
  

 

Abstract—In this article, we analyzed botnet traffic in an IoT 

environment using three machine learning classifiers: Logistic 

Regression, Support-Vector Machine and Random Forest. We 

classified each attack in each botnet for nine devices. We 

calculated the Accuracy, True Positive, False Positive, False 

Negative, True Negative, Precision, Recall, F1 score for each 

algorithm. We obtained impressive results (above 99%) using 

these three classifiers. We have a high attack detection rate. A 

brief analysis of the results is presented. 

 
Index Terms—Intrusion detection, machine learning, 

internet of things (IoT), botnet, logistic regression (LR), support 

vector machines (SVM), random forest (RF). 

 

I. INTRODUCTION 

A low estimate is that by 2025, the global worth of Internet 

of Things (IoT) devices will be $4 trillion dollars, and a high 

estimate is that by 2025, the global worth of IoT devices will 

be $11 trillion dollars [1]. With the development of IoT 

technologies, more and more devices have joined our lives, 

making security of systems an utmost concern. Many of the 

devices used in our everyday lives today, for example, smart 

phones, wearable devices, health monitoring devices, etc., 

generate vast amounts of private information, but have very 

little security, if any, built in. The internet is complex enough 

to secure, and these additional insecure IoT devices make the 

task of security even more challenging [1]. Botnets are able 

to infiltrate any internet connected device from smart 

watches and home smart kitchen appliances to corporate 

mainframes. Free availability of source code of IoT botnets 

like BASHLITE and Mirai have led to cyber attackers trying 

their hands at IoT malwares [1]. The IoT malware, Mirai, has 

actually inspired a renaissance of IoT malware and has been 

responsible for large scale DDos attacks [1]. The Mirai botnet 

and it’s variants and imitators were basically a wake-up call 

to the industry to better secure IoT devices [2]. 

Botnets are typically created to infect as many devices as 

possible and complex botnets even self-propagate and update 

their behavior, finding and infecting devices automatically. 

Hence botnets are very difficult to detect [3]. Another reason 

why botnets are difficult to detect and contain is that they lurk 

on devices that do not significantly affect the performance of 
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the device [3]. For example, a security camera may be part of 

an active botnet, but neither an average user nor a small 

business may be aware of this. Therefore, it is extremely 

important to identify botnets from the traffic of IoT devices.  

In this paper, we use the dataset available in [4] to classify 

botnet traffic in the IoT environment. This dataset is real 

network traffic data, gathered from nine commercial IoT 

devices infected by two botnets, Mirai and BASHLITE. The 

data is analyzed using three classifiers, Logistic Regression 

(LR), Support Vector Machines (SVM) and Random Forest 

(RF), and classified by botnet, by attack, by device.  

The rest of the paper is organized as follows: Section II 

presents the related works; Section III describes the dataset – 

the devices used, the attack categories and features; Section 

IV briefly presents the three classification algorithms used; 

Section V presents the results; Section VI presents the 

discussion; and Section VII presents the conclusions and 

future works. 

 

II.  RELATED WORKS 

In this section we grouped the work based on works done 

on intrusion detection systems and works done directly on 

IoT Botnet. 

A. Works on Intrusion Detection Systems 

Several works have been done on intrusion detection 

systems. [5] designed fuzzy membership functions to solve 

dimensionality and anomaly mining, thereby reducing 

computational complexity and improving the computational 

accuracy of the classifier. [6] presented a dynamic coding 

mechanism, implementing a distributed signature based IDS 

in IP-USN (IP based ubiquitous sensor networks) and used 

Bloom filtering for signature matching. [7] designed and 

developed a virtual test platform to simulate a real network 

environment, deploying a signature-based Snort IDS for 

traffic monitoring and attack detection by mirroring the 

traffic to the server, and developing a stream-based IDS 

model using machine learning. They also implemented a 

flow-based anomaly detection model to overcome the 

limitations of the signature-based IDS. [8] designed a 

specification-based IDS for detecting a new type of threat - 

the topology attack. They proposed an IDS architecture using 

a network monitor backbone, and described its monitoring 

mechanisms through a RPL finite state machine. [9] 

developed a deep packet anomaly detection method that can 

be run on resource-constrained IoT devices, but can 

distinguish between normal and abnormal payloads.  

Ref. [10] presented a DoS detection architecture for 

6LoWPAN. This architecture integrated an IDS into the 

framework developed within the EU FP7 project ebbits. [11] 
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proposed an IDS framework for IoT based on 6LoWPAN, 

which included a monitoring system and a detection engine. 

