

Abstract—There is no denying that Bioinformatics is one of

the most important realms for our forthcoming development. As

a demonstration of this fact, a plethora of new algorithms that

were published over the last decade. Those significantly boost up

the processes of biological analysis, especially for DNA

alignment. Despite their undeniable contributions, it is still far

more to state that DNA alignment has already achieved the ideal

performance. In this work, we focus on the DNA alignment

system which is based on our improved BWA-MEM algorithm

that we have already published. Besides that, we also propose

some optimization methods which was applied in order to

improve the performance as well as the stability of our entire

system. The system offers a speed-up by 46.52x when compared

with the other computing platforms.

Index Terms—DNA alignment, BWA-MEM algorithm,

FPGA, IP Core Seed extension.

I. INTRODUCTION

Our Computer Age has been marked by the endless

development in both computing architectures and techniques.

DNA Sequencing also takes grand advantages from the new

computational inventions, especially from Nest Generation

Sequencing (NGS) techniques. NGS techniques offers a

dream low-cost genome sequencing and also stimulate the

generation of biological data. As a consequence, the amount

of biological data, especially genetic data, will soon become

one of the enormous set of Big Data field. In addition, NGS

data usually are processed by very complex algorithms that

require a number of computational operations. This issue has

been being a formidable obstacle that put a high pressure on

the traditional computing platforms. In this situation,

heterogeneous computing platforms are today highly

considered on over the world.

DNA sequences are composed of four kinds of nucleobase,

including C (cytosine), G (guanine), A (adenine), and T

(thymine). These nucleobases are read by biological

techniques and are combined into the short strings (especially

with 150 typical length [1]) afterwards. These strings then are

aligned against an enormous reference genome (even reaches

nearly 3 billion bases for the human genome). Such kind of

activities are long-haul iterations and time consuming, easily

up to multiple days for mapping jobs. Despite its vast quantity,

these jobs, in detail, can be classified into 3 main kinds of

Manuscript received November 15, 2019; revised October 19, 2020.

Binh Kieu-Do-Nguyen and Cuong Pham-Quoc are with the Ho Chi Minh

City University of Technology – VNU-HCM, Ho Chi Minh City, Viet Nam

(corresponding author: Cuong Pham-Quoc; e-mail:

1770283@hcmut.edu.vn, cuongpham@hcmut.edu.vn).

Cong-Kha Pham is with the Department of Computer and Network

Engineering, Cluster II (Emerging Multi-interdisciplinary Engineering), The

University of Electro-Communications, the city of Chofu, Tokyo, Japan

(e-mail: phamck@uec.ac.jp).

operation. This is: (1) addition, (2) subtraction, (3)

comparison. Many sequence alignment tools were published,

such as Bowtie [2], BWA [3], MAQ [4], SOAP2 [5] and

BWA-MEM [6]. Among these tools, BWA-MEM is highly

recommended for high-quality queries as it is faster and more

accurate [7].

FPGA (Field-Programmable Gate array) is a

heterogeneous computing platform, which has been providing

a flexible environment for system development. The main

feature of FPGAs is application specific. As they can be

programmed in order to be integrated with a tremendous

number of computing elements such as adders, subtractors,

RAMs, etc. In addition, the number of these components as

well as the ratio among them can be adjusted for the highest

appropriateness of a sole application. The use of FPGAs can

yield impressive improvements in both processing frequency

and power consumption.

In this paper, we focus on the deployment of our

FPGA-based Seed Extension IP Core, which was

implemented in our earlier works in [8] and [9], in a

CPU-Hardware acceleration system. The main contributions

of this paper can be summarized as follows:

1) We analyze the steps of our improved BWA-MEM

algorithm

2) Then, we optimized the fragments of this algorithm in

order to achieve a highest performance and flexibility.

3) Finally, we advocate a typical CPU-Hardware

acceleration model in order to take the advantage from

our developed IP Core.

Finally, we advocate a typical CPU-Hardware acceleration

model in order to take the advantage from our developed IP

Core.

II. BACKGROUND AND RELATED WORK

A. Background

BWA [3] is a read alignment package that is based on BWT

(Burrow-Wheeler Transform) to align short sequencing reads

against a large reference sequence such as the human genome.

