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Abstract—Memristor is one of the best choices for 

neuromorphic computing because of its synapse-like structure 

and function. The single memristor with ion dynamics enables 

emulations of diverse synaptic plasticity significant for learning 

and memory. Moreover, several memristive crossbar arrays 

show low power consumption, high precision and high 

efficiency on physically achieving algorithmic functions. 

Although a large number of experiments have demonstrated 

great potential of memristive devices in the field of computer 

architecture design and integrated circuits, there is still a long 

way to go for their practical industrialization. This review 

concentrates on the application and function of memristors, as 

well as some critical challenges and perspectives on their future 

development. 

 
Index Terms—Memristor, neuromorphic computing, neural 

network, oxide, synaptic plasticity.  

 

I. INTRODUCTION 

Memristor [1], [2] is an intriguing electrical unit with an 

intrinsic hysteresis conductance. Physically, memristor is a 

two-terminal [3] device with a sandwich structure of 

metal/insulator/metal (MIM). The evolution of metal/defect 

conductive filaments [4] based on ion migration [5], [6] 

inside the insulator layer is the reason of that hysteresis 

conductance. When one electrode is under positive potential 

while another one is connected with negative potential, the 

metal/defect ions start to move under the external electrical 

field from one side to another, its main function is to regulate 

the high/low resistance of the memristor. It is widely 

acknowledged that synapses exist in cerebral cortex, [7] 

which are basically gray matters covering the surface of the 

cerebral hemisphere that enables the neuron communications 

between the left- and right-brain, and the structures of 

synapses are partly related to communicated function of 

human brain. Single synapse is composed of a pre-synaptic 

membrane, a post-synaptic membrane and a synaptic cleft 

between the two membranes, synaptic memory function is 

related to the inflow and outflow of calcium ions among 

those three different structures. As aforementioned, a single 

memristor unit is a sandwich structure, e.g. Ti/TiO2/Al2O3/Pt, 

[8] and it also includes ion dynamic process. The memristor 

is therefore an ideal candidate for imitating the biological 

synapses morphologically and functionally. 

Traditionally, since the data in dynamic random access 

memory (DRAM) [9] will vanish without external power, in 
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other words, DRAM is short retention, it must be refreshed 

every 16 milliseconds to ensure the proper operation. 

However, memristor does not need to be updated in a few 

days or weeks even if there is no external power because of 

its non-volatile [10] characteristic, e.g. resistant random 

access memory (RRAM) [10]-[13]. Additionally, RRAM 

device is proved to be the next generation non-volatile 

memory due to its low energy consumption (<0.1 pJ), 

[13]-[15] high speed (<1 ns), [16] excellent endurance (>1012 

switching cycles), [13] long retention (10 years) [17] and the 

smallest size (4F2) [18]. Hence, it can gracefully solve the 

size limitation of conventional transistors. Moreover, since 

memristors can be fabricated as simple cross-point devices, 

i.e. crossbar structures, [19], [20] they are able to be readily 

stacking as 3D integration array [12] with high density, 

which is feasible for breaking the memory-wall based on Von 

Neumann architecture and extending Moore's law. 

Recently, memristive arrays are highlighted for in-memory 

computing because they are based on physical diagrams of 

neural networks by using analog memristors with cross-point 

connections, enabling human brain bionics of integrated 

circuits, faster computing and high accuracy. The researches 

have tried to construct several feasible and efficient 

memristive arrays, including one diode and one memristor 

(1D1R) [13] structure, one transistor and one memristor 

(1T1R) [21], [22] structure and one selector and one 

memristor (1S1R) [20], [23] structure. By integrating diodes, 

transistors or selectors, the more precise and repetitive 

programming of memristor conductance as well as higher 

programming speed can be simply accomplished than those 

of coding and encoding based on conventional computing 

architectures. 