SVELTE [12], primarily targeting routing attacks, used a 

host based IDS under 6LoWPAN environment. The goal of 

[13] was to detect DoS attacks and attack protocols for 

6LoWPAN and CoAP communications and propose an IDS 

framework for detecting and preventing attacks in the 

internet integrated environment. An intrusion detection 

model based on node consumption analysis in 6LowPAN 

was proposed in [14]. Irregular energy consumption of the 

routing scheme in the 6LoWPAN grid and the sensor nodes 

were used to identify malicious attacks. A malicious pattern 

matching engine for lightweight security systems was 

proposed in [15]. Two novel techniques, assisted transfer and 

early decision making, were proposed to reduce performance 

degradation due to computational power and memory 

limitations. 

Ref. [16] proposed an event-processing IDS architecture 

using Complex Event Processing (CEP) technology. [17] 

proposed an architecture that employs a Bayesian event 

prediction model that uses historical event data generated by 

the IoT cloud to calculate the probability of future events. 

Based on the characteristics of the secure cloud service 

system, [18] proposed a secure high-order clustering 

algorithm that quickly searches and finds a mixed cloud 

density peak. The client first uses homomorphic encryption 

to construct the encrypted object tensor with user data, 

uploads it to the cloud to fully implement the proposed 

protocol, returning the clustering results of a random number 

of perturbations to the client, to eliminate the perturbations. 

Kalis [19], an adaptive knowledge-driven expert intrusion 

detection system, which can monitor various protocols 

without changing existing IoT software, is a comprehensive 

method for IoT intrusion detection. 

A real-time hybrid intrusion detection framework, 

including an anomaly-based and specification-based 

intrusion detection module, is proposed in [20]. The 

anomaly-based intrusion detection agent, located in the root 

node, uses the unsupervised optimal path forest algorithm to 

predict the clustering model by using incoming packets. The 

specification-based intrusion detection agent in the router 

node analyzes the behavior of its host node and sends its local 

result through ordinary data packets to the root node. [21] 

proposed a new network intrusion detection method for IoT 

networks based on a conditional variational autoencoder with 

a specific architecture, which integrates intrusion tags. 

B. Works on IoT Botnets Specifically 

Few works have also been done on detecting botnets on 

IoT devices. The authors of [22] proposed a host-based 

detection system based on one-class classifiers. Host based 

detection techniques can be considered less realistic for 

attacks on IoT botnets for various reasons including the fact 

that we would have to rely on the IoT manufacturers to install 

host-based anomaly detectors on the products. Also, given 

that IoT botnet attacks mutate at a very fast rate [2] and are 

becoming increasingly more and more complex by the day, 

some of these mutations will succeed in bypassing existing 

methods of early detection [23].  

Ref. [24] used a one-class Support Vector Machine built 

with features such as CPU and memory usage to detect 

malicious activities. [25] proposed a deep learning-based 

botnet traffic analyzer called Botnet Traffic Shark 

(BoTShark) that uses only network transactions and is 

independent of deep packet inspection techniques to identify 

correlations between original features and new features in 

each layer of the autoencoder or CNN extracted in a cascaded 

manner. [26] proposed a state-of-the-art T-IDS, built on a 

novel randomized data partitioned learning model (RDPLM) 

relying on a compact network feature set and feature 

selection techniques, simplifying sub-spacing and multiple 

randomized meta-learning techniques. [27] analyzed the 

effectiveness of some community detection algorithms in 

detecting P2P botnets, especially with partial information. 

They showed that the approach can work with only about half 

of the nodes, reporting their communication graphs with only 

a small increase in detection errors. A method to detect 

compromised IoT devices included in a botnet is proposed in 

[28]. This method is based on logistic regression, which 

allows the estimation of the probability that a device 

initiating a connection is running a bot.  

Ref. [29] empirically evaluates a network-based anomaly 

detection method which extracts behavior snapshots of the 

network and uses deep autoencoders to detect anomaly in 

network traffic from compromised IoT devices. [29] also 

presents a very good summary of IoT-related anomalies, 

botnets and malware attacks done by others.  

While many of the previous works were on simulated data, 

in this paper we used real network traffic data, presented in 

[4], [29], to classify each attack in each botnet on each device 

using three classifiers, LR, RF and SVM.  