BWA and its variants are widely using in both academic and

commercial environment thank to their efficiency. BWA

consists three descendants, they are: (1) BWA-backtrack, (2)

BWA-SW and (3) BWA-MEM where BWA-MEM is the

latest with the highest speed and accuracy. In general, the

BWA-MEM alignment algorithm involves three main stages:

1) SMEM generation: standing for Super-Maximal Exact

Matches. In this stage, DNA’s data, which were collected

and stored beforehand, are read. With each read string,

maximal matched positions are located. These spots are

called as seeds. A sole seed cannot be extended in both

direction and each seed cannot be covered by one in

High-Performance FPGA-Based BWA-MEM Accelerator

Binh Kieu-Do-Nguyen, Cuong Pham-Quoc, and Cong-Kha Pham

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

256doi: 10.18178/ijmlc.2021.11.3.1044

mailto:1770283@hcmut.edu.vn

another. None or more seeds can be produced per read.

2) Seed extension: in this stage, the seeds that are already

processed in an alignment before are dropped. The others,

if they potentially lead to a new alignment, are extended

with a banded affine-gap-penalty dynamic programming

(DP). After scoring processes, a maximal similarity chain,

but not identical, is identified. The scoring process

method that is similar to the Smith-Waterman algorithm

[10].

3) Output generation: among the alignments which were

scored, the best one is selected and is stored into memory.

The final selection can be performed a global alignment

if it is necessary.

Fig. 1 shows BWA-MEM algorithm step-by-step. SMEM

generation (including ’read data’ and ’seeding’) and Output

generation (including ’write score’) are operated in host

computer (i.e., CPU or any other general-purpose processors).

Seed extension is partly run on FPGA, which plays a role as

acceleration hardware. The process of extending seeds is the

most appropriate part in Seed extension stage that can be

easily, and also most efficiently, deployed onto heterogeneous

computing platform [11].

Fig. 1. Stages of BWA-MEM algorithm and the place where each stage is executed.

The exciting BWA-MEM algorithm [11] works well with

multithreading programs on general purpose platform (i.e.,

CPU, GPU) but not on FPGA. Unfortunately, due to a high

data-dependency, the original BWA-MEM algorithm does

not aim to be easily, and efficiently, implemented into an

application-specific platform, especially in FPGA, that can

lead to a significant boost [12]. In order to resolve this issue,

we promoted a slight rearrangement of the original

BWA-MEM algorithm to achieve a well fit with FPGA [9].

Our implementation can work with a higher frequency than

one in the previous investigations. Despite having a high

performance, the IP Core, based on our improved algorithm,

has still needed an appropriate protocol that can handle

exchanges of data. In addition, the enhanced algorithm can be

more optimized to achieve a better performance.

B. Related Work

There are a number of published proposals in the literature

that accelerate the DNA alignment algorithm. However,

according to our knowledge, there are a minority of them that

tried with heterogeneous computing platforms. The authors in

[13] firstly suggested the idea where the Seed extension stage

is conducted by using an array of processing elements. Their

contribution is widely inherited in the later investigations. The

authors also reported an up to 26x speed-up achieved for the

kernel. Authors in [14] used a systolic array model in order to

accelerate Seed extension stage of BWA-MEM algorithm.

They promoted the design in [13] by their Variable Logical

Length and Variable Physical Length models that help their

design to cope with the varied-length string. Their reports

reveal that their Seed Extension kernel achieved 2.82x and

their next improvement reached 5.7x speed up. All of of these

implementations only concentrate on finding the ways by

which a sequence alignment algorithm can be implemented

into FPGA, despite the fact that they are not designed to work

well on such platform. Therefore, the performance of these

did not reach a level that it should attain.

III. OPTIMIZATION

A. Optimized BWA-MEM Algorithm

Algorithm 1 is our improved BWA-MEM algorithm. We

already broke off the origin in order to ameliorate the

parallelism. Operations in loop are divided into 3 states, each

state can be conducted by a specific hardware-block, and each

block can be activated simultaneously. In addition, operations

inside the loop are divided not only by order but also by its

functions.

