is the idea of 

batch dimension iteration. The dimension of initialization is 

very important. If the selection is too small, the generation 

speed of countermeasure samples will be slowed down. And 

if the selection is too large, the divergence of samples will be 

too large and the deception of human eyes will be reduced. 

In order to select the appropriate iteration dimensions, the 

evaluation standard called reliability is proposed in this 

paper:  

 
esdyreliabilit *1.0*3.0*6.0   (9) 

As shown in formula 9, reliability is calculated by 

weighting the deception rate d, eye discrimination rate e and 

generation speed of adversarial examples s. Among them, 

eye discrimination rate represents the probability that the 

adversarial example can successfully deceive the perception 

of human eyes. It is the result of our survey of 100 volunteers. 

It can be seen from Fig. 3 that if we select three dimensions 

each time, the value of reliability reaches its maximum. Thus, 

we choose three as the size of dimensions for iteration. 

D. Result Presentation 

Select 10 rows and 10 columns of the result picture on each 

data set and divide them into ten categories. Suppose the 

picture in column j of line i is )101,101)(,(  jijip , 

only pictures on the diagonal line are real samples, which is 

)101)(,(  ijip  and all the rest of the pictures are 

adversarial examples. So, p(i, j) represents a sample image 

that has been incorrectly classified into class j  while ij  . 

Fig. 4 shows some adversarial examples on MNIST data set. 

Fig. 5 shows some adversarial examples on CIFAR-10 data 

set. 

It is worth mentioning that these samples can be perceived 

by human eyes easily while the error rate of classification on 

these samples by deep learning algorithm is very high, which 

means our method has better deception accuracy. 

 

 
Fig. 4. Some adversarial samples generated by our algorithm on MNIST data 

set. 

 

 
Fig. 5. Some adversarial samples generated by our algorithm on CIFAR-10 

data set. 

 

Fig. 6 shows the perturbed dimensions needed to generate 

adversarial examples. It can be found that due to the 

limitation of Manhattan-Distance constraint, most examples 

are concentrated in the interval of [0,60], except for a small 
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number of samples with large disturbance range. 

 

 
Fig. 6. Perturbation dimension histogram of test samples. 

 

Fig. 7 shows the relation between deception rate and 

perturbed dimensions. It can be seen that when the perturbed 

dimensions reach about 60, the adversarial example has a 

high deception rate. When the perturbed dimensions reach 90 

or more, it can deceive the convolutional neural network by 

almost 100%. 
 

 
Fig. 7. The histogram of the relation between deception success rate and 

perturbation dimension. 

 

Table 2 shows the comparison among our method, FGSM 

and C-W algorithm. The attack success rate of our method is 

much higher than that of FGSM. And the perturbed 

dimensions are obviously lower than that of C-W algorithm. 

 
TABLE II: COMPARISONS OF ADVERSARIAL EXAMPLES AMONG DIFFERENT 

ALGORITHM 

Method 
Recognition 

Success Rate 

Attack 

Success Rate 

Run 

Time 

Dimensions of 

Perturbation 

FGSM 14.9% 85.1% 3.15s - 

Carlini- 

Wagner 
1.67% 98.33% 4517s 2287 

Our 

Method 
1.69% 98.31% 5.08s 36.28 

 

V. CONCLUSIONS 

This paper focuses on the security issues in machine 

learning. An improved algorithm for generating adversarial 

examples is presented in this paper. Compared with existed 

method, our method achieves better deception rate and 

perturbs less pixels of images. During an epoch in batch 

dimension iteration, multiple pixels are perturbed while 

Manhattan-Distance constraints are added to them. Our 

algorithm performs well in experiments. Compared with 

Carlini-Wagner method, only 60 more dimensions are 

perturbed, which indicates that the computation cost of our 

algorithm is completely acceptable. Besides, compared with 

FGSM algorithm the deception rate is increased by 12% 

while the generation times of them are almost same.  

Through the research of the new adversarial example 

generation algorithm in this paper, the principle of 

adversarial example generation is revealed and remind 

people to pay attention to the security issues in the field of 

deep learning, which lays a foundation for the establishment 

of effective and reasonable security mechanism in the future. 
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