In this review, we demonstrated the characteristics and 

distinctive functions of memristor in both single devices and 

three forms of arrays, memristors have great potential 

compared to existing hardware devices. In addition, artificial 

neural networks with memristive devices [24] possess an 

outstanding advantage in the fields of face recognition and 

image processing [25]. We expect to presents phased 

achievements and the future challenges of memristors, and to 

provide guidance of relevant researches. 

 

II. APPLICATIONS AND FUNCTIONS OF MEMRISTORS   

A. Single Memristor Device  

Multiple researches have shown that the source of memory 

is synapse, so it is intended to develop a chip to simulate 

brain computing, the core of this chip is the function of 

simulating synapses, which is the technical advantage of 
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memristive device [26], [27]. Apparently, the top electrode 

acts like a presynaptic membrane, the biosynaptic ions 

(sodium, potassium) are like conductive ions, [6] and the low 

electrode is like a postsynaptic membrane. Functionally, it is 

widely accepted that people remember in various and 

intricate ways, such as short-term plasticity (STP) and 

long-term plasticity (LTP), [28], [29] and it can be learned 

that both STP and LTP simulated to work in organic synapses 

nanoscale memristors in an experimental research, which 

possess the capacity to serve as synapse in neuromorphic 

systems. 

 

Fig. 1. Isolated memristive device. (a) millimeter scale configuration of 

Ag/Ag2S/Pt memristive device and nanometer scale configuration. 

Reproduced from[4], American Chemistry Society. (b) stack structure of 

Pd/WOx/W memristive device. Reference [31], American Chemistry Society. 

 

 

Fig. 2. Simulation of method of memory (a) STM-to-LTM transition. (b) I–V characteristics of the Ag2S atomic switch under the ON/OFF switching operation. 

(c) (insertion) Anti-STDP synaptic feature map / STDP synaptic feature map (d) the simulated conductance of pulse programming in a PCMO device (Inset (a). 

The current compliance level can control the set resistance. Inset (b). Reset voltage control the reset resistance completely). (e)The STDP waveform is 

decomposed into two part as pre (red) and post (green) neuronal waveforms. (f) The upper panel shows that Neuron waveform shift to different ranges in time 

(Δ t) i.e. (i) negative (Δ t < 0), (ii) Δ t = 0, (iii)positive (Δ t > 0). The bottom panel shows that resultant superposition generates peak voltage Vpeak (Δ t) which 

is similar to STDP waveform. Reproduced from [31], American Chemistry Society. (a);Reference [33], Springer Nature Ltd. (b); Reference [36], Institute of 

Physics. (c); Reference [37], IEEE. (d-f). 

 

S. L. Barbera et al. fabricated the Ag/Ag2S/Pt device in 

millimeter size (Fig. 1a), [4] STP and LTP operating modes 

can be controlled by simply adjusting the volatility of the 

memristive device. There were two parameters, Ic (pulse 

mode) and the number of pulse which controlling Gmax, 

altering the electrical conductance alongside filament 

volatility. Also, A memristor device (Fig. 1b) consisting of a 

W bottom electrode, a Pd top electrode, and a WOx film, was 

developed by T. Chang et al. in order to mimic the 

STM(Short Term Memory)-to-LTM(Long Term Memory) 

[30] conversion process as shown in Fig. 2a: when different 

amounts of uniform irritation (dots) and fitted curves which 

employing the SEF (solid lines) have been applied, the 

memory retention data can be recorded, and the data are 

scaled by a prefactor I0. The memristor received a repeated 

stimulation pulse (duration for 0.4ms, amplitude for +1.3V, 

pulse interval for 60ms). After that, through reading current 

with +0.5V, 8ms loading pulses when the last incentives in 

the series [31] have finished, retention curves were 

successfully acquired. In addition, the Ag2S inorganic 

synapse was discovered by T. Ohno et al., [32] by means of 

inputting pulse repetition time, the synaptic functions of STP 

and LTP peculiarities can be imitated. In fact, the structure 

named atomic switch operating at threshold voltage (Fig. 2b) 

retains information as STP and spontaneously decays in 

response to the conductance level of the intermittent input 

stimulus, and frequent stimulation leads to the conversion to 

LTP.A valuable feature of Ag2S inorganic synapse is similar 

to a single biological synapse, enabling dynamic memory in 

every device without external pre-programming [33]. 
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Besides, numerous scientists focus on 

spike-timing-dependent-plasticity (STDP) [34], [35], K. Seo. 

