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Abstract—Information extraction (IE) is the process of 

automatically identifying structured information from 

unstructured or partially structured text. IE processes can 

involve several activities, such as named entity recognition, 

event extraction, relationship discovery, and document 

classification, with the overall goal of translating text into a 

more structured form. Information on the changes in the effect 

of a drug, when taken in combination with a second drug, is 

known as drug–drug interaction (DDI). DDIs can delay, 

decrease, or enhance absorption of drugs and thus decrease or 

increase their efficacy or cause adverse effects. Recent research 

trends have shown several adaptation of recurrent neural 

networks (RNNs) from text. In this study, we highlight 

significant challenges of using RNNs in biomedical text 

processing and propose automatic extraction of DDIs aiming at 

overcoming some challenges. Our results show that the system 

is competitive against other systems for the task of extracting 

DDIs. 

 
Index Terms—Drug–drug interaction, deep learning, 

embedding, machine learning.  

 

I. INTRODUCTION 

A pharmacological effect that occurs when a given drug is 

altered by the action of another drug, leading to unwanted 

clinical effects, is referred to as the drug–drug interaction 

(DDI) [1]. Identifying DDIs is a major challenge in drug 

development. Previous attempts have established formal 

approaches for pharmacokinetic DDIs [2], but there are no 

feasible solutions for pharmacodynamics DDIs because the 

endpoint is often a serious adverse event rather than a 

measurable change in drug concentration. When drugs are 

co-administered, one drug may increase or decrease the 

effect of the other or lead to an unexpected effect. 

In recent years, the 2011 [3] and 2013 [4] DDI Extraction 

challenges have been held to promote the implementation 

and comparative assessment of natural language processing 

techniques in the field of pharmacovigilance. In the 2013 

challenge, the DDIs needed to be classified into four 

predefined DDI types: advice, effect, mechanism, and int [5]. 

“Advice” is assigned when a recommendation or advice 

regarding the concomitant use of two drugs is described. For 

example, consider the following sentence: “Concurrent 
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therapy with ORENCIA and TNF antagonist is not 

recommended.” This sentence is classified as advice. 

“Effect” is assigned when the effect of the DDI is described. 

The effect can be one of the following: a pharmacological 

effect, a clinical finding, signs or symptoms, unspecific 

modification of the effect or action of the drugs, an increase 

in toxicity or a protective effect, and therapeutic failure. For 

example, the sentence “This may indicate that ibuprofen 

could enhance the toxicity of methotrexate” is classified as 

“effect.” “Mechanism” is assigned when a pharmacokinetic 

mechanism, which is a mechanism by which a drug has been 

absorbed, distributed, metabolized, and excreted, is affected. 

For example, the following sentence is a mechanism type: 

“Concomitant use of calcium supplements and L-lysine may 

increase calcium absorption.” “Int” is assigned when the 

sentence states that an interaction occurs and does not 

provide any information about the interaction. For example, 

the sentence “A possible drug interaction of FOSCAVIR and 

intravenous pentamidine has been described.” is a type of 

“Int.” 

Exploring DDIs has received much attention in both 

industry and academia. A variety of methods have been 

published to extract DDI information.  

First, some computational approaches such as 

network-based algorithms were proposed to predict DDIs 

[6]-[9]. Furthermore, machine learning approaches can 

automatically build classifiers for relation extraction. 

Generally, such approaches use the contextual features 

derived from natural language processing techniques such as 

shallow parsing or full dependency parsing. Some studies 

have applied machine learning approaches to deal with DDI 

extraction problems [8], [10]-[12]. 

In recent years, the machine learning community has made 

great advances in deep learning, and deep learning-based 

methods have been employed for related tasks. Researches 

using Long Short-Term Memory (LSTM) [13], 

convolutional neural networks (CNNs) [14], and recurrent 

neural networks (RNNs) [15] were explored [16]-[19]. In 

addition, several similarity-based mining techniques were 

applied to solve the DDI extraction problem [20]-[23]. 

Another way to extract DDIs is to employ the syntactic 

information from biomedical literature using text-mining 

techniques. Zheng et al. [24] presented a graph kernel, which 

made full use of different types of context to identify DDIs 

from biomedical literature. 

A. Challenges with Recurrent Neural Network 

Recurrent neural networks (RNNs) and LSTM are widely 

adapted for their success in solving sequence learning 
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problems. RNNs and their derivative models are often 

designed to sequentially process data for a certain period of 

time. Given a particular node in an RNN, the model processes 

any given input at the previous nodes, one after another in a 

sequential fashion. A basic RNN model with a recurrent layer 

f and a feedforward layer g as shown in Fig. 1 below, allows 

information transferring in recurrent layers from one node to 

another. 

