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Abstract—The clinical diagnosis of breast cancer in real life is 

a comprehensive process which needs to consider different 

sources of information and use different medical examination 

methods according to different stages of the disease. First, 

routine and more economical medical examination should be 

carried out according to the needs of the disease, and then more 

accurate but expensive examination should be carried out 

according to the condition. When the data is seriously missing 

while the required features are selected, it will seriously affect 

the accuracy of the traditional comprehensive diagnosis model. 

A large amount of data is missing due to partial inspections that 

have not been performed within a certain period of time. At this 

time, the accuracy of traditional model will be greatly reduced. 

In order to solve this problem, this paper proposes a progressive 

breast cancer diagnosis strategy using multi-criteria and 

multi-classifier fusion that realizes the development according 

to the course of disease and continuously supplements the 

examination information to achieve a progressive 

comprehensive diagnosis of breast cancer. The architecture also 

has good scalability, which can be extended to more types of 

classifiers and input information of different modes, so as to 

achieve multi-criteria and multi-source comprehensive decision. 

Compared with the traditional multi-source breast cancer 

comprehensive diagnosis strategy, the experimental results 

show that the progressive breast cancer comprehensive 

diagnosis strategy has better predictive performance and 

clinical practicability. 

 
Index Terms—Breast cancer, multi-classifier fusion, 

multi-modal fusion, progressive diagnosis. 

 

I. INTRODUCTION 

Breast cancer has become the most common cancer and the 

leading cause of cancer death among women in China [1]. 

The accurate diagnosis of breast cancer involves multiple 

data, wide dimensions and strong heterogeneity of physical 

and chemical indicators. Due to the limited medical resources 

and the further pursuit of improving the accuracy of diagnosis 

and treatment, artificial intelligence has broad application 

prospects in the classification, diagnosis and prognosis 

prediction of breast cancer. In the actual clinical diagnosis of 

breast cancer, the patient is firstly given some economic and 

routine tests such as blood routine and mammary 

molybdenum target for preliminary screening. Secondly, 

according to the different conditions of the patient, the doctor 
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decides to perform more accurate special tests such as blood 

tumor markers examination, breast MRI, etc. Finally, 

according to the preliminary examination, if the condition 

requires, more accurate traumatic examinations such as 

needle biopsy of the breast and immunohistochemistry will 

be performed [2]. Different types of clinical examinations 

have different data characteristics, evaluation standards and 

indicators with different weight. Therefore, when using 

artificial intelligence methods for breast cancer auxiliary 

diagnosis, individual models are suitable for different types 

of examinations. Whether these data with distinct 

characteristics should be treated independently or regarded as 

a complete problem is a key to modeling. From the 

perspective of clinical medicine, effective breast cancer 

diagnosis must be derived from multi-source data. 

Multi-modal features as input make it possible to combine 

features with classifiers. For example, whether a modal 

feature should be input into a classifier or all features should 

be input into one classifier further increases the burden and 

complexity of this problem. Since different classifiers may 

classify different information, people want to obtain a more 

reliable model by maximizing the use of this information 

instead of choosing the best information from the available 

classifiers. The lack of standardized assessment techniques 

for classifier performance, such as repeatability and clinical 

applicability also complicates the decision-making process. 

However, exploring an effective method to manage 

complicated clinical information and selecting an appropriate 

classifier for predictive modeling still requires continuous 

research and verification in the actual clinical environment. 

At the same time, it is a very realistic problem which is how 

to ensure the validity of models due to different inspection 

items under different time dimensions. This is the premise 

that the comprehensive diagnosis model of breast cancer has 

good universality and can be applied to clinical diagnosis. 

Modal refers to the way in which something happened or 

experienced [3]. Each source or form of information can be 

regarded as a modal. If a research problem contains multiple 

modes, it is called multi-modal. A model to integrate 

multi-source and multi-modal clinical data for effective 

breast cancer diagnosis must involves multi-modal fusion. 