et al. used nanoscale titanium dioxide double-layer resistive 

switching devices to demonstrate synaptic plasticity 

alongside spike-timing-dependent-plasticity and simulated 

memory with a simple manufacturing process and good yield 

uniformity [36], as shown in Fig. 2c, t in horizontal axis 

indicates that the presynaptic membrane and the protruding 

posterior membrane are simultaneously stimulated or not 

stimulated at the same time, whereas the vertical axis 

represents the synaptic weight, the strength of the synaptic 

intrinsic connection has confirmed the separation state of the 

conductivity change accuracy and multi-level conductance 

along with simulation of memory features. Subsequently, it 

also proves the potential of titanium dioxide double-layer 

resistance converters as synapses in achieving the function of 

neuromorphic devices by analyzing STDP and biological 

triple models deeply. And N. Panwar. et al. share completely 

new method of a series of spike-related time scales for STDP 

with W/Pr0.7Ca0.3MnO3/Pt based memristor. To generate any 

arbitrary STDP, the approach that for programing the 

required pre- and post-neuron waveforms was used. In Fig. 

2d, since G is proportional to Vpulse, the waveform of STDP 

(ΔG vs. Δt) is substituted by a voltage waveform (i.e. V vs. t) 

in Fig. 2e, and the V waveform is divided into two forms, the 

green one (V>0) is to indicate LTP, whereas the red one (V < 

0) indicates LTD. And a set or reset appears when VT± 

(resistance switching threshold) was surpassed by |Vpeak |  

(Fig. 2f). By reason of the approx. linear G vs. Vpulse (Fig. 2d), 

the STDP is produced [37]-[39]. 

In theory, the function of the synapse in the brain can be 

simulated according to the characteristics of the memristor. 

However, the structure of the brain is very complicated. The 

synapse exists as a part of the structure in the brain, realizing 

the function of the brain. Therefore, if scientists want to 

realize the function of the brain. For example, memory 

learning, it requires not only the participation of synapses. In 

other words, to simulate the computational functions of the 

brain, [40] not only memristor devices are required but also 

other unknown fields need to be developed. The truth is 

simulating synapses through memristors alone cannot fully 

realize brain function. For instance, our brain consisted of 

two hemispheres is immersed in the cerebrospinal fluid, a 

liquid environment, with two lateral hemispheres connected 

by nerve fibers, there are liquid between each structure. 

When the synapse realizes its function, the presynaptic cells 

transfer information to the postsynaptic cells by means of 

chemical signals called neurotransmitters, and this kind of 

synapse called chemical synapse, which is different from the 

way the memristor works on the integrated circuit. To 

completely simulate the brain and realize the brain-like work, 

not only microelectronic scientists but also brain 

neuroscientists are needed, in order to better simulate the 

device, we have to understand the brain more deeply. 

B. Memristor Arrays 

There are many types of memristor arrays. One is single 

memristor arrays. The structure of a single-transistor 

single-resistor (1T1R) array requires an access transistor at 

each intersection to independently gate each cell. E. J. 

