
  

 

Abstract—There is no denying that Bioinformatics is one of 

the most important realms for our forthcoming development. As 

a demonstration of this fact, a plethora of new algorithms that 

were published over the last decade. Those significantly boost up 

the processes of biological analysis, especially for DNA 

alignment. Despite their undeniable contributions, it is still far 

more to state that DNA alignment has already achieved the ideal 

performance. In this work, we focus on the DNA alignment 

system which is based on our improved BWA-MEM algorithm 

that we have already published. Besides that, we also propose 

some optimization methods which was applied in order to 

improve the performance as well as the stability of our entire 

system. The system offers a speed-up by 46.52x when compared 

with the other computing platforms. 

 
Index Terms—DNA alignment, BWA-MEM algorithm, 

FPGA, IP Core Seed extension. 

 

I. INTRODUCTION 

Our Computer Age has been marked by the endless 

development in both computing architectures and techniques. 

DNA Sequencing also takes grand advantages from the new 

computational inventions, especially from Nest Generation 

Sequencing (NGS) techniques. NGS techniques offers a 

dream low-cost genome sequencing and also stimulate the 

generation of biological data. As a consequence, the amount 

of biological data, especially genetic data, will soon become 

one of the enormous set of Big Data field. In addition, NGS 

data usually are processed by very complex algorithms that 

require a number of computational operations. This issue has 

been being a formidable obstacle that put a high pressure on 

the traditional computing platforms. In this situation, 

heterogeneous computing platforms are today highly 

considered on over the world. 

DNA sequences are composed of four kinds of nucleobase, 

including C (cytosine), G (guanine), A (adenine), and T 

(thymine). These nucleobases are read by biological 

techniques and are combined into the short strings (especially 

with 150 typical length [1]) afterwards. These strings then are 

aligned against an enormous reference genome (even reaches 

nearly 3 billion bases for the human genome). Such kind of 

activities are long-haul iterations and time consuming, easily 

up to multiple days for mapping jobs. Despite its vast quantity, 

these jobs, in detail, can be classified into 3 main kinds of 
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operation. This is: (1) addition, (2) subtraction, (3) 

comparison. Many sequence alignment tools were published, 

such as Bowtie [2], BWA [3], MAQ [4], SOAP2 [5] and 

BWA-MEM [6]. Among these tools, BWA-MEM is highly 

recommended for high-quality queries as it is faster and more 

accurate [7]. 

FPGA (Field-Programmable Gate array) is a 

heterogeneous computing platform, which has been providing 

a flexible environment for system development. The main 

feature of FPGAs is application specific. As they can be 

programmed in order to be integrated with a tremendous 

number of computing elements such as adders, subtractors, 

RAMs, etc. In addition, the number of these components as 

well as the ratio among them can be adjusted for the highest 

appropriateness of a sole application. The use of FPGAs can 

yield impressive improvements in both processing frequency 

and power consumption. 

In this paper, we focus on the deployment of our 

FPGA-based Seed Extension IP Core, which was 

implemented in our earlier works in [8] and [9], in a 

CPU-Hardware acceleration system. The main contributions 

of this paper can be summarized as follows: 

1) We analyze the steps of our improved BWA-MEM 

algorithm 

2) Then, we optimized the fragments of this algorithm in 

order to achieve a highest performance and flexibility. 

3) Finally, we advocate a typical CPU-Hardware 

acceleration model in order to take the advantage from 

our developed IP Core. 

Finally, we advocate a typical CPU-Hardware acceleration 

model in order to take the advantage from our developed IP 

Core. 

 

II. BACKGROUND AND RELATED WORK 

A. Background 

BWA [3] is a read alignment package that is based on BWT 

(Burrow-Wheeler Transform) to align short sequencing reads 

against a large reference sequence such as the human genome. 

BWA and its variants are widely using in both academic and 

commercial environment thank to their efficiency. BWA 

consists three descendants, they are: (1) BWA-backtrack, (2) 

BWA-SW and (3) BWA-MEM where BWA-MEM is the 

latest with the highest speed and accuracy. In general, the 

BWA-MEM alignment algorithm involves three main stages: 

1) SMEM generation: standing for Super-Maximal Exact 

Matches. In this stage, DNA’s data, which were collected 

and stored beforehand, are read. With each read string, 

maximal matched positions are located. These spots are 

called as seeds. A sole seed cannot be extended in both 

direction and each seed cannot be covered by one in 
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another. None or more seeds can be produced per read. 