This generic model is usually trained by unfolding the 

layers and passing information in a feedforward manner. This 

can lead to two observable problems during training: 

1) A large network from unrolled RNN. 

2) Duplicates of instances contributed to the gradient and 

current layer gradient are the product of previous layers. 

The usually approach to training RNN models is through 

backpropagation through time (BPTT) [25]. For N number of 

instances, the objective of BPTT is to unroll a given recurrent 

network into a feedforward network with N instances of the 

original network, one instance at a given time stamp. Nielsen 

et al. [26] shows that the gradient tends toward exponentially 

large or small as the number of layers increases. This means 

that for N number of layers, the gradient can be computed as: 




N

i

iiw
1

 ,                                     (1) 

where iw  and i  are the weight and activation function at 

layer i, respectively. When a recurrent network is unrolled, 

the weights are the duplicates of the original network. 

Therefore the gradient can also be expressed as: 




N

i

iw
1

 .                                      (2) 

The resurfacing of the same parameter for computing the 

gradient, makes it very unstable for a large value of N. The 

problem of exploding gradients occurs when, for example the 

gradient values exponentially grow more than the vector 

norms under consideration. From (2), it can be noted that we 

are multiplying with the same weight multiple times. 

However, multiplication with very small values will quickly 

decrease the resulting gradient. This leads to a vanishing 

gradient problem [27]. 

 

 

 

 

 

 

 
Fig. 1. Basic RNN model. 

 

B. Unstable Gradient Problem 

There are several attempts to solving the above mentioned 

problems. For example, in the case of the exploding gradient 

problem, the problem can be limited by: 

1) Terminating backpropagation earlier to avoid lower 

values of gradients. This is not optimal since it does not 

consider all weights. 

2) Manually reducing or penalizing the gradient. 

3) Assigning a maximum threshold limit to the gradient. 

For the vanishing gradient, the following approach are 

usually adapted to solving or limiting the problem: 

1) Manually initializing the weight so as to avoid potential 

for the vanishing gradient. 

2) Using the echo state networks (ESNs) to solve the 

vanishing gradient. 

3) Using long-short term memory networks (LSTMs). 

The vanishing gradient problem is a frequent problem that 

most RNN models encounter during the training phase. 

Recent studies have shown the emergence of several RNN 

derivatives aims at dealing with this problem. Such 

significant contributions include the LSTM and GRU models 

[8], attention based networks such as transformer [28] and 

transformerXL [29]. 

The LSTM derivative introduces a gating concept to 

bypass units and remember information for a longer time 

stamp. However, these models still have a sequential path 

that has potentials to introduce problems to gradients. 

Attention mechanisms have seen significant success in 

solving the unstable gradient problem. Elbayed et al. [30] 

used a single 2D convolutional neural network across both 

sequences. Each layer of this network re-codes source tokens 

on the basis of the output sequence produced. The 

attention-like property is therefore pervasive throughout such 

network. It is said to outperform both RNN/LSTM and 

Attention based models like the Transformer. 

The problem of extracting DDIs has attracted the attention 

of many researchers. This paper explores the challenges 

using RNN in determining and classifying DDIs from 

biomedical literature and proposes methods to overcome the 

shortcomings with RNN models and their derivatives. We 

proposed a sentence level attention mechanism to determine 

the relevancy of a given sentence to a DDI and used a 

sequence learning model adopted in [29] to model the 

likelihood of two drug entities participating in a drug–drug 

interaction. We analyze this approach with the objectives of 

overcoming weakness in our previous study [31]. In that 

study a neural embedding approach based on the LSTM is 

used to solving the DDI extraction task. In contrast to that 

study, the proposed approach in this paper aims at exploring 

the challenges in deploying RNNs to the DDI extraction task. 

 

II. EXPERIMENTAL DATA 

DDIs have not only gained popularity among researchers 

but have also become themes for major information 

challenges such as the SemEval. SemEval 2013 provided a 

DDI Extraction challenge with a benchmark corpus. This 

study uses the 2013 DDI Extraction corpus, which provides 

both annotated training and test ground truth data. Fig. 2 

presents sample annotated data from the 2013 DDI 

Extraction task. 

As shown in Fig. 2, the annotation gives the following 

tags: 

1) The document tag. This provides the id attribute, which 

gives the source document id in the MedLine or 

DrugBank corpuses. 

2) The sentence tag. This provides two attributes: (1) an id 

attribute, which gives the identification tag of the 

Xt f () 
It+1 

g () Yt+1 

It 
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sentence from the source document; and (2) a text 

attribute, which gives the text of the sentence. 

