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Abstract—Recurrent spiking neurons with lateral inhibition 

connection play a vital role in human’s brain functional abilities. 

In this paper, we propose a novel noise reduction method that is 

based on neuron rate coding and bio-inspired spiking neural 

network architecture. The excitatory-inhibitory topology in the 

network acts as the temporal characteristic synchrony and 

coincidence detector that removes uncorrelated noisy spikes. A 

LIF source encoder is introduced along with the network. The 

network uses generated binary Short-Time Fourier Transform 

(STFT) masks according to the rate of processed spike train, 

which is used to reconstruct the denoised speech signal. The 

technique is evaluated on noisy speech samples with 5 types of 

real-world additive noise with different noise strength. 

 
Index Terms—Spiking neural network, speech enhancement, 

noise reduction, lateral inhibition. 

 

I. INTRODUCTION 

Speech enhancement methods are central to many 

real-world application designs e.g. hearing aids. Hearing aid 

technologies are usually designed with the aim to provide 

reinforced speech signal to hearing impaired people to assist 

their auditory system processing information under varying 

noisy environments. Hearing aid technologies are usually 

portable devices with limited size, weight, and power 

(SWaP). Such desirable SWaP profile increases the level of 

challenge of developing speech enhancement algorithms in 

terms of the characteristic that can satisfy both noise 

suppression quality and energy efficiency.  

In the past decades, numerous speech enhancement 

techniques have been investigated by researchers. Spectral 

subtraction [1] subtracts an estimated noise spectrum from 

the noisy signal to produce the denoised spectrum. Ephraim 

and Malah introduced the minimum mean-square error 

(MMSE) [2] that reduces the residual noise level without 

significantly affecting the original speech components. The 

optimally modified log spectral amplitude estimator 

(OMLSA) [3] and improved minima controlled recursive 

averaging (IMCRA) [4] offer high performance in speech 

enhancement tasks. 

Early work using shallow neural networks [5], [6] 

estimated Signal-to-Noise-ratio (SNR) based on the 

spectrogram which is then subsequently used to reduce the 

noise in each frequency band. In [7] and [8] speech 

enhancement was considered as a classification problem to 

predict an ideal mask in the time frequency domain to 
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estimate the presence of speech components. Modern mobile 

technologies tend to include multiple algorithms using one or 

more power demanding DSP or FPGA cores to obtain 

maximal real-world performance. A main challenge of future 

efficient mobile devices development lies in the trade-off 

between computing capability and power consumption. 

Although DNN based models can achieve effective noise 

reduction, they usually require large datasets to represent 

various types of noise and multiple hidden layers with a 

significant number of free parameters. The computational 

cost and power-hungry nature of DNN based speech 

enhancement technique makes it difficult for them to be 

applied on SWaP limited devices. 

Compared to standard artificial neural networks, spiking 

neural networks (SNNs) can achieve significant power 

efficient computing by employing simplified bio-inspired 

neuron model as the fundamental processing unit and the 

event-based spike train as information carrier. Recently, 

SNNs have been successfully applied in the design of 

intelligent systems such as object detection [9], speech 

recognition [10] and speech enhancement [11], [12]. 

Furthermore, many developed neuromorphic computing 

platforms have demonstrated tremendous potential in 

real-world power limited applications. The IBM TrueNorth 

[13] system consists of 5.4 billion transistors with only 

70mW power density consumption, which accounts for 

1/10000 of traditional processing units. The SpiNNaker [14] 

platform developed by Manchester provided ASIC solutions 

to hardware implementation to SNNs. It utilized multiple 

ARM cores and FPGAs to configure the hardware combined 

with PyNN [15] software API, which achieved completely 

scalable SNN hardware architecture with a large scale neuron 

capacity. The emergence of these hardware technologies 

demonstrates a strong suitability of applying power efficient 

neuromorphic computing into real world mobile units. 

In this paper, we utilize the SNN’s power efficient 

bio-inspired computing to propose a spectrogram-based rate 

coding method that can contribute to the efficient lateral 

inhibition SNN based speech enhancement. The connectivity 

of lateral inhibitory SNN is applied in a layerwise local to 

global competitive fashion. The proposed architecture does 

not need to be trained to react for specific noise type but only 

uses forward propagation with naturally event-based 

information processing. 

The remainder of the paper is organized as follows. 

Section II will introduce the concepts of neural 

synchronization with lateral inhibition in SNNs and indicate 

how this can be useful for speech enhancement. Section III 

proposes the method of transforming the speech to spike 

domain. Section IV provides the structural information of the 

spiking neural network. The experiment and evaluation 
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process will be described in Section V. Section VI provides 

the SNR improvement results on 5 noise types. Conclusions 

are provided in Section VII. 

