

1
Abstract—Spiking Neural Networks (SNNs) are known as a

branch of neuromorphic computing and are currently used in
neuroscience applications to understand and model the
biological brain. SNNs could also potentially be used in many
other application domains such as classification, pattern
recognition, and autonomous control. This work presents a
highly-scalable hardware platform called POETS, and uses it
to implement SNN on a very large number of parallel and
reconfigurable FPGA-based processors. The current system
consists of 48 FPGAs, providing 3072 processing cores and
49152 threads. We use this hardware to implement up to four
million neurons with one thousand synapses. Comparison to
other similar platforms shows that the current POETS system
is twenty times faster than the Brian simulator, and at least two
times faster than SpiNNaker.

Index Terms—Parallel distributed system, reconfigurable
architecture, spiking neural networks.

I. INTRODUCTION

Artificial Neural Networks (ANNs) are a flexible and
robust computing means for solving complex problems.
However due to frequent accesses to memory, it suffers
from a memory bottleneck when running on the
conventional hardware plat-forms [1]. Spiking Neural
Networks (SNNs) use biologically plausible neuronal
models, and are a promising approach for hardware
implementation of neural networks with capability of
overcoming inefficient memory accessing by having the
processor unit next to the memory [2]-[4]. SNNs are
potentially capable of modeling complex information
processing in the brain, in addition to other potential
applications in accelerators, robotic brains, low-power
mobile processors, deep learning [5], [6], or Medtech [7],
[8].

Several pure software SNN simulators have been
developed, such as NEURON [9], NEST [10], or BRIAN
[11], and these are widely used as research tools in the
community of computational neuroscience. Although these
tools have been used to train, model and simulate
biologically plausible neuronal networks, they are faced
with hardware performance constraints such as power, speed,

Manuscript received December 25, 2019; revised November 11, 2020.

This work is supported by the UK Engineering and Physical Sciences
Research Council under EPSRC grant EP/N031768/1.

M. Shahsavari, J. Beaumont and D. Thomas are with the Department of
Electrical and Electronic Engineering, Imperial College London, UK
(Corresponding author: M. Shahsavari; e-mail:
m.shahsavari@imperial.ac.uk).

A. D. Brown is with School of Electronics and Computer Science,
University of Southampton, UK.

flexibility, memory accessing latency. Consequently,
simulation of large-scale networks requires explicitly
parallel processing [12]. In recent years advancements in
high performance computing have led to the development of
several large-scale hardware platforms dedicated to SNN
applications, known as neuromorphic architectures. The
most widely known large-scale neuromorphic systems are
SpiNNaker [2], IBM TrueNorth [4], NeuroGrid [13], and
BrainScales [14] projects.

Because of the parallel nature of neural networks, these
large-scale concurrent systems are more efficient for data
communication and spike transport compared to
conventional platforms. However, the drawback is the
programming complexity for these parallel systems, plus the
need for analog or mixed analog/digital also increases
complexity. In this work, we present the POETS (Partial
Ordered Event Triggered Systems) [15] machine as a route
to SNN simulation; POETS is a computation platform using
an event-driven parallel programming model, backed by a
custom FPGA many-core platform. POETS uses concepts
from graph theory to provide a programming abstraction
that makes programming this concurrent system manageable.
This abstraction splits problems or applications into graphs,
with events captured as messages moving between nodes in
the graph, with events implementing both control- and
data-flow. This allows for a high degree of concurrency and
allows us to get very large numbers of CPUs to work closely
together on a single application. The current POETS system
consists of 48 FPGAs, providing 3072 processing cores and
49152 threads. Our contributions in this work are:
 investigating and explaining the POETS architecture,

and how it is used to implement SNNs;
 hardware modeling of two neuron models, LIF (Leaky-

Integrate-and-Fire) and Izhikevich, and a comparison of
two models in a large-scale network;

 a demonstrator showing 4 million neurons, with each
neuron connected to 1000 synapse, for a total of 4
billion synapses;

 a comparison between POETS and state-of-the-art
simulators and large-scale platforms.