3) The entity tag. This tag provides the entity information in 

the sentence with attributes including identification tag 

(id), character spans in the text (charOffset), the type of 

entity (type), and name of the entity (text). 

4) The pair tag. This tag annotates the entity pairs 

participating in a DDI within the sentence’s text. The 

attributes include a pair identification attribute (id), two 

entity attributes (e1 and e2) that annotate the entities, a 

ddi attribute that has a true or false value indicating 

whether the entity pair (e1, e2, pair) is involved in a DDI, 

and a type attribute that annotates the DDI type. 

 

 
Fig. 2. An example of an annotated document of the DDI corpus. 

 

There are 5,021 DDIs annotated from 730 and 175 

DrugBank [32] texts and MedLine abstracts, respectively. 

For the classification task, DDIs are classified into the 

following four predefined types, as mentioned in Section II: 

advice, effect, mechanism and int. 

The corpus is split into building data sets for training and 

testing. The training dataset comprises randomly selected 

DrugBank texts and MedLine abstracts. From the annotated 

dataset, 572 DrugBank and 142 MedLine abstracts were used 

for training. The remaining 158 DrugBank texts and 33 

MedLine abstracts were used as test datasets. Segura-Bedmar 

et al. [3] provided detailed descriptions of the method used to 

collect and process documents from DrugBank and MedLine. 

 

III. METHOD 

The DDI extraction task has two components: (1) DDI 

identification and (2) DDI classification into predefined 

types. 

A. Data Preprocessing 

Sentences that have no mention of drug entities or have 

only a single drug entity mentioned cannot be considered for 

DDI extraction. Such a sentence is irrelevant because in DDI 

extraction, two different drug entities are required for DDI to 

happen. 

We consider data abstraction as important to keep the 

identity of drug entities in a given sentence. In the data 

abstraction process, the objective is to normalize the text in 

the sentence by removing numerical characters and changing 

upper case letters to lower case. Pair entities participating in a 

DDI are also replaced with special characters. The characters 

“#” and “d” are used to represent the participating drug 

entities associated to a given DDI. For example, consider the 

sentence: 

- Barbiturates and glutethimide should not be 

administered to patients receiving coumarin drugs. 

Using the data abstraction process mentioned above, this 

sentence can be presented as: 

- # and d should not be administered to patients 

receiving #. 

 

It can be noted that the drug entities Barbiturate and 

coumarin are the target drugs and are abstracted using “#”, 

whereas the agent of DDI, glutethimide is abstracted using 

“d”. The objectives of data abstraction is to preserve the 

reusability and identity of entities that appear in a DDI as 

targets or agents. 

B. Embedding 

The object in embedding in-text mining is to map lexical 

items or variables such as sentences or words to a 

corresponding numerical vector that can be used in learning 

algorithms. In these cases, embedding results are considered 

as a low-dimensional continuous vector representation of 

variables. Neural embedding has two important major 

benefits: 

1) Reducing the dimensions of variables. 

2) Meaningfully representing data in a transformed space. 

For in-text mining and processing, neural embedding has 

three notable applications: 

1) Determining the nearest neighbor relationships among 

lexical variables. This can be used in recommendation 

systems based on specific user interests or cluster 

categories. 

2) Neural embedding can be used for generating input 

space for learning supervised models. 

3) Visualization of concepts and relations among lexical 

variables. 

Neural network embeddings have three primary purposes: 

1) To find the nearest neighbors in the embedding space. 

These can be used to make recommendations based on 

user interests or cluster categories. 

2) To be used as inputs to a machine learning model for a 

supervised task. 

3) To visualize concepts and relations between categories. 

The fundamental baseline approach to neural embedding is 

one-hot encoding. This approach maps variables to a vector 

of 0s and a single 1 representing a given variable. For 

illustration, consider the sample result from our data 

preprocessing. 

 # and d should not be administ to patient receiv # 

For one-hot encoding, we can represent this expression as 

follows: 
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 V #, , , , , , min , , , , #and d should not be ad ist to patient receiv (3) 
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From (4), it can be observed that the one-hot encoding 

technique has two main limitations: 

1) The number of variables is directly proportional to the 

dimensionality of the transformed vectors. This implies 

that the resulting vectors can be very large. 

2) The approach does not distinguish between similar 

categories and relationships between variables in the 

embedding space. 