 

 
Fig. 1. Illustration of two LIF neuron SNN. (a) two LIF neurons (A and B) 

with lateral inhibitory connections are receiving different input stimuli, the 

output of A and B are fed in to neuron C. (b) Input neurons (A and B) firing 

frequency change over a certain time t. Where A’s firing frequency linear 

change from 28Hz to 22Hz, B’s firing frequency remain constant at 25Hz. (c) 

The output spike train observed from A, B and C. The red dashed box 

highlights the neural synchronous behavior due to lateral inhibition. 

 

II. NEURAL     YNCHRONIZATION 

The use of lateral inhibition as neural synchrony and 

coincidence detector was investigated by Abbott [16]. A 

simple SNN is illustrated in Fig. 1. It comprises 3 spiking 

neurons that each produce a spike train output. In Fig.1(a) 

neuron A and B are Leaky-integrated and fire (LIF) [17] 

neurons that interacts with each other via latera inhibitory 

connections. A simplified differential equation that describes 

the membrane potential dynamics of a LIF neuron model can 

be expressed as: 

𝑑𝑣

𝑑𝑡
=

𝑅𝑚𝑒𝑚𝐼(𝑡) − 𝑣

𝜏𝑚𝑒𝑚
 (1) 

where 𝑣  is the membrane potential, 𝑅𝑚𝑒𝑚  denotes the 

membrane resistance, 𝜏𝑚𝑒𝑚 refers to the membrane constant 

and 𝐼(𝑡)  stands for the synaptic input current. The LIF 

neuron reacts to input stimuli that raises a certain amount of 

membrane potential. Once the membrane potential is greater 

than a pre-defined membrane threshold, the neuron will emit 

constant amplitude spikes at a certain frequency which is 

dependent on the magnitude of membrane potential. The 

inhibition in the example is modelled as one decreasing its 

membrane potential due to the other neurons’ firing activity. 

As illustrated in Fig. 1(a), Neuron B is inhibited from firing if 

Neuron A is firing and vice versa. Output neuron C simply 

receives the output spikes from A and B to generate output 

spike trains. Fig. 1(b) shows the input stimuli (synaptic input 

current) to neurons A and B are different over a certain time 

period 𝑡 . One input excitation makes the neuron firing at 

constant rate of 25Hz (A in Fig. 1(c)) while the other input 

makes the neuron’s firing rate linear changing from 28Hz to 

22Hz (B in Fig. 1(c)) As shown in the highlighted red 

rectangular in C in Fig. 1(c), the output neuron C will fire 

maximally in a short period when A and B’s firing rates are 

approximately equal. When they have different firing rates, 

the two neurons tend to inhibit each other in turn leading to 

sparse events, until their firing rates reach the range of 

synchronization (nearly the same). Cornelius et al. [11] 

demonstrated that multiple fully connected lateral inhibitions 

are able to exploit the inhibitory process between neurons, to 

remove uncorrelated spikes (frequency difference). This 

mechanism can be extremely useful when the speech 

components are able to be coded into spike trains with similar 

frequencies.  

 

 
Fig. 2. The firing rate dynamics experiment of a LIF neuron with simulation 

time step of 100us, the input current linear changes from 0 to 500mA where 

the neuron firing rate becomes unstable after 115mA.  

 

III. SPEECH SOURCE CODING 

We use the Short-Time-Fourier-Transform (STFT) to form 

the complex spectrogram. The STFT is formed using a 

Hamming window length of 1024 sample to provide high 

frequency resolution with 80% overlap which results in 514 

frequency channels ranging 0 to 8kHz. The absolute value of 

output complex matrix from the STFT is log scaled and 

normalized to the input current to input neurons. The number 

of input neurons is set to be the same as the number of 

frequency channels according to the spectrogram. 

The use of the lateral inhibitory connections preserves the 

spike trains that have approximately the same frequency. 