II. POETS HARDWARE ARCHITECTURE

POETS is a project focusing on hardware support for an
event-driven parallel programming model. Applications
running on POETS must first be transformed into graphs, in
which vertices construct computation units, while edges
represent communication links which sending and receiving
messages. Somewhat similar programming models are
Google’s Pregel model [16] and GraphStep model [17],
which provide a computing abstraction using both
synchronous and asynchronous way of passing the messages;

POETS: A Parallel Cluster Architecture for Spiking
Neural Network

Mahyar Shahsavari, Jonathan Beaumont, David Thomas, and Andrew D. Brown

International Journal of Machine Learning and Computing, Vol. 11, No. 4, July 2021

281doi: 10.18178/ijmlc.2021.11.4.1048

while the synchronous computing approach is deadlock-free
and generally easier to program, the asynchronous approach
can enable huge parallelism and scalability.

Efficient communication is a major strength of FPGA
platforms, mainly due to an ability to process network traffic
with minimal latency overheads. However, a major
impediment to the wider adoption of FPGA platforms is the
level of knowledge that is needed to develop in HDL
(Hardware Description Language) effectively. Therefore, a
promising solution is to provide a compiler/interpreter for
FPGA developers to be able to use a higher level of
abstraction for programming without taking the FPGA
programming into consideration.

Fig. 1. a) One POETS box, each box has 7 FPGAs, 6 workers connected to
an X86 GPP via one intermediate FPGA. b) A default configuration of the
Tinsel Network on Chip (NoC) on a single FPGA. c) Default structure of a
Tinsel tile; the cores are highly reconfigurable soft-processors using the
Tinsel micro-architecture.

The POETS architecture currently consists of 8 boxes,

where each box has an x86 server and 7 interconnected
DE5-Net FPGA boards, as shown in Fig. 1a. Each DE5-Net
supports 24GB DDR3 DRAMs, 48MB QDRII+ SRAMs,
and 410G SFP+ ports. One FPGA is used as a PCIe to
SFP+ bridge board, providing a fast connection between the
x86 and remaining six worker FPGAs (Fig. 1a). The system
supports both asynchronous and synchronous message
exchanges between the cores. Each FPGA DE5-Net has 16
tiles, with each tile having 4 cores, and each core having 16
threads, so there are 1024 threads in each FPGA.

The computational heart of the POETS hardware is called
Tinsel, which is a multithreaded RISC-V architecture
optimised for FPGA implementation. When a thread
executes an instruction with high latency, it is suspended
and will resume after instruction completion. The system is
highly-pipelined and parallel, using a design-time specific
number of threads per core. The default number of threads
per core is 16 and it is extensible to 32. Tinsel uses a 2D
tiled network-on-chip (NoC), with each tile containing a
single mailbox and some number of cores (4 by default), one
FPU (floating-point unit), and caches. A data cache is used
to access off-chip memory on each DE5, providing access to
the two DDR3 DRAMS and four QDRII+ SRAMS (see Fig.
1b and Fig. 1c). If we assume a memory access occurs every
four instructions, a single DDR3 DRAM can satisfy a
maximum of 64 cores (32-bit) running at 250MHz. As is
shown in Fig. 1c, a mailbox mechanism is used to send and
receive the messages between the soft-processors.
Mailboxes are connected together to establish a distributed
network which a thread can send a message to any other
threads. FPU operations are executed using Altera IP blocks
and have 14 cycles latencies at 250MHz [18]. More detailed
information including messaging, codding, interconnection,

resource utilization for the Tinsel can be found in [19].

III. MODEL OF NEURONS

We will now discuss the two SNN model which we have
mapped into the POETS system.

A. Leaky Integrate-and-Fire Model

LIF models are fast to simulate, and particularly attractive
for large-scale network simulations [20]. Neurons integrate
the spike inputs from other connected neurons, with each
arriving input spike changing the internal potential of the
neuron, known as neuron’s membrane potential or state
variable. When the integrated inputs cause the membrane
potential to pass a threshold voltage, the action potential
occurs – in other words, the neuron fires.