 

III. DATASET DESCRIPTION 

The dataset used by this paper is from UCI’s machine 

learning repository [4]. The data is divided into 10 attacks 

carried by 2 botnets, gafgyt and mirai. The 9 IoT devices are: 

Danmini Doorbell, Ecobee Thermostat, Ennio Doorbell, 

Philips B120N10 Baby Monitor, Provision PT 737E Security 

Camera, Provision PT 838 Security Camera, Samsung SNH 

1011 N Webcam, SimpleHome XCS7 1002 WHT Security 

Camera, and SimpleHome XCS7 1003 WHT Security 

Camera.  

Most of these devices were infected by both gafgyt and 

mirai, as can be seen in Tables I through VII; but Ennio 

Doorbell and Samsung SNH 1011 N Webcam was infected 

only by gafgyt and the Philips B120N10 Baby Monitor was 

infected only by Mirai. 

Mirai is a kind of malware that can make a computing 

system running Linux a remotely controlled "zombie." This 

can lead to large-scale network attacks though Mirai's mainly 

infected IoT devices such as web cameras, routers, etc. 

Devices infected by Mirai continuously scan the IP address 

of the IoT device on the Internet. The default username and 

password are used to log in to the vulnerable devices, and 

then the Mirai software is injected. The Mirai botnet has five 

types of attacks: scan, ack, syn, udp, and udpplain. Scan does 

automatic scanning for vulnerable devices. Ack causes Ack 

flooding. Syn causes Syn flooding. UDP causes UDP 

flooding. UDPplain causes UDP flooding with fewer options, 
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optimized for higher PPS. [29] 

Gafgyt (also known as BASHLITE) is a malware that 

infects Linux systems to initiate Distributed Denial of 

Service (DDoS) attacks. It mainly uses the Metasploit 

module to exploit known vulnerabilities in the WeMo UPnP 

protocol. The Gafgyt botnet also has five types of attacks: 

combo, junk, scan, udp, and tcp. Combo sends spam data and 

opens a connection to a specified IP address and port. Junk 

sends spam data. Scan scans the network for vulnerable 

devices. UDP causes UDP flooding. TCP causes TCP 

flooding. [29]  

This dataset has 23 basic features [30] which can be 

categorized into the following attribute types: stream 

aggregation, time-frame and statistics extracted from packet 

streams.  

Stream aggregation is composed of: (i) H stats, which 

summarizes the recent traffic from this packet's host (IP); (ii) 

MI stats, which summarizes the recent traffic from this 

packet's host (IP + MAC); (iii) HH stats, which summarizes 

the recent traffic going from this packet's host (IP) to the 

packet's destination host; (iv) HH_jit stats, which 

summarizes the jitter of the traffic going from this packet's 

host (IP) to the packet's destination host; (v) HpHp stats, 

which summarizes the recent traffic going from this packet's 

host+port (IP) to the packet's destination host+port.  

Time-frame or the decay factor Lambda used in the 

damped window is: L5, L3, L1, L0.1 and L0.01. These 

statistics capture the recent history of the streams.  

The statistics extracted from the packet streams are: (i) 

weight, which includes the weight of the stream (number of 

items observed in recent history); (ii) mean; (iii) standard 

deviation; (iv) radius, which is the root squared sum of the 

two streams' variances; (v) magnitude, which is the root 

squared sum of the two streams' means; (vi) cov, which is an 

approximated covariance between two streams; (vii) pcc, 

which is an approximated correlation coefficient between 

two streams.  These features are extracted from a total of five 

time windows: 100ms, 500ms, 1.5sec, 10sec, and 1min, thus 

totaling 115 features. More details of each feature can be seen 

from [30].  

The statistics are summarized from all of the traffic as 

follows [30]: 

1) Originating from this packet’s source MAC and IP 

address (denoted SrcMAC-IP). 

2) Originating from this packet’s source IP (denoted 

SrcIP). 

3) Sent between this packet’s source and destination IPs 

(denoted Channel). 

4) Sent between this packet’s source and destination 

TCP/UDP Socket (denoted Socket).  

 

IV. CLASSIFIERS 

Three classifiers were used in this study: Logistic 

Regression (LR), Support Vector Machine (SVM), and 

Random Forest (RF).  

LR is a machine learning classifier used to model the 

probability of a certain class. Though LR can also be 

extended to classifying several classes, in it’s basic form, LR 

uses a logistic function to model a binary dependent variable.  