Multi-modal fusion methods can be divided into three 

categories: feature-based fusion, decision-based fusion, and 

hybrid fusion [4]. Feature-based fusion refers to the fusion of 

data in different modalities directly at the level of modal 

features [5]. Due to the difference in the amount of different 

modal data, feature distribution and representation methods, 

in order to better reduce data imbalances, reduce feature 

redundancy and mine data associations, a variety of 

optimization algorithms based on feature fusion have been 

generated. Bishop et al. [6] proposed controlling redundant 

features by adding sparse regularized silver to the objective 
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function. Ngiam et al. [7] proposed a coupled modal deep 

autoencoder (DAE), which learns high-dimensional abstract 

features through deep neural networks. These features have 

better expression capabilities. In terms of clinical application, 

Viceconti et al. [8] proposed a multi-dimensional 

comprehensive medical information management and 

analysis system that comprehensive biomedical information 

such as biology, omics, physiology and including space, time 

to integrate these highly heterogeneous biological data. 

Decision-based fusion uses different models for different 

feature patterns and the combination of decision values uses a 

fusion mechanism, such as averaging, voting or using a 

learning model. It allows predictions without one or more 

eigenmodes or parallel data, but ignores low-order 

interactions between eigenmodes. For example, Emaminejad 

et al. [9] trained a naive Bayesian network classifier using 

eight age features and trained a multi-layer perceptron 

classifier using two genomic biomarkers to predict the risk of 

cancer recurrence that applied several fusion methods to 

combine the predicted risk scores generated by these two 

classifiers. Hybrid fusion is a strategy to try to use the 

advantages of the two methods in a common framework. For 

example, Shoshtari et al. [10] predicts the course of multiple 

sclerosis based on the fusion of information from myelinated 

water imaging (MWI), diffusion tensor imaging (DTI) and 

resting state functional magnetic resonance imaging 

(RSFMRI). 

 

II. MODEL 

A. Model Overview 

In this study, a progressive breast cancer diagnosis model 

based on multi-modal and multi-classifier fusion is proposed. 

It is hoped that the comprehensive diagnosis of multimodal 

breast cancer will be more practical and effective in clinical 

practice. Feature classifier fusion is essentially a 

Multi-criteria Decision Making (MCDM) problem, which is 

used to deal with situations where a set of variable factors 

exists. MCDM attempts to find the best alternative (or assign 

weight) among a set of alternatives by considering certain 

criteria for alternatives. Generally speaking, the MCDM 

program first determines a set of standards through which all 

optional qualities are evaluated and a series of judgments are 

made. Then an aggregation process transforms the evaluation 

matrix into a vector to represent each alternative result [11]. 

For the current research of feature classifier, the prediction 

output of different classifiers can be used as an alternative 

scheme of MCDM. 

Feature classifier fusion is essentially a decision-making 

process which involves quantifying the contribution of each 

alternative output with specific criteria to measure the quality 

of the output, such as accuracy, AUC, sensitivity and 

specificity. The whole scheme consists of five process parts: 

feature extraction, data preprocessing, feature selection, 

classifier-level fusion and modal-level fusion. The overall 

process is shown in Fig. 1. At the same time, in order to 

realize progressive diagnosis, the mechanism of missing 

modal information is added to make the application of the 

model more flexible and more practical. From the perspective 

of mode, this model integrates three kinds of data information: 

blood routine, blood tumor markers and 

immunohistochemistry, which can not only complement each 

other, but also facilitate the actual clinical situation of 

progressive diagnosis and treatment. 
 

 
Fig. 1. Schematic diagram of the overall scheme. 

 

 The model integrates six classifier information: random 

forest (RF) [12], decision tree (DT) [13], k-nearest-neighbor 

(KNN) [14], support vector machine (SVM) [15], logistic 

regression (LG) [16], Long Short Term Memory networks 

(LSTM) [17]. RF is a kind of statistical learning theory. It 

uses bootstrap resampling method to extract multiple samples 

from the original samples, modeling the decision tree of each 

bootstrap sample, and then combining the prediction of 

multiple decision trees to get the final prediction results by 

voting. DT adopts the top-down recursive method, and its 

basic idea is to construct a tree with the fastest entropy 

decline by taking the information entropy as the 

measurement. At the leaf node, the entropy is 0. It has the 

advantages of readability and fast classification. KNN 

algorithm is a basic classification and regression algorithm. 

Its basic implementation uses a lazy learning process of 

majority voting, that is, it is actually a memory-based 

learning method. It simply counts the maximum number of 

labels in the K nodes closest to the target point to give the 

target point.  