Each LIF neuron responds to noise and speech components to 

generate fixed frequency spike train during every single time 

resolution bin. The LIF neuron is expected to have a higher 

firing rate in a STFT time resolution bin to the speech 

components. In contrast, the noise components should be 

converted to low frequency spike trains which are easier to be 

distinguished by lateral inhibition. The firing frequency of a 

LIF neuron usually is proportional to its input, but this is not 

obvious when simulating it at a very small time step. Fig. 2 

shows the firing rate dynamics of a LIF neuron with input 

current linear changing from 0 to 500mA with the simulation 

time step of 100us. The firing rate profile displayed in Fig. 2 

ensures the LIF neurons are able to response differently to a 

certain range of synaptic input currents during a single time 

bin of STFT temporal resolution (i.e. the time difference 

between two adjacent value in a same frequency band). The 

neuron firing frequency becomes unstable when the input 

current is over approximately 115mA. Thus, the range of 

input current from 0mA to 115mA is scaled to provide a 

balanced input current normalization. In our case, the input 

neuron firing rate ranges 0-15Hz which means there will be 

maximally 15 spikes that can be observed in a single time 

resolution bin of STFT. The full spectrogram is input to 514 

LIF neurons by updating the input current of each input 

neuron based on STFT time resolution. Fig. 4 shows the 

results of spike coding method applied on the clean speech 

sample. For comparison purposes, the spectrogram of the 

same speech sample is shown in Fig. 3. It can be seen that the 

method can represent the temporal-frequency pattern of the 

speech signal. Fig. 5 demonstrates the coding results for 

white noise corrupted speech sample with SNR=1dB. The 

resulting raster plot shows the speech components are 
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densely packed (high frequency spike trains). The goal of the 

SNN is to remove the sparse distributed spikes resulting from 

noise and preserve the speech elements.  

 

 
Fig. 3. Log Spectrogram of clean speech signal. 

 

 
Fig. 4. Spike coding result of clean speech samples. 

 

 
Fig. 5. Spike coding result of noisy speech signal (with white noise SNR = 

1). 

 

IV. SNN WITH LATERAL INHIBITION 

In [12], lateral inhibitory SNN with neighborhood 

connectivity [18] has been successful demonstrated on 

Gaussian while noise corrupted speech. Unlike the 

approaches described in [12] and [18] which uses global 

inhibitory actions we consider a local to global inhibitory 

connection strategy. The lateral inhibitory connections are 

built with different inhibitory radius for each layer. The 

inhibitory radius defines how neurons in a layer that are close 

to one another are connected laterally. The basic idea is 

described in Fig.6. The dynamic inhibitory radius, results in a 

local to global neural temporal competition while the lateral 

inhibition simultaneously removes spikes that are sparsely 

distributed in time from small set of frequency channel to all 

frequency bands. To adapt the different inhibitory connection 

radius for each layer, the inhibitory strength is modelled to 

exponentially decay in terms of synapse length (distance 

between two neurons) rather than a constant inhibitory 

strength for all inhibitory connections: 

𝑊𝑛 = 𝐴𝑛 ∙ exp (−
|𝑖 − 𝑗|

𝐷𝑛
) ,  𝑖 ≠ 𝑗 (2)   

 
Fig. 6. Lateral inhabitation in terms of connection radius which defines how 

close the adjacent neurons can be lateral connected. 

 

where 𝑛 is the layer index, W represents the weights (strength) 

of the inhibitory synapse, 𝐴  represents the maximum 

inhibitory strength, 𝑖 and 𝑗 denote the neuron index of two 

lateral connected neurons, and D is decay constant. This is 

because it was discovered through simulation that strong 

inhibitory for large inhibitory radius (global competition) will 

result in information loss. On the contrary weak inhibitory for 

small inhibitory radius (local competition) can have little 

effect on removing unsynchronized spikes. 

 

V. EXPERIMENT 

Test clean speech corpus was obtained from the VoxForge 

open public dataset [18], where speech sample is sampled at 

16kHz. We selected 5 types of real-world environmental 

noise corrupted speech from the DEMAND noise database 

[19], including: living, office, river, kitchen and white noise. 

A range of SNR were chosen for test performance of 

proposed model (-5, 0.1, 1, 5 and 10)dB. 

To simulate the SNN we use Python and the BRIAN 

simulator [20]. We built a 3-layer SNN with each layer 

contains 514 LIF neurons that are laterally connected with 

different inhibitory radii. The connection between each layer 

is one to one using excitatory synapses. The inhibitory radius 

from layer one to three are set as: 10, 50 and 250 respectively. 

The inhibitory synapses parameters are set as {A_1=7, 

A_2=5, A_3=1, D_1=5, D_2=30, D_3=250}. The output 

from SNN is spike times of 514 neurons which represents 

514 frequency channels of STFT. The quantity of spikes can 

accurately represent the log intensity of correspond time 

frequency element. Thus, the processed spectrogram can be 

obtained by summing the number of spikes and linear 

decoding for each time resolution cell in the spectrogram. 

Due to the lack of phase in the log spectrogram we use the 

processed spectrogram as a binary mask for the original 

complex spectrogram. The mask is constructed by comparing 

the number of spikes in a spectrogram cell to a certain 

threshold, which determines the ON(1)/OFF(0) status of 

correspond location. The mask is then element by element 

multiplied to the both real and imaginary part of original 

noisy spectrogram. This preserves the original phase 

information from the complex numbers of spectrogram 

which can be used to perform ISTFT to reconstruct time 

domain signal. Fig. 7 shows an example of raster plot output 

from SNN. The spikes that are not densely packed in Fig. 5 
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are further reduced by the thresholding during decoding 

process (from raster plot to spectrogram). Fig. 8 demonstrates 

the reconstructed spectrogram using the binary mask. 