SVM, relatively computationally inexpensive, is a 

supervised learning classifier mainly used for binary 

classification. In SVMs, we find the best hyperplane that 

divides the data into two categories and we generally have a 

low generalization error. The farther the data point from a 

decision boundary, the more confident we are about the 

prediction. The points separating the hyperplane are known 

as support vectors.  

RF refers to a classifier that uses multiple trees to train and 

predict samples. Random forests establish a forest in a 

random way. After getting the forest, when a new sample is 

entered, each decision tree in the forest makes a separate 

judgment to see which class the sample should belong to (for 

the classification algorithm). The sample is predicted to be of 

the class to which it was classified the most times. 

 

V.  EXPERIMENTAL SETUP 

Since we are classifying each attack in each botnet for each 

device, the data was grouped by device, by botnet and then by 

attack. Our initial results using the three classifiers, LR, SVM, 

and RF did not give us good performance, which was mainly 

due to the highly imbalanced nature of the data. To address 

this issue, we used an almost equal number of benign (normal) 

data as well as malicious data. The almost 50% of the benign 

data was randomly selected from the set of benign data and 

added to the malicious dataset before running the algorithms.  

The data was then pre-processed using z-score 

normalization. Each of the classifiers (LR, SVM, and RF) 

were then used as binary classifiers on the normalized data 

and training and prediction was performed. 80% of the data 

was used for training and 20% for testing. Scikit Learn was 

used to run the classifiers. 

 

VI. RESULTS 

Eight metrics were used to evaluate and analyze the results: 

True Positive (TP) is actually positive, and the prediction is 

positive; False Positive (FP) is actually negative, and the 

prediction is positive; True Negative (TN) is actually 

negative, and the prediction is negative; False Negative (FN) 

is actually positive, and the prediction is negative; Accuracy, 

Precision, Recall and F1-score. 

Accuracy is the ratio of the model’s correct data (TP+TN) 

to the total data, given by: 

 

Accuracy = (TP+TN)/(TP+FP+TN+F                   (1) 

 

Recall, also referred to as sensitivity, or Attack Detection 

Rate (ADR): This is the effectiveness of the model in 

identifying an attack, that is, for all positive cases (TP+FN) in 

the dataset, the positive cases (TP) correctly judged by the 

model, given by: 
 

Recall=sensitivity=ADR=TPR=TP/(TP+FN)           (2) 
 

Precision: This is the percentage of classified attack 

instances that are truly classified as attacks, that is, for all 

positive cases (TP+FP) judged by the model, the proportion 

of the real cases (TP). 
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Precision=TP/(TP+FP)                             (3) 
 

F1-score: This is the relationship between precision and 

recall, given by:  

2/F1-score=1/Precision+1/Recall                     (4) 
 

The higher the F1-score, the more robust the classification 

model [24]. 
 