Merced-Grafals et al. study the suitability of the 1T1R array 

as a synaptic component of the neuromorphic system [21]. It 

was made up of the integration of CMOS—transistors and 

tantalum oxide TaOx memristor devices with its switching 

material was put between Ta/Pt electrodes. By utilizing an 

simple pulse algorithm that makes use of the transistor gate 

voltage which controlling the SET switch operation and 

augment the programming speed of the 1T1R cell, testing and 

programming are implemented. In the Fig. 3a, the first action 

is to start a SET operation, TE (top electrode) received a 

positive voltage, while for RESET, BE (bottom electrode) 

received a positive voltage. When GE (gate electrode) is 

applied for selecting and programming the cell, a voltage is 

applied to either TE or BE [41]. By biasing the the 

transistors’ gate to the peak voltage and applying a 0.1 V bias 

at BE (see Fig. 3b), the memristor’s conductance is acquired 

[42], [43]. In order to accurately adjust the memristor’s 

conductance during the test, in Fig. 3c, After single SET and 

RESET square pulses with duration for 100 ns and amplitude 

of 1.1 V and 1.4 V separately, low bias conductance was be 

adapted as a function of Vg-set. Besides, For the purpose of 

speeding up the programming process, an accommodated 

algorithm is used to incorporate the aforesaid model, also, a 

second order polynomial using least squares is fitted with 

SET data. In addition, 1k-bit PCMO-based resistive memory 

arrays was fabricated by J. W. Jang et al. for evaluation as 

synaptic devices by means of conventional lithography. In 

the PCMO crossbar array, which can implement the signed 

weights required for learning algorithms by using G+ and G– 

to simulate positive conductance and negative conductance 

for single synapse. It is also applied to conductance 

difference, which is w (w = G+−G−), serves as the synaptic 

weight (see Fig. 3d). The experimental simulation process is 

as follows [44]: 
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GLRS represents low resistance state (LRS) conductance 

whereas GHRS represents high resistance state (HRS) 

conductance. There is a parameter α that controls the 

enhancement (αp) or suppression (αd) characteristics as well 

as a internal variable w which verifies from 0 to1. In the 

experiment, w changes due to the two different pulse were 

applied to the memristor array devices, if α>1, the 

enhancement and suppression characteristics of the device 

model are sunken, and concave-up if α<1 [5]. 

The 3D stacking structure is also of interest, B. Gao. et al. 

show the Gd-doped HfOx memristor device which composed 

of TiN, SiO2, Pt, and TiON with a vertical structure. In the 

synaptic training, as shown in Fig. 4a and Fig. 4b, the SET 

conversion and RESET conversion caused by repetitive SET 

pluses (+0.17V/1 ns) and RESET pulses (-0.13V/1 ns), 

respectively, in which their device working as binary synapse 

or analog synapse. In a neuromorphic visual system for 

pattern recognition, the first layer, which representing the 

retina, contains 32×32 neurons, and it connected with second 

layer, which representing the primary visual cortex, through 
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out 32×32×n. In addition, depending on the light intensity of 

the input mode, the neurons in the first layer are inspired and 

send a pulse to the second layer of neurons (representing the 

visual cortex) through synapse. Cortical neurons sum the 

input current and integrate it, also, the neurons with the 

Maximum input current are emitted firstly, inhibiting the 

emission of others. Then, to regulate the weight of the 

synapse, the winner neuron sends a pulse back to all retinal 

neurons. In the imitation, based on the experimental results, 

the relative resistance fluctuation (δR = R) was set to 9%. 

Besides, it recognizes the validity as a function of relative 

resistance change [12], [45], [46]. 

 
Fig. 3. Memristor array. (a)The SET and RESET operation of 1T1R cell. (b)When the DC SET operation has been applied, the Low bias conductance serves as 

a function of Vg-set for three different cells. (c) After single SET and RESET square pulses with duration for 100 ns and amplitude of 1.1 V and 1.4 V separately, 

low bias conductance was be adapted as a function of Vg-set. (d) Conductance serves as synaptic weight. Reproduced from [12], Institute of Physics (a-c). 

 

 
Fig. 4. 3D stacking structure for memristive device. Synaptic training characteristics of 3D ReRAM devices. (a) The RESET conversion caused by repetitive 

RESET pulses (-0.13V/1 ns), in which their device working as analog synapse. (b) The SET conversion caused by repetitive SET pluses (+0.17V/1 ns), in 

which their device working as binary synapse. Reproduced from [21], Institute of Physics (a-b). 