Compare to the Fig. 7, most sparsely distributed noise is 

supressed. Fig. 9 further shows an example of time domain 

signal comparison that (a) is the original clean speech, (b) is 

the noisy speech corrupted by white noise with SNR = 1dB 

and (c) is the noise reduced speech signal. 

 

 
Fig. 7. The SNN spike output, noisy spikes are significantly reduced 

compared to Fig. 5 (white noise SNR=1). 

 

 
Fig. 8. Reconstructed spectrogram (white noise SNR =1) Note sparse spikes 

are removed during the thresh hold process. 

 

 
Fig. 9. The time domain signal representation. (a) Time domain clean speech. 

(b) Time domain noisy speech with white noise SNR=1 (c) Time domain 

reconstructed denoised signal.  

 

VI. RESULT AND DISCUSSION 

Five types of noise sources were used to evaluate the 

effectiveness of the SNN based method. During the setup of 

simulations, informal listening was carried out to 

subjectively determine how successive the method performed. 

To determine the numerical speech improvement, we pass the 

clean signal through SNN and used the output signal as the 

reference target speech signal. The power of residual noise 

signal is determined by estimating the signal power during 

the time when no speech is presented. (This assumed that the 

noise signal is stationary over the presence of speech). The 

reason we do not using the subtraction to obtain the residual 

noise is because the non-linear and unsynchronized 

information processing property of SNN.  

Table I presents the results on 5 types of noise with 

different noise level. The lateral inhibitory based SNN can 

have an average improvement of SNR of 10.915dB among 5 

types noises. However, the improvement is noise type 

dependent, for example it improved only approximately 

19dB for white noise but only 8dB for living noise. We 

strongly believe that the parameter of proposed SNN should 

be dynamically tuned in terms of the noise level and type. In 

the future work, we will investigate an automated way of 

tuning the parameters. 

 
TABLE I: EXPERIMENT RESULT 

Type of Noise Original SNR Measured SNR  Enhanced SNR 

White 

-5 -5.033 13.62 

0.1 0.0662 19.48 

1 0.9662 23.08 

5 4.9662 24.48 

10 9.9662 24.62 

Living 

-5 -5.0436 3.22 

0.1 0.0109 8.29 

1 1.0111 9.61 

5 5.0254 13.95 

10 10.0229 15.022 

Office 

-5 -4.9554 2.515 

0.1 0.1049 8.016 

1 1.0234 9.07 

5 4.995 13.95 

10 10.00 15.022 

River 

-5 -4.8716 3.26 

0.1 0.0109 8.28 

1 1.149 9.75 

5 5.0254 13.96 

10 10.0229 18.72 

Field 

-5 -4.133 4.62 

0.1 0.103 9.66 

1 0.9961 10.68 

5 4.991 15.48 

10 9.996 20.8 

Kitchen 

-5 -4.8275 7.08 

0.1 0.1059 11.91 

1 1.0022 13.48 

5 5.0094 18.60 

10 9.9077 23.83 

Average Improvement 10.915 

 

The work presented has demonstrated successive noise 

reduction on real world noise using multilayer lateral 

inhibitory spiking neural networks. The lateral inhibitory 

strengthens the correlations in the time-frequency domain 

and naturally suppress the noise which are usually sparsely 

distributed. Unlike standard artificial neural networks, the 

lateral inhibitory based SNN does not need to train with 

datasets. However, during our experiment, we noticed that 

the performance of lateral inhibition is highly dependent on 

the presence of speech. In Fig.6 and Fig. 7, the noise cannot 

be efficiently removed by lateral inhibition without the 

competition from speech. This is nothing to do with the SNN 

structure but is due to the natural property of inhibitions. A 

possible solution to this is to separate the speech element 

from the noise using effective speech detection algorithms. In 

next stage of our work, we will further improve the 

performance of lateral inhibitory SNN by applying speech 

detection algorithms to detect the presence of speech. 

 

VII. CONCLUSION 

In this paper, we have presented a novel spectrogram 
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coding method and a lateral inhibitory SNN structure that 

naturally suppresses uncorrelated noise in time-frequency 

domain. It demonstrated an average of 10.915dB SNR 

improvement on 5 types noise. In addition to the using speech 

detection algorithms and tuning the network, in future work 

we would like to extend this research to the hardware 

implementation. Furthermore, with the emergence of SNN 

unsupervised learning rule i.e. spiking time dependent 

plasticity, it is envisaged that the creation of a large scale 

SNN with ability of denoising and recognition. 
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