τn
dv
dt

= − v (t)+RI syn (t)

(1)

I syn(t)= ∑
j

gij∑
n

α (t− t j
n)

(2)

where: v(t) represents the membrane potential at time t; τn
=RC is the membrane time constant; and R is the membrane
resistance. The total input current, Isyn(t), is generated by the
activity of pre-synaptic neurons. The total input current
injected into a neuron is the sum over all current pulses,
which is calculated in Equation 2. Time t(

j
n) represents the

time of the nth spike of post-synaptic neuron j, and gij is the
conductance of synaptic efficacy between neuron i and
neuron j. Function α(t) = q.δ(t), where q is the injected
charge to the artificial synapse and δ(t) is the Dirac pulse
function. If Isyn(t) is big enough then the action potential can
pass the threshold voltage, so the neuron fires. When there
are no or only a few spikes in a time window, the neuron is
in the leaky phase and the state variable decreases
exponentially. The duration of this time window depends on
τn= RC.

B. Izhikevich Model

Another well investigated simple model of neuron that
has been simulated in our work is Izhikevich [21] model.
Izhikevich model reproduces the physiological plausibility
of Hodgkin-Huxley-type neuron yet are almost as
computationally effective as the LIF neuron. The model is:

dv
dt

= 0. 04 v2+5 v+140− u+I (t)

(3)

du (t)
dt

=a (bv− u)

(4)

v is the membrane potential and I is the sum of the
synaptic currents from different nodes connected to the
neuron in Equation 3, whereas Equation 4 represents the u
that is the membrane recovery variable. When v has reached
its threshold then the neuron fires, and then reset happens
according to Equation 4. The Izhikevich spiking model has
the potential to generate several different firing patterns,
which can be selected using four dimensionless parameters
a, b, c, and d:
 a represents the time scale of the recovery variable u,

where a smaller value means slower recovery;

International Journal of Machine Learning and Computing, Vol. 11, No. 4, July 2021

282

v (v>vth) =c, u(v>vth)=u+d

 b represents the sensitivity of the recovery variable u to
possible sub-threshold of the membrane potential v.
Larger values indicated that v and u are strongly
dependent on each other;

 c presents the reset value of v after spiking;
 d is the reset value of u after spiking.

Fig. 2. An overview of a neuron section to be represented as a graph and
read by compiler as an xml format file.

IV. MAPPING SYNCHRONOUS PROBLEM ON AN

ASYNCHRONOUS PLATFORM

The idea of the POETS system is to implement a highly
scalable many-core system out of lots of tiny cores.
Therefore, applications defining large numbers of simple
devices with low computing complexity and a high degree
of parallelism are desirable. Thus, this fact is considered in
designing a neuron node consisting of four fan-in, fan-out,
clock and computing devices. In this work, a finite state
machine (FSM) is controlling the states of neuron
synchronously, however the message propagation is
performed asynchronously. An overview of neuron unit
including different devices and states is depicted in Fig. 2.
From a software developers point of view, the users and
developer will not need to develop low-level FPGA code. A
high-level python program is used to generate XML that
represents the networks, the network elements, the number
of neuron and connections from one to other neurons,
according to parameters that are set by users. The POETS
compiler will take care of the intermediate compilation and
loading the network into an FPGA.

The aim of designing a neuromorphic architecture on
POETS is to simulate large-scale SNNs in a reconfigurable,
flexible and scalable platform. The sequential development
procedure of the POETS compilation flow is shown in Fig. 3.
Vertices in the network represent the neurons, and edges
between vertices represent synaptic weight connections. A
graph-based application called Graph Schema is used to
create a network of neurons, with spike messages used to
transfer data between neurons with a high degree of
parallelism. The general approach is to decompose the graph
into clusters of reconfigurable devices, where the amount of
intra-cluster edges is large. Similar to the previous works for
designing SNN on FPGA [22], [23], while also taking
advantages of Tinsel for high speed access from FPGA
cores to the memory (10 Gbps Ethernet MAC), the system is
capable of large-scale networks simulation at high speed.
After creating the network graph and the connections, an
XML format file will be generated that is a representation of
the network graph. This graph is then transferred to network

instances and simulated on local or remote conventional
GPP machines. The POETS compiler can also translate this
file into FPGA-specific files which can be executed on
Tinsel. Due to efficient data caching, in addition to the
effective communication between threads via their mailbox,
neuron devices in the bottom part of Fig. 3 receive and send
messages synchronously via a high-speed network and
transfer the neuron parameters and weight connection
modifications to and from memory.