Algorithm 1: Optimized BWA-MEM scoring algorithm

input: Query string Q, length of query string |Q|, Target

 string T, length of target string |T|, initialscores

output: Scored matrix m

1 Allocate scoring matrix m: array [1..|Q|, 1..|T|];

2 Allocate scoring matrix m: array [1..|Q|, 1..|T|];

3 Allocate H: array [1..|Q|, 1..2];

4 ZerosFill(&m);

5 ZerosFill(&E);

6 ZerosFill(&E);

7 for row ← 1 to |T| do

8 Allocate substitution array P;

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

257

9

1

0

1

1

1

2

1

3

Allocate and initialize F: array [1..2];

Initialize(&Q, initialscores);

ZerosFill(&F);

Assign(&stage, preparing);

for col ← 1 to |Q|

1

4

 if stage is preparing then

1

5

1

6

1

7

1

8

 Select(&candH, H) ;

Select(&candE, E, 0);

Select(&candF, F, 0);

Assign(&stage, scoring);

1

9

2

0

 end

if stage is scoring then

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

 Calculate(&H[1], candH);

Calculate(&H[2], candE);

Calculate(&H[3], candF);

Calculate(&E[1], candH);

Calculate(&E[2], candE);

Calculate(&F[1], candH);

Calculate(&F[2], candF);

Assign(&stage, writeback);

2

9

3

0

 end

if stage is writeback then

3

1

3

2

 Update(&m[row][col], candH, candE, candF);

Assign(&stage, preparing);

3

3

 end

3

4

end

35 end

B. Performance Optimization

In Algorithm 1, by breaking off the original algorithm into 3

stages with less data-dependency, our deployment into FPGA

platform easily achieved a higher frequency than previous

implementations. In order to further increase the performance

of system, we applied the following enhancements:

1) We organized each stage in Algorithm 1 as a 3-stages

pipeline model. As it allows more data to be processed at

a same time, the throughput of the whole system is nearly

tripled.

2) In Algorithm 1, we realized that the inner loop (from line

13) ought to be executed in parallel. But, because there

are data-dependency among different loops, a

system-level pipeline mechanism should be applied. Fig.

2 depicts the abstract behaviors of the system when the

concurrency and pipeline are both indicated. When the

inner loop is declared to be simultaneously processed, |Q|

Processing Units (PUs), where |Q| is the number of

characters in query string, are generated. Each PU

conducts an iteration of the loop. After finishing an

iteration, a PU gets a new character in target string. A PU

accomplishes its jobs only if the whole target string

passes through it. For instance, at time T, PU[1] generates

3 array of data (involving H, E and F). These set of data

will be forwarded for itself at T + 1, for its neighborhood

at T + 1 and T + 2. By applying this optimization, we

reduced the complexity of our adjusted algorithm from

|Q| ∗ |T| to |Q| + |T|, where |T| is the length of target string.

Fig. 2. Dataflow among Processing Units (PUs) over time.

Fig. 3. Operation of BWA-MEM IP Core after optimization.

3) In Algorithm 1, the first goal that motivated us to

rearrange the original algorithm is separating complex

operations and grouping these fragments that can be

executed in parallel. Although there are data-dependency

among iterations of inner loop and among stages in each

iteration, the statements inside each stage are completely

independent. Thank to this feature, these operations in a

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

258

same stage can be concurrently processed. Fig. 3(b)

shows the order by which operations in each stage are

executed. By applying a high density of concurrency, the

system just requires 3 period for each iteration.

Fig. 3(a) shows the behaviors of the system, assume that it

has 2 PUs, when all the above optimization methods are

applied. Firstly, input data are selected by PU[0]. Secondly,

the selected data are stored into memory of PU[0] and are

used to generate the data for PU[1]. At the same time, new

input data also be selected by PU[0]. At the third period, the

scored data from PU[0] are selected by PU[1] in order to

update in score in the next. It is obviously that, from the third

period, the number of PU that participates into the assembly

line increase by 1 per period. It means that the density of data

that are simultaneously processed, and also the throughput,

increase rapidly over time.

IV. PROPOSED SYSTEM

There is no doubt that the sequence alignment is a

data-intensive application, the number and size of string in

this domain can be considered as a big data problem. Input

data and final score are There is no doubt that the sequence

alignment is a data-intensive application, the number and size

of string in this domain can be considered as a big data

problem. Input data and final score are frequently transferred

between host and FPGA. Moreover, the IP Core has to be

adapted with different platform where it would be deployed.

Therefore, on our work, we only provide a communication

protocol instead of building a specific communication bus.

This approach helps us to eliminate technology-dependency

of our design, which means our IP Core can be deployed into

different FPGA’s families that come from various vendors.

An alignment process in our proposed system follows the

below steps:

1) Data are loaded from database into CPU. A memory

access enhancement mechanism, such as Direct memory

access (DMA) or cache, can be added in order to improve

the performance of transmission at this step.