SVM is a two-class classification model. Its basic model is 

the linear classifier with the largest interval defined in the 

feature space. The learning algorithm of SVM is an 

optimization algorithm for solving convex quadratic 

programming. L R is a machine learning method for solving 

binary (0 or 1) problems, used to estimate the likelihood of 

something. Logistic regression assumes that the dependent 

variable y follows a Bernoulli distribution and linear 

regression assumes that the dependent variable y follows a 

Gaussian distribution. Therefore, there are many similarities 

with linear regression. LSTM is a special RNN that can learn 

long dependency. It was improved, popularized by many 

people, mainly to solve the problem of gradient 

disappearance and gradient explosion in the process of long 

sequence training.  

In the fusion strategy part, this paper proposes a two-level 

fusion scheme, namely classifier-level fusion and 

modal-level fusion. The two-level fusion strategy can ensure 

the classification accuracy of single-mode data while 

ensuring the interpretability of the fusion between 

multi-mode data and the accuracy of classification results, 

reducing the coupling between different modes, and 

facilitating the increase and decrease of modal types. 

Different classifier information complements each other can 

improve the accuracy and avoid the selection of the best 

classifier at the same time. Modal level fusion has good 

universality in the face of multi-source data with different 

characteristics. The model framework is shown in Fig. 2. 
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Fig. 2. Model frame diagram. 

 

B. Feature Extraction and Selection 

The data comes from real medical data of a medical 

institution in Shanghai. Breast cancer-related examination 

data are selected into three categories: complete blood count, 

blood tumor markers, and immunohistochemistry. These 

three categories are also typical indicators for different stages 

of the breast cancer diagnosis. At the same time, age and 

gender were also selected as supplementary characteristics. 

Since these different kinds of data are derived from real data, 

they are stored in different databases, and some of them come 

from free text. Therefore, a series of preprocessing work is 

required. Firstly, the data of breast cancer and healthy 

patients were screened from the overall database. Secondly, 

data splicing is performed, and the data in different databases 

are connected according to attributes such as the medical card 

number, the consultation serial number, and the report 

number to form a comprehensive attribute sub-table. Thirdly, 

data cleaning is performed to remove redundant, blank and 

other impurity data. Finally, we use the regular matching 

method to extract the physical and chemical inspection 

information from the free text in the sub table and build a new 

sub table. 

Feature selection is a process which helps to select a small 

number of explanatory features for model construction. It has 

been proved to help reduce the chance of over fitting and 

make the model more consistent with clinical practice with 

interpretability [18]. In this paper, lasso and random forest 

with reduced mean accuracy were used for feature selection. 

The Complete Blood Count is selected eleven items: BA # 

BA% LY # LY% MCH MCHC MCV MPV NE # NE% RBC. 

The neutrophil percentage (NE%) of patients in the breast 

cancer group was (63.62 ± 7.54) %, the number of basophils 

(BA#) was (0.04 ± 0.039) × 109 / L, the percentage of 

basophils ( (BA%) is (0.50 ± 0.317)%, the mean corpuscular 

volume (MCV) was (87.85 ± 5.71) fL, the mean corpuscular 

hemoglobin (MCH) was (28.98 ± 2.76) pg, the mean 

corpuscular hemoglobin concentration (MCHC) was (331.2 

± 17.46) The mean platelet volume (MPV) was (8.66 ± 0.97) 

fL. The above index values in patients with benign breast 

group were (61.16 ± 7.47) %, (0.03 ± 0.011) × 109 / L, (0.43 

± 0.213) %, (85.46 ± 7.49) fL, (27.96 ± 3.51) pg, (326.0 ± 

18.78) g / L, (8.43 ± 0.83) fL. Comparing the two groups, the 

breast cancer group was higher than the benign breast group 

and the differences were statistically significant (P <0.05). 

The number of lymphocytes in patients with breast cancer 

(LY #) It is (1.85 ± 0.49) × 109 / L, the percentage of 

lymphocytes (LY%) is (27.46 ± 6.78) %, and the number of 

red blood cells (RBC) is (4.59 ± 0.42) × 1012 / L. The above 

indexes of patients in the benign breast group were (1.98 ± 

0.49) × 109 / L, (29.48 ± 6.83) %, and (4.70 ± 0.39) × 1012 / 

L. Compared with the two groups, the breast cancer group 

was lower than the benign breast lesion group. The difference 

was statistically significant (P <0.05). It shows that the data is 

reasonable from the selected indicators in the importance of 

the indicators and the statistical differences of the indicators 

and the selected indicators have clinical diagnostic 

significance in combination with the verification of clinical 

related literatures [19]. 