 

The current neural network operation mode requires a lot 

of neurons, and the sparse coding algorithm [47] can reduce 

the use of neurons. Sparse coding is an unsupervised learning 

method, which can find more effectively through the 

competition between neurons on the chip. The memristor 

chip is trained to use few neurons to successfully find key 

features from some photos, thus reducing energy 

consumption. Additionally, there are key challenges 

involving the use of memristors for building hardware DPEs, 

[21], [48] for examples, the nonlinear memristor dynamics, 

the negative impact and damage of the working environment 

noise, and the requirements and influence of the switching 

sensitivity of the memristor itself on the initial state. The 

operation and maintenance of the DPE are affected by 

controllable factors as well as uncontrollable factors, 

especially the conductance programming whose calculation 

steps requiring accurate values. 

 

III. ADVANTAGES OF USING MEMRISTOR NETWORK 

A. Shustanov et al. used CNN (Convolutional Neural 

Networks) to design for real-time traffic sign recognition. [49] 

The design system used speed signals received from the 

experimental vehicle, which allows the first researcher to 

accurately calculate the presence of surrounding obstacles. 

On the other hand, researchers could accurately predict the 

proportion of adjacent frames and real-time precise 

coordinates. Therefore, the efficiency and accuracy of the 

system work was greatly increased. However, the complexity 

of computing remains a challenge. Here, they considered the 

limitation of the time to process a single frame, used CNN to 

implement the classification of local objects, and developed a 

method for positioning. As it can be seen, artificial neural 

network is an excellent choice for solving pattern recognition 

issues. As for calculation method, which is described as 

follows: 

1( )i i i

kj k k
a a w j  

 

where i

ja  is the thj  neuron in the thi  layer, i

kw j
 
represents 

the weight of the synapse, and connects the thj  
neuron in the 

thi  layer alongside the  thk  neuron in the i-1th layer. The 
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training process used a gradient-based minimization method 

(also known as backpropagation) to minimize the cost 

function. In classification problems, the most common cost 

function was the cross entropy: 

( , ) ( )log ( )
i

H p q Y i y i   

For the existence of problem of the gradient disappearance, 

it is difficult to have a deep network with sigmoid activation. 

In order to minimize the impact of this problem, researchers 

adapated an activation function of ELU: 

exp( ) 1, 0
( )

, 0

x x
ELU x

x x

 
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  

Also, they used TensorFlow for training. During the 

experimental training phase, for each iteration, the training 

network processed a batch of 50 images from the training 

data set, accurately calculating intermediate accuracy with 

every 100 iterations and using 50 images batch from the test 

data set. Finally, the experiment showed 99.94% correct 

positioning and detected dangerous traffic signs [50]. 
 

 
Fig. 5. Application of memristor for recognition. (a) Histogram of device 

conductance at the initial state, which was measured after training epoch 21, 

and after epoch 54. (b) The corresponding averages/deviations of the weights. 

(c) RESET switching: Develop of memristor's conductance (measured at 0.1 

V) under the effect of 500 μs pulse trains of several magnitudes. (d) SET 

switching: this figure shows the conductance change of a fixed range pulse 

repeatedly in application to the same device. Reproduced from [33], Springer 

Nature Ltd. (a-d). 