Fig. 3. An overview of the design flow, from high-level neural model down
to implementation in FPGA.

Fig. 4. A running time comparison of two LIF and Izhikevich models of

neuron in POETS using small number of neurons with different numbers of
synapses for each neuron.

V. RESULTS

We have used this approach to model networks of
neurons ranging from 50 to 500000 for one box, and up to 4
million neurons in 8 boxes. In all networks 20 percent of
neurons are inhibitory neurons. Both the Izkikevich and LIF
models of neuron have been used in the network, but the
implementation costs (including running and mapping times)
show little difference between Izhikevich or LIF model, as
shown in Fig. 4. Another interesting result that can be
extracted from the same data is the amount of parallelism.
The hardware latency performance implementing anywhere
from 50 to 1000 neurons is almost the same, as the nodes
can be assigned to different threads, which compute
simultaneously. More specific hardware characteristics are
presented in Table I. Speed is a significant parameter has
been evaluated in this platform, particularly when the
number of neurons is increased. The maximum number of
neurons that could be implemented on one box so far is 500

International Journal of Machine Learning and Computing, Vol. 11, No. 4, July 2021

283

(5)

Neural network model

generate graph schema

 in .XML format on

host/local machine

Using POETS compiler to

produce FPGA codes (e.g.,

 .elf, .v) from xml graphs

e.g., .py, .cpp, .c codes

Tinsel FPGA

Neuron Devices

Off-chip RAM

Spikes (messages)

Synaptic Weights

Neuron Parameters

thousand. Therefore using 8 whole boxes, we are able to
simulate 4 million neurons.

Fig. 5. A running time comparison of two LIF and Izhikevich models of

neuron in POETS using scalable number of neurons with different number
of synapses for each neuron.

For instance, the implementation time for 100000 neurons
is only 4.05 second, however, this does not take into account
compilation time, which could be longer where we use a
conventional host computer. Running outputs for scalable
devices are depicted in Fig. 5. We compare our outputs with
the Brian simulator and the SpiNNaker hardware network in
Fig. 6. The results demonstrate that poets is 20 times faster
than Brian simulator version II. Compared to SpiNNaker,

POETS is slightly slower for small networks, and more than
two times faster for large neural networks.

TABLE I: CHARACTERISTICS OF ONE FPGA BOARD

FPGA Model DE5-Net
Core 64
 Threads 1024
 DRAM 2 × 4GB DDR3
 SRAM 4 × 8M B QDRII+
FPGA Clock Frequency 250 MHz
Power <50 W

Fig. 6. Speed comparison of implementation among Brian simulator,

SpiNNaker machine and POETS.

TABLE II: COMPARISON OF THE LARGE-SCALE NEUROMORPHIC SYSTEMS

Model/Properties TrueNorth Neurogrid BrainScales SpiNNaker POETS
Technology Digital Analog Analog Digital Digital (FPGA)
Feature size 28 nm 180 nm 180 nm 130 nm 28 nm

Chips 16 16 325 48 48
Power 3.2 W 3 W 500 W 80 W 42.8 w

Interconnect 2D mesh-unicast Tree-multicast Hierarchical 2D mesh-unicast 2D-mesh-unicast
Neuron model Configurable LIF Adaptive IF Adaptive IF Programmable LIF/Izhikevich

Neurons 16 M 1 M 200 K 768 K 4 M
Synapses 4 G 4 G 40 M 768 M 4 G

VI. CONCLUSION

Spiking Neural Network is a promising approach for
future computing platforms, with the ability of learning
which could be used in three different scenarios:
 An accelerator in GPP platforms to overcome the Von

Neumann memory bottleneck, for example in robotic
brains, or low-power mobile processors, [24], [25].

 Direct implementation of spiking neural network on
hardware, taking advantage of low-cost computing for
the same purposes as ANN (e.g., Deep Learning)
applications such as prediction, detection and
recognition [5], [26].