 
TABLE I: DATA MAPPING TABLE 

Indicator Name Raw Data Map Data 

Sex 
Female 1 

Male 0 

ER PR Ki67 HER2 

（-） 1 

（+） 2 

（+-++） 2.5 

（++） 3 

（++-+++） 3.5 

（+++） 4 

 

TABLE II: THE SUMMARY OF EXPERIMENTAL DATA 

                              Quantity 

Data Set 
Breast Cancer Healthy 

Complete Blood Count 1931 2031 

Blood Tumor Markers 1519 906 

Immunohistochemistry 1013 501 

 

TABLE III: THE SUMMARY OF DATA SET CHARACTERISTICS 

Data Set Feature Name 

Complete Blood Count 
BA# BA% LY# LY% MCH MCHC MCV 

MPV NE# NE% RBC 

Blood Tumor Markers CA125 CA153 CA199 CEA 

Immunohistochemistry ER PR Ki-67 HER2(CerbB-2) 

 

Four blood tumor markers were selected: carbohydrate 

antigen (CA) 153, CAl25, CAl99, carcinoembryonic antigen 

(CEA). The CA125 of patients in the breast cancer group was 

(43.6 ± 20.7) U / ml, the CA153 was (34.8 ± 15.2) U / ml, the 

CA199 was (40.4 ± 11.2) U / ml and the CEA was (6.1 ± 2.5) 

ng / ml. The above indexes of benign breast cancer group 

were (15.4 ± 7.9) U / ml, (8.2 ± 2.9) U / ml, (17.8 ± 5.9) U / ml 

and (2.4 ± 1.4) ng / ml. Compared between the two groups, 

the breast cancer group was higher than the benign breast 

group, and the differences were statistically significant (P 

<0.05). Consult the medical literature to prove that the 

selected indicators have clinical diagnostic significance [20]. 

Four immunohistochemical indicators were selected: 

Progesterone receptor (PR), estrogen receptor (ER), human 

epidermal growth factor receptor-2 (HER-2/CerbB-2), 

nuclcar-associated antigen Ki- 67 (Ki-67). HER-2 and 

CerbB-2 are different representations of the same indicator. 

Immunohistochemistry is divided into six grades from (-) to 

(+++). The specific mapping table is shown in the Table I. 

Referring to the medical literature, these indexes have the 

significance of medical clinical diagnosis [21]. 
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Table II shows the data types and quantities of the data. 

Table III shows the characteristics of clinical indicators that 

selected for each modal. 

C. Classifier Fusion Based on MCDM 

According to the performance of training prediction, this 

model estimates the weight of the output scores of each 

classifier. Specifically, n classifiers are defined, each 

classifier is Ci (i = 1, 2, …, n), and the corresponding 

prediction probability is represented by Pi. The prediction 

performance of each classifier Ci in the training verification 

stage can be quantified by evaluation criteria M, such as 

accuracy, AUC, specificity and sensitivity. The evaluation 

matrix D is formed by di, j (I = 1, 2, …, N, j = 1, 2, …, M) the 

number of rows N represents different classifiers and the 

number of columns M represents each evaluation indexes. 

The weight of each evaluation index is expressed as aj (j = 1, 

2, …, M). Here we simply set aj to 1 / M. 

Input an N * C evaluation matrix, the evaluation index 

weight aj, and the evaluation matrix is normalized as in 
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d

d
d

N

k ji

ji
,...,2,1,,...,2,1,'

1

2

,

,


 

.                (1) 

Evaluation matrix multiplied by index weight as in 

MjNiadd jjiji ,...,2,1,...,2,1,''' ,,  .                   (2) 

Define the maximum and minimum values for each 

evaluation index as in 
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Assign weights to each evaluation object as in 

)/(' max,min,min, iiii DisDisDisw  .                  (5) 

Weight normalization as in 
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D. Classifier-Level Fusion 

The purpose of classifier-level fusion is to have better 

classification results for different data, while avoiding the 

problem of optimal classifier selection. Classifier fusion 

refers to the weighted summation of each classifier according 

to the evaluation matrix. In a single mode, a k-fold 

cross-validation is applied to the training data set to obtain 

the prediction ability pi,j (i=1, 2, …, N, j=1, 2, …, k) of each 

classifier. 