The first limitation can be explained as follows: given a set 

of variables, each variable in the set requires adding another 

one-hot encoded vector to represent each variable. For the 

purpose of illustration, the given 37,000 lexical variables will 

require 37,000-dimensional vectors. It thus becomes obvious 

that training any learning model on such a representation is 

infeasible. The second limitation considers the similarity 

relationship between variables. One-hot encoding produces a 

cosine similarity score of 0 for each comparison between 

encoded representations of variables. This limitation thus 

ignores the significance of relationships that might exist 

among variables. 

Given a sentence containing two drug entities "#"1 w   

and ""2 dw  , each word is represented in a two dimensional 

space, a word embedding space and a positional embedding 

space. In general, a sentence is presented as: 

},,,,{ 321 NwwwwS  ,                          (5) 

where iw  is the representation of word at index i in the 

sentence. A function ()f  is used to map words or relative 

position of words to a column vector. Let ih  and ik  

represent the one-hot encoding and relative positional 

encoding of word iw at position ip . For a word embedding 

w  and position embedding k , the mapping is 

implemented as: 

iwi hwf )(                                     (6) 

and 

iwi kpf )( .                                    (7) 

These information are then processed at a sentence level, 

and each sentence is presented by a sequence of words. 

C. Sentence Based Attention 

The objective of the sentence based attention mechanism 

in this study is to determine how sentences correlate to each 

other. Since the occurrence of a DDI is only within a sentence, 

we used the self-attention mechanism to understand the 

correlation of words in a sentence. This can be achieved by 

determining relevant instances of the DDI vector 

representation correlated to the rest of the sentence. For a 

DDI vector representation D and the attention matrix A, The 

correlation Ci between a sentence Si and D can be estimated 

as: 

ADSC T

ii  .                                     (8) 

The softmax  , is defined as: 





N

j

j

i
i

C

C

1

)exp(

)exp(
 .                               (9) 

The final representation includes all the relevant 

information and expressed as: 





N

j

jjSS
1

 .                               (10) 

The relevant information space is directly propotional to 

the number of sentences containing a given DDI. In this study 

we adapt the self-attention model proposed in [29]. The 

attention used in this study is shown as in Fig. 3. 

 

 
Fig. 3. Hidden node with global attention. 

 

From Fig. 3, the input hidden states, hs, are stacked 

together and used to compute the context vector Ct, which 

presents the context of individual sentences with respect to 

weight alignments and the hidden state. The global alignment 

vector depends on the input hidden state hs and the output 

hidden state ht and is calculated as follows: 




)),(exp(

)),(exp(
)(

st

st
t

hhscore

hhscore
sA ,                       (11) 

]),[tanh( ttt hCwy  .                               (12) 

A predictive distribution is obtained from this attention 

result using softmax as follows: 

),|(),( 1 syyphwmaxsoft ttt  .                     (13) 
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between the hidden input and output states. The final target 

sentence for an attention is thus computed from the context 

vector and the hidden state ht.



  

D. The Recurrent Unit 

The recurrent unit in this study is an LSTM model. The 

general LSTM module used in this paper is shown in Fig. 4. 

This module is a representation of the repeating module. A 

single module has four neural layer units: three sigmoid units 

and a tanh layer unit. The first sigmoid unit in the figure 

serves as a filter that determines what information is allowed 

to go through the cell stages. This unit considers input tI  at 

time t and previous hidden units at 1tH  and outputs a score 

between 0 and 1, representing the significance of input in the 

next cell stage. The score value 1 represents highly 

significant and value 0 represents the least significant input. 

The second sigmoid unit and the first tanh unit serve as the 

updating units. The sigmoid units pass information to be 

updated and the tanh unit creates an updated value. Finally, 

this updated value is added to the network cell to replace the 

old cell information. In Fig. 4, the symbol   is a point-wise 

element operation and   is an element-by-element addition 

[31]. In the DDI recognition model, the LSTM is a module to 

perform binary prediction to determine DDI entities. In 

contrast, the DDI classification model is a module to perform 

the multi-classification task to predict the DDI entities 

predefined types. 

 
Fig. 4.General LSTM module used in DDI recognition and classification. 

 

E. Classification and Prediction 

One-hot encoding does not rely on supervision to create 

representations of variables. If embedding can be learned as a 

supervised task, it could help improve the embedding results. 

Such embedding results could not form parameter vectors 

(weight vectors) that could be used as input parameters for 

learning models but could be adjusted to reduce the loss on a 

learning task. This yields embedding representations that 

consider placing similar or related variables relatively closer 

to each other. In this paper, learning is considered an 

optimization problem of a loss function with regards to the 

embedding. The embedding results are adjusted during 

training to minimize the loss on the supervised task. The 

word embedding and LSTM learning adapted in this study 

are similar to those used in [31]. Here, we also use cross 

entropy, a commonly applied distance/loss measure. This 

choice is indicated in the discrete case by derivation from the 

formulation of the loss function: 

j

V

j

j yyyyH ˆlog),ˆ(
||

1




 ,                       (14) 

where |V| is the size of the vocabulary and output ŷ  is an 

estimate of y. This study adopts the same application of 

entropy as a loss function in training neural networks, with 

embedding proposed by Hou and Ceesay [31]. 