 In the long term, understanding properties of biological
neural networks could be used as a hippocampal
prosthesis to be connected to the biological network or
to replace a damaged biological memory, for example
in the Alzheimer effected memory [8], [17].

Several large-scale spiking brain-like computing or
neuromorphic hardware have been developed during recent
years such as SpiNNaker, IBM TrueNorth, NeuroGrid and
the BrainScales projects. In this work, we introduced
POETS as a new large-scale neuromorphic system which is
flexible using FPGA clusters, reliable with guaranty of
receiving messages, and fast regarding to the parallel

processing of data yet relatively low-power. The
characteristics of large-scale systems are shown in the Table
II to compare with POETS. In this work, we focused on
scalability and architecture of system, while for future work
we will investigate the accuracy of learning and neural
network capabilities of POETS.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

The authors’ contributions can be listed as follows. The
first author is responsible of output results, analyzing the
data, running the tools and main writer of the article. The
second author contributed in developing the tools, the third
author’s contributions are to develop tools, writing and
revising the paper. Finally, the last author is responsible of
the POETS project while has contributed in writing and
revising this manuscript.

REFERENCES
[1] G. Indiveri and S.-C. Liu, “Memory and information processing in

neuromorphic systems,” Proceedings of the IEEE, vol. 103, no. 8, pp.
1379–1397, August 2015.

International Journal of Machine Learning and Computing, Vol. 11, No. 4, July 2021

284

International Journal of Machine Learning and Computing, Vol. 11, No. 4, July 2021

285

[2] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The
SpiNNaker Project,” Proceedings of the IEEE, vol. 102, no. 5, pp.
652–665, May 2014.

[3] M. Shahsavari, P. Devienne, and P. Boulet, Spiking Neural
Computing in Memristive Neuromorphic Platforms, Springer
International Publishing, Cham, pp. 691–728, 2019.

[4] P. A. Merolla, J. V. Arthur, A. S. Cassidy et al., “A million
spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673,
August 2014.

[5] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A.
Maida, “Deep learning in spiking neural networks,” Neural Networks,
vol. 111, pp. 47–63, 2019.

[6] M. Fatahi, M. Ahmadi, A. Ahmadi, M. Shahsavari, and P. Devienne,
“Towards an spiking deep belief network for face recognition
application,” in Proc. 2016 6th International Conference on
Computer and Knowledge Engineering (ICCKE), Oct. 2016, pp.
153–158.

[7] X.-J. Feng, E. Shea-Brown, B. Greenwald, R. Kosut, and H. Rabitz,
“Optimal deep brain stimulation of the subthalamic nucleus - a
computational study,” Journal of Computational Neuroscience, vol.
23, no. 3, pp. 265–282, 2007.

[8] N. Kasabov, R. Schliebs, and H. Kojima, “Probabilistic computational
neurogenetic modeling: From cognitive systems to alzheimer’s
disease,” IEEE Transactions on Autonomous Mental Development,
vol. 3, no. 4, pp. 300–311, 2011.

[9] N. T. Carnevale and M. L. Hines, The NEURON Book, Cambridge
University Press, 2006.

[10] M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[11] D. F. M. Goodman, R. Brette, D. Goodman, and R. Brette, “Brian: A
simulator for spiking neural networks in Python,” Frontiers in
Neuroinformatics, vol. 2, no. 5, 2008.

[12] M. Shahsavari, P. Devienne, and P. Boulet, “N2s3, a simulator for the
architecture exploration of neuromorphic accelerators,” in Proc. 2nd
International Workshop on Neuromorphic and Brain-Based
Computing Systems (NeuComp 2015) in DATE Conference, Grenoble,
France, 2015.

[13] B. V. Benjamin, P. Gao, E. McQuinn et al., “Neurogrid: A
mixed-analog-digital multichip system for large-scale neural
simulations,” Proceedings of the IEEE, vol. 102, no. 5, pp. 699–716,
May 2014.

[14] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S.
Millner, “A wafer-scale neuromorphic hardware system for
large-scale neural modeling,” IEEE, pp. 1947–1950, May 2010.