TABLE I: DANMINI DOORBELL RESULTS  

Device Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 score 

Danmini 

Doorbell 

gafgyt 

combo 

LR 0.99991 12035 2 0 9817 0.99983 0.99990 0.99992 

SVM 0.99945 12023 0 12 9819 1.00000 0.99950 0.99950 

RF 1.00000 12035 0 0 9819 1.00000 1.00000 1.00000 

junk 

LR 0.99968 5827 1 4 9892 0.99983 0.99961 0.99957 

SVM 0.99949 5823 0 8 9893 1.00000 0.99931 0.99931 

RF 0.99994 5830 0 1 9893 1.00000 0.99991 0.99991 

scan 

LR 0.99994 5878 0 1 10001 1.00000 0.99991 0.99991 

SVM 0.99937 5877 8 2 9993 0.99864 0.99943 0.99915 

RF 1.00000 5879 0 0 10001 1.00000 1.00000 1.00000 

udp 

LR 0.99984 21164 1 4 9916 0.99995 0.99986 0.99988 

SVM 0.99942 21150 0 18 9917 1.00000 0.99957 0.99957 

RF 0.99984 21164 1 4 9916 0.99995 0.99986 0.99988 

tcp 

LR 0.99989 18431 1 2 9904 0.99995 0.99990 0.99992 

SVM 0.99961 18422 0 11 9905 1.00000 0.99970 0.99970 

RF 0.99996 18432 0 1 9905 1.00000 0.99997 0.99997 

mirai 

ack 

LR 1.00000 20342 0 0 10007 1.00000 1.00000 1.00000 

SVM 0.99993 20340 0 2 10007 1.00000 0.99995 0.99995 

RF 1.00000 20342 0 0 10007 1.00000 1.00000 1.00000 

scan 

LR 1.00000 21559 0 0 9888 1.00000 1.00000 1.00000 

SVM 1.00000 21559 0 0 9888 1.00000 1.00000 1.00000 

RF 1.00000 21559 0 0 9888 1.00000 1.00000 1.00000 

syn 

LR 1.00000 24459 0 0 9966 1.00000 1.00000 1.00000 

SVM 0.99997 24458 0 1 9966 1.00000 0.99998 0.99998 

RF 1.00000 24459 0 0 9966 1.00000 1.00000 1.00000 

udp 

LR 0.99993 47606 0 4 9833 1.00000 0.99996 0.99996 

SVM 0.99990 47604 0 6 9833 1.00000 0.99994 0.99994 

RF 1.00000 47610 0 0 9833 1.00000 1.00000 1.00000 

udpplain 

LR 1.00000 16517 0 0 9789 1.00000 1.00000 1.00000 

SVM 0.99996 16516 0 1 9789 1.00000 0.99997 0.99997 

RF 1.00000 16517 0 0 9789 1.00000 1.00000 1.00000 

 

TABLE II: ECOBEE THERMOSTAT RESULTS 

Device Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 score 

Ecobee 

Thermostat 

Gafgyt 

combo 

LR 0.99992 10681 0 1 2543 1.00000 0.99995 0.99995 

SVM 0.99924 10672 0 10 2543 1.00000 0.99953 0.99953 

RF 1.00000 10682 0 0 2543 1.00000 1.00000 1.00000 

junk 

LR 0.99977 6049 0 2 2634 1.00000 0.99983 0.99983 

SVM 0.99931 6045 0 6 2634 1.00000 0.99950 0.99950 

RF 1.00000 6051 0 0 2634 1.00000 1.00000 1.00000 

scan 

LR 0.99975 5426 1 1 2694 0.99982 0.99972 0.99982 

SVM 0.99926 5421 0 6 2695 1.00000 0.99945 0.99945 

RF 1.00000 5427 0 0 2695 1.00000 1.00000 1.00000 

udp 

LR 0.99983 20949 2 2 2628 0.99990 0.99957 0.99990 

SVM 0.99915 20933 2 18 2628 0.99990 0.99919 0.99952 

RF 0.99996 20950 0 1 2630 1.00000 0.99998 0.99998 

tcp 

LR 0.99977 18975 3 2 2647 0.99984 0.99938 0.99987 

SVM 0.99945 18967 2 10 2648 0.99989 0.99936 0.99968 

RF 0.99995 18976 0 1 2650 1.00000 0.99997 0.99997 

Mirai 

ack 

LR 1.00000 22714 0 0 2566 1.00000 1.00000 1.00000 

SVM 0.99992 22712 0 2 2566 1.00000 0.99996 0.99996 

RF 0.99996 22713 0 1 2566 1.00000 0.99998 0.99998 

scan 

LR 0.99973 8693 2 1 2565 0.99977 0.99955 0.99983 

SVM 0.99956 8691 2 3 2565 0.99977 0.99944 0.99971 

RF 0.99991 8693 0 1 2567 1.00000 0.99994 0.99994 

syn 

LR 1.00000 23345 0 0 2639 1.00000 1.00000 1.00000 

SVM 0.99992 23343 0 2 2639 1.00000 0.99996 0.99996 

RF 0.99996 23344 0 1 2639 1.00000 0.99998 0.99998 

udp 

LR 0.99982 30242 2 4 2671 0.99993 0.99956 0.99990 

SVM 0.99982 30240 0 6 2673 1.00000 0.99990 0.99990 

RF 1.00000 30246 0 0 2673 1.00000 1.00000 1.00000 

udpplain 

LR 0.99990 17464 2 0 2631 0.99989 0.99962 0.99994 

SVM 0.99995 17463 0 1 2633 1.00000 0.99997 0.99997 

RF 1.00000 17464 0 0 2633 1.00000 1.00000 1.00000 

 

The results for 7 of the IoT devices are shown in Tables 

I-VII respectively (we could not show results of all nine due 

to space limitations). The results are presented for: Danmini 

Doorbell, Ecobee Thermostat, Ennio Doorbell, Philips 

B120N10 Baby Monitor, Provision PT 737E Security 

Camera, Provision PT 838 Security Camera and Samsung 

SNH 1011 N Webcam. These results are shown by botnet, for 

each attack for each device, on the three classifiers: LR, SVM 
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and RF. Tables I-VII compare the accuracy and other 

statistical metrics of the three classification models, LR, 

SVM and RF, for 7 of the devices for the different attack 

types. 