 

IV. EXPERIMENTAL RESULTS 

The evaluation metric is relation-oriented and based on the 

standard precision, recall, and F-score metrics. Note that only 

relations are evaluated since entities will be included in the 

test dataset. In our task, we evaluate the results of the system 

considering the following evaluation criteria that are used in 

SemEval 2013: 

1) Macro evaluation: a DDI is correctly detected only if the 

system is able to assign the correct prediction and the 

correct type to it. In other words, a pair is correct only if 

both prediction and type are correct. When the prediction 

is 0, the type may be empty or null. 

2) Micro evaluation: a pair is correct when its prediction 

type matches the gold annotation. 

Evaluation results are based on the standard precision, 

recall and F-score metrics: Precision is the percentage of 

DDIs found by the learning system that are correct. That is, 

precision is the ratio between the number of DDIs correctly 

detected (true positives, TP) and the total number of DDIs 

that were found by the system (true positives + false positives, 

TP+FP): 

FPTP

TP
P


 .                                (15) 

Recall is the percentage of DDIs presented in the corpus 

that are found by the system. In other words, recall is the ratio 

between the number of DDIs correctly detected (true 

positives) and the total number of drug entities in the gold 

standard (true positives + false negatives, TP+FN): 

FNTP

TP
R


 .                                (16) 

F-score is the harmonic mean of precision and recall: 

RP

RP
F






2
.                              (17) 

We considered macro-average measures of precision, 

recall, and f-measure for DDIs in this study. While the 

micro-averaged F-score is calculated by constructing a global 

contingency table and then calculating precision and recall, 

the macro-averaged F-score is calculated by first calculating 

precision and recall for each type and then taking the average 

of these. Thus, the precision for mechanism relationships can 

be defined as the ratio between the number of DDIs correctly 

classified as mechanism and the total number of DDIs that 

were classified as mechanism (including the ones wrongly 

assigned to this type). Similarly, the recall for mechanism 

relationships is defined as the ratio between the number of 

DDIs correctly classified as mechanism and the total number 

of DDIs with the mechanism type in the gold standard. The 

precision and recall for the rest of the DDI types are defined 

in a similar manner. The overall evaluation considered two 

aspects. 
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1) System's performance in identifying interaction pairs. 

2) System's performance in classifying the interactions 

pairs into predefined types. 

 
  

 

    

    

    

    

    

    

    

 

  

 

    

    

    

    

    

    

    

 

  

 

    

    

    

    

    

    

    

    

 
  

 

Team Recall Precision F-Score 

FBK-irst 0.514 0.384 0.440 

WBI  0.333 0.376 0.353 

UWMTRIADS 0.413 0.297 0.345 

UCOLORADO_SOM 0.380 0.212 0.272 

SCAI  0.197 0.420 0.269 

Our system 0.683 0.561 0.572 

 

In this study, our system adopts an automatic information 

extraction (IE) approach, and no post-processing is applied to 

the system’s output. This is the general requirement of the 

SemEval 2013 task, which was used to evaluate our system. 

As a whole, our system was successful compared to other 

participating systems, as shown in Table I, Table II, Table III 

and Table IV.  

V. CONCLUSION 

Extracting DDI information from biomedical text is a 

promising area of research for understanding the effect of one 

drug in the presence of another. The availability of a large 

amount of data adds complications to the understanding of 

DDIs and their effects. In this work, we explored text mining 

methods to automatically extract drug–drug information 

from text. It may be observed that there are significant 

differences in micro-averaged and macro-averaged results 

for participating systems. Generally, systems have better 

results with the DrugBank dataset and weaker results with 

Medline. Participating systems were also better at predicting 

interaction pairs than at identifying interaction types. 

Our system achieved the best results of 0.893 recall rate, 

0.884 precision rate, and 0.888 F-score. In comparison, the 

first rank system at SemEval 2013 achieved 0.838 recall, 

0.816 precision and 0.827 F-score (Table I). For the Medline 

dataset, our system also performed best (Table II). Similarly, 

Table III and Table IV present the results for labeling of 

interactions for both DrugBank and Medline corpora for 

macro-averages for all types. Our system ranked top 2nd and 

1st, respectively. 
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