The prediction ability is calculated from the evaluation 

matrix to calculate its accuracy, area under the curve (AUC), 

specificity, sensitivity and then construct the corresponding 

evaluation matrix Dk
N, M. Since the weight of each evaluation 

index is set equal here, pi,j is the average of the evaluation 

matrix column direction. The prediction probability of each 

classifier is the weighted average of each classifier, as in 

                             
, *1

N

j i j mj
P p W


 .                                (7) 

E. Modal-level Progressive Fusion  

The purpose of mode level fusion is to consider the 

information of different modes and various factors. This is 

more in line with the real-world requirements for breast 

cancer diagnosis. Its core idea is to give different weights to 

different modes, which means that different modes have 

different influence on the final results, and the results of each 

mode classification are weighted and averaged. There are S 

modalities, and the modal data flags are fn (n = 1,2, ..., S). 

Using classifier fusion Pj, similar to classifier fusion, Ws can 

be obtained according to Section B.  

In order to realize the gradual mechanism, when calculating 

the modal prediction probability, only the modal with fn = 1 is 

considered. When fn = 1, Wj = 0. Calculate the final output 

probability: 

        
S

j

jj

S

j

j WWPP /）（  .                          (8) 

F. Model Training and Testing Process 

After the above theoretical derivation, according to the 

above ideas to build the model. The idea of model training is 

to modify the performance of the weight parameter 

optimization model after the initial model has been iterated 

for several rounds, and then stop the iteration after reaching 

the set optimization goal to get the final model with better 

performance. 

 The training process is as follows: 

1) Extract the characteristics of breast cancer clinical 

indicators from real world clinical databases including 

demographics, blood routine, blood tumor markers, and 

immunohistochemistry. Each category contains data on 

breast cancer patients and healthy people. 

2) Feature extraction using LASSO and random forest with 

reduced average accuracy. 

3) The selected features in each mode are input into six 

classifiers: RF, DT, KNN, SVM, LG and LSTM. 

4) Calculate the weight wm (m = 1, 2, ..., 6) of each classifier 

according to the evaluation matrix. 

5) According to the results of the fourth step of different 

modalities, the modal weights Wn (n = 1, 2, 3) were 

calculated according to the evaluation matrix. 

The trained model is obtained through the above process. 

In order to test the model performance and later practical 

application, the following describes the test process 

 The test process is as follows: 

1) Extract the clinical information of breast cancer from the 

patients to be tested. 

2) Select the features selected during training and fill in the 

corresponding modal data flag fn (n = 1, 2, 3). If some 

checks have not been performed, the modal is set to 0, 

otherwise it is set to 1. 

3) Input the selected features into the trained RF, DT, KNN, 

SVM, LG, LSTM and perform classifier decision fusion 

based on the wm (m = 1, 2, ..., 6) obtained through training 
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4) Perform modal-level decision fusion based on modal 

weights Wn (n = 1, 2, 3), modal data flags fn and then 

obtain prediction results. 

 

III. EXPERIMENT 

A. Comparing Classifiers in Single Modal 

The experimental results are as shown in the Table IV. 
 

TABLE IV: THE COMPARISON RESULTS OF SINGLE CLASSIFIER AND 

CLASSIFIER FUSION IN SINGLE MODAL 

               

Accuracy        

Classifier 

 Complete 

Blood 

Count 

Blood 

Tumor 

Markers 

Immunohisto- 

chemistry 

RF  0.7959 0.8223 0.8392 

DT  0.7577 0.7754 0.8233 

KNN  0.7627 0.8292 0.8051 

SVM  0.7361 0.7937 0.8418 

LG  0.7253 0.8128 0.8137 

LSTM  0.7926 0.8061 0.8225 

Classifier Fusion  0.8161 0.8325 0.8639 

 

To verify the validity of classifier-level fusion, the 

accuracy lists of RF, DT, KNN, SVM, LG, LSTM in 

complete blood count, blood tumor markers and 

immunohistochemistry are validated. The accuracy after 

classifier fusion is also listed in Table III. The optimal blood 

routine single classifier is RF that accuracy is 79.59%, the 

optimal model of blood tumor marker single classifier is 

KNN that accuracy is 82.92%, and the optimal model of 

immunohistochemical single classifier is SVM that accuracy 

is 84.18%. It can be seen that different classifiers are suitable 

for data with different data characteristics. In order to obtain 

better accuracy, different classifiers need to be selected 

according to different data. At the same time, experiments 

also prove that the performance of the classifier fusion 

method based on multi-criteria decision fusion is better than 

the strategy using a single classifier.  