[15] Poets project website. (2017). [Online]. Available:
https://poets-project.org/

[16] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N.
Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proc. the 2010 ACM SIGMOD International
Conference on Management of Data, New York, NY, USA, 2010, pp.
135–146

[17] M. DeLorimier, N. Kapre, N. Mehta et al., “Graphstep: A system
architecture for sparse-graph algorithms,” in Proc. 14th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines,
2006, pp. 143–151.

[18] Altera floating-point megafunctions user guide. (2019). [Online].
Available:
https://www.intel.co.jp/content/dam/altera-www/global/jaJP/pdfs/liter
ature/ug/ug altfp mfug.pdf

[19] M. Naylor, S. W. Moore, and D. Thomas, “Tinsel: A manythread
overlay for fpga clusters,” in Proc. 29th International Conference on
Field Programmable Logic and Applications (FPL), Sept. 2019, pp.
375–383.

[20] R. Brette, M. Rudolph, T. Carnevale et al., “Simulation of networks
of spiking neurons: a review of tools and strategies,” Journal of
Computational Neuroscience, vol. 23, no. 3, pp. 349–398, December
2007.

[21] E. M. Izhikevich, “Simple model of spiking neurons,” Trans. Neur.
Netw., vol. 14, no. 6, pp. 1569–1572, November 2003.

[22] K. Cheung, S. R. Schultz, and W. Luk, “A large-scale spiking neural
network accelerator for FPGA systems,” in Artificial Neural Networks

and Machine Learning, A. E. P. Villa, W. D. P. Érdi, F. Masulli, and
G. Palm, Eds. Berlin, Heidelberg, 2012, pp. 113–120.

[23] R. C. Wang, G. Cohen, K. Stiefel, T. Hamilton, J. Tapson, and A. van
Schaik, “An FPGA implementation of a polychronous spiking neural
network with delay adaptation,” Frontiers in Neuroscience, vol. 7, no.
14, 2013.

[24] M. Shahsavari and P. Boulet, “Parameter exploration to improve
performance of memristor-based neuromorphic architectures,” IEEE
Transactions on Multi-scale Computing Systems, vol. 4, no. 4, pp.
833–846, Oct 2018.

[25] M. Walravens, E. Verreyken, and J. Steckel, “Spiking neural network
implementation on fpga for robotic behaviour,” Lecture Notes in
Networks and Systems, vol. 96, pp. 694–703, 2020.

[26] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S. Liu, and S. Furber,
“Scalable energy-efficient, low-latency implementations of trained
spiking deep belief networks on spinnaker,” in Proc. 2015
International Joint Conference on Neural Networks (IJCNN), July
2015, pp. 1–8.

Copyright © 2021 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits
unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited (CC BY 4.0).

Mahyar Shahsavari is a research associate at the
Dept. of Electrical and Electronic Engineering,
Imperial College London, United Kingdom. He
achieved a PhD in computer science from CNRS,
Lille University of Technology, where he
developed a simulation platform for Spiking Neural
Network using the model of a memristor
nanodevice. His research interests include
cognitive, neuromorphic and unconventional
computing; machine learning applications running

on novel architectures such as reconfigurable and parallel computing
platform.

Jonathan Beaumont is a research associate at
Imperial College London. He achieved a PhD in
computer engineering from Newcastle University
in 2018, where he researched asynchronous
systems. Currently he works on the POETS project,
developing software and applications to test a new
experimental event-driven super-computing
platform.

David B. Thomas is a senior lecturer in the Dept.
of Electrical and Electronic Engineering at Imperial
College London, where he performs research and
teaching in the area of computer engineering,
particularly at the boundaries between software,
processors, and custom digital hardware. Much of
his research concerns the efficient use of
reconfigurable hardware, include the design of
high-level languages and libraries for FPGAs,
optimised numerical algorithms and IP cores, and

the design of hardware optimised random number generators.

Andrew Brown is a professor of electronics with
Southampton University, United Kingdom. He has
held visiting posts at IBM Hursley Park (UK),
Siemens NeuPerlach (Germany), Multiple Access
Communications (UK), LME Design Auomation
(UK), Trondheim University (Norway), Cambridge
University (UK), and EPFL (Switzerland). He is a
fellow of the IET and BCS, a chartered engineer, and
a European engineer. He is a senior member of the

IEEE.