2) CPU executes consecutive operations before the Seed

extension stage. These operations do not take advantage

from heterogenous devices because they cannot be

simultaneously processed. CPU, with high frequency,

show their strength with such kind of operations.

3) At the Seed extension step, CPU transfers data to the

accelerator (implemented on FPGA) and actives a seed

extension process. Fig. 4 shows the connections in detail

between CPU and FPGA device.

Fig. 4. Connections between GPP and BWA-MEM IP core.

We integrate 2 FIFOs/queues in order to ensure the

synchronization between two different platforms, one for

write data and the other for read results. The lined data in

FIFO are stored consecutively into memory and are taken by

the IP Core afterwards. On the other side, results that are

wrote back to memory are read through FIFO by host

computer. In order to optimize the communication between

CPU and FPGA device, event-driven technique is applied into

the system. Fig. 5 reveals the interactions between CPU and

FPGA-based accelerator via event-driven mechanism. When

the transmission of data is completed, host rises a request that

will activate the aligning process in FPGA device. After that,

while the IP Core is running, host prepares new data for next

tasks. Whenever host receives an event’s signal from device,

it interrupts its current activities and then reads results from

device. After that, host continues its interrupted works.

4) Whenever the host reads any value from device, it must

read the valid flag of this data beforehand. The valid flag

is a mechanism that ensures the soundness of data before

they are read.

Fig. 5. Event-driven mechanism between Host and FPGA.

Our implemented communication handler provides a

flexible interface that help our design can be easily deployed

onto different FPGA’s platform. By the helping of a general

protocol, the implementation can work properly when it

connects to host via any bus type. In addition, with kinds of

bus that support an addressing mechanism, the system is even

able to extend. Multiple acceleration’s devices can connect

with each other and with host in a single bus, and host will

control them via their unique identification.

V. EXPERIMENTS

A. Experimental Setup

We deploy and test our system in Zedboard. Zedboard is a

development kit that is integrated with Zynq-7000 (xc7z020),

a new generation FPGA chip from Xilinx. Our rival is i5-4440,

a General-Purpose Processor from Intel. The processing time

on FPGA is recorded and then is compared with this on

i5-4440. The Table I shows our experimental system in detail.

TABLE I. RESOURCES OF TESTING SYSTEM

 GPP platform FPGA platform

CPU Intel i5-4440 Zynq-7000

Number of Cores 4 30

Frequency 3.30 GHx 200MHz

Storage 16GB DDR3 1GB DDR3

All performances are built based on an identical input data

set, which is legally provided by NCBI [15] for testing. Our

final goal is providing a Seed Extension IP Core. Therefore,

the results only focus on the Seed extension stage, a whole

system speed-up can be estimated based on the reports in [11].

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

259

B. Results

Tests are run with an identical input set. Input and output

are totally stored on RAM. Because both platforms share a

same RAM technology, we can avoid any potential

discrimination of drive’s access technology.

For each scenario, we run it multiple times and the average

results are selected. In addition, different lengths of read of

query string and target string are considered in order to

identify the gap among them. In this contest, we measure

execution time of strings with short read length (from 10 to 50

bp), medium read length (from 50 to 120 bp) and long read

length (higher than 120 bp). The total size of target strings and

query strings of our used dataset is about 135 MB.

Table II informs in detail about the execution time (in

minutes) of Intel Core i5 Processor and our recommended

system when it is deployed on Zedboard. In addition, Table II

also shows the proportion of resources which are used to

synthesize an IP Core that has 30 PUs. Recorded data involve

the time that the system take to align all input strings of the

dataset. The statistic includes time for execution and time for

transmission. Despite Intel’s Processor has a higher frequency

but thanks to the higher throughput and high-level of

parallelism, our system is always by far the best.

Fig. 6 illustrates the speed-ups of our proposed system with

Intel Core i5. In our test, we assume that the speed of Intel

Core i5 is 1, and then we calculate the speed-ups of our system.

The chart clearly proves that our system provides a

signification acceleration in the processing time. Results show

that our system archives nearly 45.66x speed-up from Intel

Core i5 with the long read’s scenario. There is a fact that the

grade of acceleration is not the same among different size of

input strings. For instance, our system shows the higher

performance with input strings that have a longer read length.