Fig. 1 and Fig. 2 present the classification accuracy of the 

other two devices, SimpleHome XCS7 1002 WHT Security 

Camera and SimpleHome XCS7 1003 WHT Security 

Camera. The classification accuracy is compared by classifier, 

LR, SVM and RF, by attack. 

 

TABLE III: ENNIO DOORBELL RESULTS 

Device Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 score 

Ennio 

Doorbell 
Gafgyt 

combo 

LR 1.00000 10617 0 0 7806 1.00000 1.00000 1.00000 

SVM 0.99973 10612 0 5 7806 1.00000 0.99976 0.99976 

RF 1.00000 10617 0 0 7806 1.00000 1.00000 1.00000 

junk 

LR 0.99993 5848 0 1 7931 1.00000 0.99991 0.99991 

SVM 0.99964 5844 0 5 7931 1.00000 0.99957 0.99957 

RF 0.99993 5848 0 1 7931 1.00000 0.99991 0.99991 

scan 

LR 0.99970 5660 0 4 7780 1.00000 0.99965 0.99965 

SVM 0.99933 5660 5 4 7775 0.99912 0.99933 0.99921 

RF 1.00000 5664 0 0 7780 1.00000 1.00000 1.00000 

udp 

LR 0.99958 20778 6 6 7817 0.99971 0.99947 0.99971 

SVM 0.99937 20770 4 14 7819 0.99981 0.99941 0.99957 

RF 0.99993 20782 0 2 7823 1.00000 0.99995 0.99995 

tcp 

LR 0.99982 20379 3 2 7744 0.99985 0.99976 0.99988 

SVM 0.99940 20367 3 14 7744 0.99985 0.99946 0.99958 

RF 0.99989 20380 2 1 7745 0.99990 0.99985 0.99993 

 

TABLE IV: PHILIPS_B120N10 BABY MONITOR RESULTS 

Device Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 score 

Philips_B120N1

0 Baby Monitor 
mirai 

ack 

LR 1.00000 18078 0 0 35195 1.00000 1.00000 1.00000 

SVM 0.99998 18077 0 1 35195 1.00000 0.99997 0.99997 

RF 1.00000 18078 0 0 35195 1.00000 1.00000 1.00000 

scan 

LR 0.99995 20771 0 3 34999 1.00000 0.99993 0.99993 

SVM 0.99995 20771 0 3 34999 1.00000 0.99993 0.99993 

RF 0.99998 20773 0 1 34999 1.00000 0.99998 0.99998 

syn 

LR 1.00000 23598 0 0 35076 1.00000 1.00000 1.00000 

SVM 0.99998 23597 0 1 35076 1.00000 0.99998 0.99998 

RF 1.00000 23598 0 0 35076 1.00000 1.00000 1.00000 

udp 

LR 0.99996 43378 0 3 35074 1.00000 0.99997 0.99997 

SVM 0.99992 43375 0 6 35074 1.00000 0.99993 0.99993 

RF 1.00000 43381 0 0 35074 1.00000 1.00000 1.00000 

udpplain 

LR 1.00000 16162 0 0 35048 1.00000 1.00000 1.00000 

SVM 0.99994 16159 0 3 35048 1.00000 0.99991 0.99991 

RF 1.00000 16162 0 0 35048 1.00000 1.00000 1.00000 

 