 

However, if the training time is long, a large amount of 

training data are needed, which does not guarantee the better 

results and complete reliable. Also, it is inclined to fall into 

local minimum and does not acquire incremental learning 

ability, the stored information interferes with each other and 

degrades. CNN needs to program thousands of codes to 

complete, which is very troublesome. It requires check debug, 

complicated circuit and high labor cost. But the 

characteristics of the memristor synapse, combining neural 

network computing with a memristor, can fuse the units 

which are combined with data storage and processing, greatly 

increasing the parallelism of data transmission and 

processing. M. Prezioso. et al. used an integrated 

neuromorphic network based on metal-oxide memristor to 

recognize alphabet Z, V and N [8]. In Fig. 5a and Fig. 5b, the 

experiment showed that weight is expressed by the change of 

a single conductance. Because the physical difference of each 

memristive device, the conductance of the initial state is not 

same, and the different characterization is reflected in the 

color difference of the panels, so the voltage is used for the 

memristive device on the node for initialization. This 

procedure was repeated three times, with different pulse 

magnitudes, for both set and reset transitions (See in Fig. 5c 

and Fig. 5d). When the alphabet was identified, they were 

respectively coded into voltage pulse signals, and then the 

array was stimulated with pulses to obtain a conductivity map. 

For example, when 0.1 V was used to represent z, the initial 

V0 was 1%, and the target weight w is 40%, and then the 

measured V1 was 40%, so |V0-V1|=39%, infinitely close to 

40%, indicating a match. 
 

IV. CONCLUSIONS AND PERSPECTIVES 

In the Big Data Era, the current system based on Von 

Neumann is facing challenges. The invoking between 

computing and storage consumes too much time and energy. 

In order to break through this pattern, we need a more 

efficient system. The human brain is an ideal chip, the 

synapses in the brain are verified and related to learning and 

memory, achieving learning storage implemented in one 

structure. However, the current artificial neural network 

based on algorithms does not break through the von 

Neumann architecture. And transistors and flash memory do 

not have any progress space. Therefore, for the purpose of 

solving the above two issues, the field of memristor is 

booming. The nanoscale size, low power, non-volatile and 

memory functions of the memristor make it widely used in 

the fields of resistive random access memory, neural 

networks, cross-array, signal processing and circuit design. 

Especially in the field of biological function simulation. 

Biggest advantage of the nano-level memristor device acting 

as a synapse of the neuromorphic system is that the 

memristor can maintain the state of the internal resistance by 

applying voltage and current. At this stage, the single 

memristor device has made breakthroughs in STP, LTP, 

STDP, etc. through metal oxides. The practical application of 

memristor-based arrays has also begun, for example, E. J. 

Merced-Grafals et al. study about the test and operation of an 

integrated neural morphology network based on metal oxide 

memristors. Also, the memristor on physical structure is a 

mapping of neural networks evolved from a multi-layer 

perceptron. The combination of neural network and 

memristor will greatly improve the data transmission and 

processing capabilities. 

In recent years, to mimic the human brain function, 

scientists have worked painstakingly. Software-based neural 

network has been put into operation, but its computational 

storage of large-scale data is lacking in adaptability to 

complex inputs, and its huge cost also brings difficulties. 

Now scientists shift the focus to hardware research inspired 

by the human brain, neural network computing is a 

354

International Journal of Machine Learning and Computing, Vol. 11, No. 5, September 2021



reasonable solution. One of the keys for successful operation 

is to realize the synaptic function of electronic devices. First 

of all, the key components should be small enough to meet 

the basic requirements of synapses. The other one is to realize 

the operation and storage as one unit, breaking through the 

structure of Von Neumann, to achieve energy saving and 

performance improvement. However, in order to satisfy both 

aspects, the material of the electronic synapse may take into 

account the strong plasticity and durability, the plasticity acts 

on the space occupation. In practical applications, it is 

necessary to ensure the heat resistance of a single memory 

when calculating and storing in the same unit. Of course, 

what is needed is not only the possibility of a single device 

implementing neurons in terms of storage and conduction, 

but also the integration of nanoscale integrated circuits.[51], 

[52] The development of hardware-based artificial neural 

networks to mimic brain operations is the best choice. The 

memristor of 3D stacking structure breaks through the 

limitations of horizontal integration. Researchers have more 

choices in the vertical direction and circuit design. 

Consequently, it is more complicated, not only the 

interference of the horizontal current, but also the effect of 

the vertical coil. 
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