On the contrary side, it shows a worse performance when the

read length is small, the speed-ups are only 4.48x. We have

already tried further experiments and conclude that the longer

string is, the higher performance the system gets.

The reason that causes this phenomenon is the limitation of

flexibility of hardware designs. When hardware systems are

deployed, they are only able to execute the functions which

they were designed for. In contrast, software’s behaviors are

able to change more flexibly based on their internal code. In

our case, the deployed BWA-MEM’s hardware accelerator

has a fixed number of cores. When the IP Core deals with

short read strings, there is small proportion that target strings

can fill all PUs. It means there are some PUs that are still

working despite the final result was calculated. These

unnecessary operations make the whole process become

longer than it should be. Our system achieves its highest

performance only if the length of target strings is equal to the

number of PUs.

The performance of the system is also affected by the

number of PUs. The system achieves its ideal performance

only if the number of integrated PUs is equal to the number of

characters of query string. In our experiments, due to the

limitation of resources, we can only deploy an IP Core with 30

PUs. Therefore, our experimental system does not reach its

best. Despite the number of PUs does not equal the length of

query string, the system still works properly thank to a

mechanism that allows a new scoring process to begin with

nonzero initial values. According to the experimental results,

we can state that our proposed system has already achieved

our final goals: providing an IP Core and an efficient system

that can take advantage from the improved BWA-MEM

algorithm.

TABLE II. EXECUTION TIME OF OUR PROPOSED SYSTEM IN COMPARISON

WITH A GENERAL PURPOSE PROCESSOR (UNIT: MINUTES)

Read length i5-4440 Zynq-7000 Resource utilization (%)

Short 15.98 3.57

86.7% Medium 56.31 3.45

Long 149.32 3.27

Fig. 6. Speed-up of proposed system (with 30 PUs) when it is compared with

Intel Core i5 processor.

VI. CONCLUSION

In this paper, by optimizing one of the three essential stages

of BWA-MEM algorithm as well as providing an efficient

optimized communication protocol and connections, we have

presented an BWA-MEM’s hardware accelerator based on

FPGA. Our proposed system, as well as the improved

BWA-MEM algorithm’s hardware implementation, has

already reached the following features:

1) High performance: speed-up achieved up to 46.52x for

both processing and transmission time.

2) High throughput: 2-level pipeline noticeably increase the

throughput of the whole system.

3) Extensibility: the number of IP Cores in single FPGA

device can be integrated when a specific bus that supports

addressing mechanism is used. Moreover, thank to our

designed protocol, as well as its handler, host is able to

easily control multiple cores.

4) Soundness: by providing an optimized and reliable

communication protocol, we ensure that the transmission

is fast and accurately operated.

BWA-MEM algorithm is a fast and accurate aligner that

can works well for wide variety of length of sequence.

BWA-MEM can be still accelerated by both software and

hardware. On our next effort, we will focus on reduce the

charge that is caused by the limited flexibility of hardware.

This is the reason that lead the less-efficient performance of

our system when there is a huge gap between the length of

target string and the length of query string.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Binh Kieu-Do-Nguyen implemented the system and

conducted experiments. He also contributed in writing the

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

260

paper. Cuong Pham-Quoc proposed the system architecture

and structure of the paper. He also wrote the paper. Cong-Kha

Pham discussed and adviced on the system architecture and

implementation. He also proofed read the paper.

ACKNOWLEDGEMENTS

This research is funded by Department of Science and

Technology of Ho Chi Minh City under grant number

09/2018/HĐ-QKHCN.

REFERENCES

[1] H. Z. Cao, Y. Wang, W. Zhang et al., “A Short-read multiplex

sequencing method for reliable, cost-effective and high-throughput

genotyping in large-scale studies,” Human Mutation, vol. 34, 2014.

[2] B Langmead, “Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome , vol. 25, pp.

423–433, 2009.

[3] H. Li and R. Durbin, “Fast and accurate short read alignment with

burrows-wheeler transform,” Bioinformatics, vol. 25, 1754–1760,

2009.

[4] H. Li, J. Ruan, and R. Durbin, “Mapping short DNA sequencing reads

and calling variants using mapping quality scores,” Genome Research,

vol. 18, 1851–1858, 2008.

[5] R. Q. Li, C. Yu et al., “SOAP2: An improved ultrafast tool for short

read alignment,” Bioinformatics, vol. 25, pp. 1966–1967, 2009.