TABLE V: PROVISION_PT_737E SECURITY CAMERA RESULTS 

Device Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 score 

Provision_

PT_737E 

Security 

Camera 

Gafgyt 

combo 

LR 0.99996 12375 0 1 12331 1.00000 0.99996 0.99996 

SVM 0.99972 12369 0 7 12331 1.00000 0.99972 0.99972 

RF 0.99996 12375 0 1 12331 1.00000 0.99996 0.99996 

junk 

LR 0.99979 6188 0 4 12419 1.00000 0.99968 0.99968 

SVM 0.99968 6186 0 6 12419 1.00000 0.99952 0.99952 

RF 0.99984 6189 0 3 12419 1.00000 0.99976 0.99976 

scan 

LR 0.99995 5837 0 1 12453 1.00000 0.99991 0.99991 

SVM 0.99989 5836 0 2 12453 1.00000 0.99983 0.99983 

RF 0.99995 5837 0 1 12453 1.00000 0.99991 0.99991 

udp 

LR 0.99946 20750 14 4 12465 0.99933 0.99934 0.99957 

SVM 0.99970 20748 4 6 12475 0.99981 0.99970 0.99976 

RF 0.99997 20753 0 1 12479 1.00000 0.99998 0.99998 

tcp 

LR 0.99961 20928 10 3 12392 0.99952 0.99953 0.99969 

SVM 0.99982 20927 2 4 12400 0.99990 0.99982 0.99986 

RF 1.00000 20931 0 0 12402 1.00000 1.00000 1.00000 

Mirai 

ack 

LR 0.99988 12199 1 2 12340 0.99992 0.99988 0.99988 

SVM 0.99992 12199 0 2 12341 1.00000 0.99992 0.99992 

RF 1.00000 12201 0 0 12341 1.00000 1.00000 1.00000 

scan 

LR 0.99997 19349 0 1 12437 1.00000 0.99997 0.99997 

SVM 0.99997 19349 0 1 12437 1.00000 0.99997 0.99997 

RF 1.00000 19350 0 0 12437 1.00000 1.00000 1.00000 

syn 

LR 0.99992 13212 0 2 12366 1.00000 0.99992 0.99992 

SVM 0.99973 13210 3 4 12363 0.99977 0.99973 0.99974 

RF 1.00000 13214 0 0 12366 1.00000 1.00000 1.00000 

udp 

LR 0.99998 31282 0 1 12398 1.00000 0.99998 0.99998 

SVM 0.99995 31281 0 2 12398 1.00000 0.99997 0.99997 

RF 1.00000 31283 0 0 12398 1.00000 1.00000 1.00000 

udpplain 

LR 1.00000 11338 0 0 12429 1.00000 1.00000 1.00000 

SVM 0.99996 11337 0 1 12429 1.00000 0.99996 0.99996 

RF 1.00000 11338 0 0 12429 1.00000 1.00000 1.00000 
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VII. DISCUSSION 

From the statistical results we observe that the best 

performance is given by the RF classifier, followed by the LR. 

But, for the Provision_PT_737E Security Camera and the 

Provision_TP_838 Security Camera, SVM performs better 

than LR for the UDP attack. Though RF and LR perform 

better than SVM overall, the SVM results are only very 

slightly lower than RF and LR. In terms of attacks, we can 

say that the udp attack, of the gafgyt botnet, had a slightly 

lower classification rate than most other attacks. It would be 

difficult to say which attack had the best classification rate 

overall – most of the classification results were very good. 

Couple reasons for the good classification results might be: (i) 

the flow is expressed very finely and pre-processed using 

z-score normalization; and (ii) all features were collected in 

five time windows, and this data was pretty consistent for all 

time windows. As future work it might be good to see if all 

five different time windows are necessary and which features 

are really important for this classification. 