 
TABLE V: THE COMPARISON OF DIFFERENT FUSION METHODS 

                

Evaluation 

Fusion  

Accuracy AUC Specificity Sensitivity 

MV 0.8725 0.9186 0.8909 0.8381 

WAF 0.8916 0.9302 0.9150 0.8726 

Proposed Model 0.9137 0.9346 0.9225 0.8862 

 

B. Comparing Classifiers in Single Modal 

The experimental results are shown in Table V. To verify 

the effectiveness of the different fusion methods, the majority 

voting (MV) [22], the weighted average fusion (WAF) [23] 

and the proposed model are compared and analyzed. Majority 

voting is a simple method of decision level fusion. This 

method is similar to the voting process in the election process. 

It uses a single classifier to output categories for a given test 

sample, and then synthesizes the classification results of 

multiple classifiers to divide the final categories of the test 

sample into a class with the same decision of most classifiers. 

Weighted average fusion is a conventional fusion method. Its 

idea is that different data or classifiers have different 

importance, so different classifiers are given different 

weights and the classification results of different classifiers 

are weighted average to get the final classification results. 

Pre-processed Complete Blood Count, blood tumor markers and 

immunohistochemical data were simultaneously input into 

the model. The results show that the proposed model is 

superior to the other two fusion methods in terms of accuracy, 

AUC, specificity and sensitivity. It is proved that the fusion 

strategy used in this paper is effective. 

C. Comparison with Non-progressive Model 

The experimental results are shown in Table VI. In order to 

prove that the progressive model is more consistent with the 

actual clinical diagnosis, the progressive model and the 

non-progressive model were compared.  
 

TABLE VI: THE COMPARISON OF DIFFERENT FUSION METHODS 

                      

Evaluation 

Test Conditions 

Accuracy AUC Specificity Sensitivity 

Non-progressive 

Remove Complete 

Blood Count 
0.7052 0.7783 0.7453 0.6461 

Remove Blood Tumor 

Markers 
0.6976 0.7901 0.7356 0.6250 

Remove 

Immunohistochemistry 
0.6519 0.7588 0.7072 0.6122 

Progressive 

Remove Complete 

Blood Count 
0.8829 0.9236 0.8957 0.8634 

Remove Blood Tumor 

Markers 
0.8760 0.9026 0.8711 0.8527 

Remove 

Immunohistochemistry 
0.8406 0.8986 0.8516 0.8126 

 

Both experiments use the model proposed in this paper, 

and their difference is only in whether to add a progressive 

mechanism. Model performance was compared when blood 

routine, blood tumor markers and immunohistochemical data 

were removed. Compare the performance of progressive and 

non-progressive models from four aspects: Accuracy, AUC, 

Specificity, and Sensitivity. The experimental results show 

that when the data is missing, the accuracy of the 

non-progressive model is greatly reduced and the 

performance of the model using the progressive mechanism 

is slightly better than the model without the progressive 

mechanism. Therefore, it is necessary to adopt a progressive 

model, which is also in line with the actual situation. 

 

IV. CONCLUSION 

In this paper, we discuss the integration of multi-source 

and multi-modal data in the clinical diagnosis and treatment 

of breast cancer due to the lack of data due to different stages 

of diagnosis. Firstly, a two-step fusion strategy is proposed 

for multi-source and multi-modal data fusion. The first step is 

to fuse the classifiers which improves the generality of the 

model and avoids the problem of optimal classifier selection. 

The second step of multi-modal fusion solves the problem of 

information fusion of different data sources with different 

data characteristics, and has good scalability to easily add 

new data types to the original model. Secondly, according to 

different actual clinical diagnosis and treatment due to the 

lack of examination items due to different stages of the 

disease, the accuracy of the model is seriously affected by the 

lack of data. Modal data flags have been added to indicate 
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missing data and adjusted accordingly in the final modal level 

fusion. 
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