[6] H. Li, “Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM,” ArXiv 1303, 2013.

[7] H. Li. (2010). Burrows-Wheeler Aligner. [Online]. Available:

http://biobwa.sourceforge.net/

[8] P.-Q. Cuong, K. Binh, and T. N. Thinh, An FPGA-Based Seed

Extension IP Core for BWA-MEM DNA Alignment, pp. 1–6, 2018.

[9] Cuong Pham-Quoc, Kieu Binh, and Tran Ngoc Thinh, “A

high-performance FPGA-based BWA-MEM DNA sequence

alignment,” Concurrency and Computation: Practice and Experience,

2019.

[10] Temple F. Smith and Michael S. Waterman, “Identification of common

molecular subsequences,” Journal of Molecular Biology, vol. 147, no.

1, pp. 195–197, 1981.

[11] N. Ahmed, V. Sima, E. Houtgast, K. Bertels, and Z. Al-Ars,

“Heterogeneous hardware/software acceleration of the BWA-MEM

DNA alignment algorithm,” in Proc. 2015 IEEE/ACM International

Conference on Computer-Aided Design, 2015, pp. 240–246.

[12] K. Benkrid, A. Akoglu, C. Ling, Y. Song, Y. Liu, and X. Tian, “High

Performance Biological Pairwise Sequence Alignment: FPGA versus

GPU versus Cell BE versus GPP,” Int. J. Reconfig. Comp., pp.

752910:1– 752910:15, 2012.

[13] Y. Chen, J. Cong, J. Lei, and P. Wei, “A novel high-throughput

acceleration engine for read alignment,” in Proc. 2015 IEEE 23rd

Annual International Symposium on Field-Programmable Custom

Computing Machines, 2015, pp. 199–202.

[14] E. J. Houtgast, V. Sima, K. Bertels, and Z. Al-Ars, “An FPGA-based

systolic array to accelerate the BWA-MEM genomic mapping

algorithm,” in Proc. 2015 International Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation, 2015,

pp. 221–227.

[15] The National Center for Biotechnology Information. (2019). [Online].

Available: https://www.ncbi.nlm.nih.gov/guide/all/

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Binh Kieu-Do-Nguyen graduated with a BS in

computer science and engineering from Ho Chi Minh

City University of Technology (HCMUT) of Viet Nam

in 2017. He obtained his master’s degree in computer

science from HCMUT in 2019. He is currently a

teacher assistant of Computer Science and

Engineering Faculty at HCMUT. His current research

interests are in the high-performance computing,

heterogeneous hardware accelerators, hardware/software co-design,

high-level synthesis. He is pursuing his doctoral in the same specialization.

Cuong Pham-Quoc received the BSc degree in 2007,

and the MEng degree in 2009, both from the Faculty of

Computer Science and Engineering, the Ho Chi Minh

City University of Technology (HCMUT). He moved

to the Computer Engineering Lab (it now is Quantum

& Computer Engineering), the Delft University of

Technology, the Netherlands, from May 2011 to

pursue the Ph.D. degree. In May 2015, he came back

to the Ho Chi Minh City University of Technology,

Vietnam. Currently, he has been a lecturer at the HCMUT where he got the

position before he left for TUDelft in 2011. He now is serving as the head of

the Department of Computer Engineering, Faculty of Computer Science and

Engineering.

His research interests are in multi-/many-core architecture,

high-performance computing, heterogeneous hardware accelerators, on-chip

interconnect, high-speed network security on reconfigurable hardware,

hardware/software co-design, polymorphic processor design, high-level

synthesis, wireless sensors network, internet of Things, architecture and

technology for smart cities.

Cong-Kha Pham is a lecturer in the University of

Electro-Communications. He received his B.S. and

also his M.S. in Sophia University. He is currently a

professor in the University of

Electro-Communications in the city of Chofu, Tokyo,

Japan.

 He specializes in energy harvest power supply and

low-power data-centric sensor network system

utilizing the energy harvest, development of

long-distance transmission / miniaturization

equipment of sensor network by low power wireless, super low-voltage

device, memory-based information detection system, hardware

implementation of hardware system by FPGA and integrated circuit, etc.

Professor Pham is teaching many undergraduate and postgraduate

students and has received numerous awards for dissertation.

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

261

J. Genome Biol.,”

https://www.ncbi.nlm.nih.gov/guide/all/
https://creativecommons.org/licenses/by/4.0/