 
TABLE VI: PROVISION_PT_838 SECURITY CAMERA RESULTS  

Device Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 score 

Provision_P

T_838 

Security 

Camera 

Gafgyt 

combo 

LR 0.99987 11656 0 4 19549 1.00000 0.99983 0.99983 

SVM 0.99958 11647 0 13 19549 1.00000 0.99944 0.99944 

RF 0.99990 11657 0 3 19549 1.00000 0.99987 0.99987 

junk 

LR 0.99996 5890 0 1 19626 1.00000 0.99992 0.99992 

SVM 0.99988 5888 0 3 19626 1.00000 0.99975 0.99975 

RF 0.99992 5889 0 2 19626 1.00000 0.99983 0.99983 

scan 

LR 0.99988 5721 0 3 19659 1.00000 0.99974 0.99974 

SVM 0.99980 5719 0 5 19659 1.00000 0.99956 0.99956 

RF 0.99988 5721 0 3 19659 1.00000 0.99974 0.99974 

udp 

LR 0.99929 20942 26 3 19664 0.99876 0.99927 0.99931 

SVM 0.99973 20941 7 4 19683 0.99967 0.99973 0.99974 

RF 0.99995 20943 0 2 19690 1.00000 0.99995 0.99995 

tcp 

LR 0.99965 17848 9 4 19720 0.99950 0.99966 0.99964 

SVM 0.99976 17847 4 5 19725 0.99978 0.99976 0.99975 

RF 0.99992 17849 0 3 19729 1.00000 0.99992 0.99992 

Mirai 

ack 

LR 0.99990 11700 0 3 19600 1.00000 0.99987 0.99987 

SVM 0.99990 11700 0 3 19600 1.00000 0.99987 0.99987 

RF 1.00000 11703 0 0 19600 1.00000 1.00000 1.00000 

scan 

LR 0.99990 19334 0 4 19784 1.00000 0.99990 0.99990 

SVM 0.99990 19334 0 4 19784 1.00000 0.99990 0.99990 

RF 0.99997 19337 0 1 19784 1.00000 0.99997 0.99997 

syn 

LR 1.00000 12361 0 0 19712 1.00000 1.00000 1.00000 

SVM 1.00000 12361 0 0 19712 1.00000 1.00000 1.00000 

RF 1.00000 12361 0 0 19712 1.00000 1.00000 1.00000 

udp 

LR 1.00000 31541 0 0 19884 1.00000 1.00000 1.00000 

SVM 0.99998 31540 0 1 19884 1.00000 0.99998 0.99998 

RF 1.00000 31541 0 0 19884 1.00000 1.00000 1.00000 

udpplain 

LR 1.00000 10751 0 0 19709 1.00000 1.00000 1.00000 

SVM 1.00000 10751 0 0 19709 1.00000 1.00000 1.00000 

RF 1.00000 10751 0 0 19709 1.00000 1.00000 1.00000 

 
TABLE VII: SAMSUNG SNH1011N WEBCAM RESULTS 

Device Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 score 

SamsungSNH1

011N Webcam 
gafgyt 

combo 

LR 0.99995 11740 1 0 10423 0.99991 0.99995 0.99996 

SVM 0.99982 11736 0 4 10424 1.00000 0.99983 0.99983 

RF 1.00000 11740 0 0 10424 1.00000 1.00000 1.00000 

junk 

LR 0.99988 5712 0 2 10377 1.00000 0.99982 0.99982 

SVM 0.99956 5707 0 7 10377 1.00000 0.99939 0.99939 

RF 0.99988 5712 0 2 10377 1.00000 0.99982 0.99982 

scan 

LR 0.99994 5504 0 1 10465 1.00000 0.99991 0.99991 

SVM 0.99950 5497 0 8 10465 1.00000 0.99927 0.99927 

RF 1.00000 5505 0 0 10465 1.00000 1.00000 1.00000 

udp 

LR 0.99972 22080 6 3 10465 0.99973 0.99965 0.99980 

SVM 0.99948 22071 5 12 10466 0.99977 0.99949 0.99962 

RF 0.99994 22081 0 2 10471 1.00000 0.99995 0.99995 

tcp 

LR 0.99977 19565 4 3 10415 0.99980 0.99973 0.99982 

SVM 0.99967 19560 2 8 10417 0.99990 0.99970 0.99974 

RF 0.99977 19561 0 7 10419 1.00000 0.99982 0.99982 

 

From these results we can also note a very high attack 

detection rate, well over 99% in most cases and even 100% in 

many cases, mostly using the RF algorithm. The Damini 

Doorbell and Provision_PT_838 Security Camera had 100% 

ADR using the other algorithms too, mostly in the Mirai 

botnet. All three algorithms also had a very high precision 

and F1 scores (one or very close to one) for almost all of the 

attacks. 

We present the graphical results of classification accuracy 

for the SimpleHome Security Camera and 

SimpleHome_XCS71003WHT Security Camera. From these 

two figures too, we can observe that, on the average, RF 
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performed the most consistently, LR performed the second 

best and SVM performed the least consistently, though the 

classification accuracy of all three algorithms were very high. 
 

 
Fig. 1. Classification accuracy for simplehome security camera. 

 

 
Fig. 2. Classification accuracy for simplehome_XCS71003WHT security 

camera. 

 

VIII.  CONCLUSIONS AND FUTURE WORKS 

Though the results, by botnet, for each attack on each 

device, for all three classifiers, show very high ADRs and 

classification accuracy (over 99%) with regard to 

determining whether an IoT device is attacked by a particular 

botnet, we can say that, on the average, the RF algorithm 

performed the best and SVM performed the lowest of the 

three algorithms. The high F1 scores show the robustness of 

three algorithms used.   

This being an initial study, we used all the features in the 

dataset. As a follow-up study, it would be good to do feature 

selection and see which of the features perform the best for 

each attack for each device. A detailed study of the features 

would also be useful information. For example, it would be 

interesting to see if each of the attacks on the security 

cameras had similar characteristics or each of the attacks on 

the doorbells had similar characteristics, etc. This would be 

helpful in determining how to handle and prevent future 

attacks.     
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