2) Seed extension: in this stage, the seeds that are already 

processed in an alignment before are dropped. The others, 

if they potentially lead to a new alignment, are extended 

with a banded affine-gap-penalty dynamic programming 

(DP). After scoring processes, a maximal similarity chain, 

but not identical, is identified. The scoring process 

method that is similar to the Smith-Waterman algorithm 

[10]. 

3) Output generation: among the alignments which were 

scored, the best one is selected and is stored into memory. 

The final selection can be performed a global alignment 

if it is necessary. 

Fig. 1 shows BWA-MEM algorithm step-by-step. SMEM 

generation (including ’read data’ and ’seeding’) and Output 

generation (including ’write score’) are operated in host 

computer (i.e., CPU or any other general-purpose processors). 

Seed extension is partly run on FPGA, which plays a role as 

acceleration hardware. The process of extending seeds is the 

most appropriate part in Seed extension stage that can be 

easily, and also most efficiently, deployed onto heterogeneous 

computing platform [11]. 

 

 
Fig. 1. Stages of BWA-MEM algorithm and the place where each stage is executed. 

 

The exciting BWA-MEM algorithm [11] works well with 

multithreading programs on general purpose platform (i.e., 

CPU, GPU) but not on FPGA. Unfortunately, due to a high 

data-dependency, the original BWA-MEM algorithm does 

not aim to be easily, and efficiently, implemented into an 

application-specific platform, especially in FPGA, that can 

lead to a significant boost [12]. In order to resolve this issue, 

we promoted a slight rearrangement of the original 

BWA-MEM algorithm to achieve a well fit with FPGA [9]. 

Our implementation can work with a higher frequency than 

one in the previous investigations. Despite having a high 

performance, the IP Core, based on our improved algorithm, 

has still needed an appropriate protocol that can handle 

exchanges of data. In addition, the enhanced algorithm can be 

more optimized to achieve a better performance. 

B. Related Work 

There are a number of published proposals in the literature 

that accelerate the DNA alignment algorithm. However, 

according to our knowledge, there are a minority of them that 

tried with heterogeneous computing platforms. The authors in 

[13] firstly suggested the idea where the Seed extension stage 

is conducted by using an array of processing elements. Their 

contribution is widely inherited in the later investigations. The 

authors also reported an up to 26x speed-up achieved for the 

kernel. Authors in [14] used a systolic array model in order to 

accelerate Seed extension stage of BWA-MEM algorithm. 

They promoted the design in [13] by their Variable Logical 

Length and Variable Physical Length models that help their 

design to cope with the varied-length string. Their reports 

reveal that their Seed Extension kernel achieved 2.82x and 

their next improvement reached 5.7x speed up. All of of these 

implementations only concentrate on finding the ways by 

which a sequence alignment algorithm can be implemented 

into FPGA, despite the fact that they are not designed to work 

well on such platform. Therefore, the performance of these 

did not reach a level that it should attain. 

 

III. OPTIMIZATION 

A. Optimized BWA-MEM Algorithm 

Algorithm 1 is our improved BWA-MEM algorithm. We 

already broke off the origin in order to ameliorate the 

parallelism. Operations in loop are divided into 3 states, each 

state can be conducted by a specific hardware-block, and each 

block can be activated simultaneously. In addition, operations 

inside the loop are divided not only by order but also by its 

functions. 

 

Algorithm 1: Optimized BWA-MEM scoring algorithm 

input: Query string Q, length of query string |Q|, Target    

            string T, length of target string |T|, initialscores 

output: Scored matrix m 

1   Allocate scoring matrix m: array [1..|Q|, 1..|T|];   

2   Allocate scoring matrix m: array [1..|Q|, 1..|T|];  

3   Allocate H: array [1..|Q|, 1..2]; 

4   ZerosFill(&m);    

5   ZerosFill(&E); 

6   ZerosFill(&E);   

 

7   for row ← 1 to |T| do             

8 Allocate substitution array P; 
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Allocate and initialize F: array [1..2]; 

Initialize(&Q, initialscores); 

ZerosFill(&F); 

Assign(&stage, preparing); 

for col ← 1 to |Q|  

1

4 

 if stage is preparing then 

1

5 

1

6 

1

7 

1

8 

  Select(&candH, H) ; 

Select(&candE, E, 0); 

Select(&candF, F, 0); 

Assign(&stage, scoring); 

1

9 

2

0 

 end 

if stage is scoring then 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

2

7 

2

8 

  Calculate(&H[1], candH); 

Calculate(&H[2], candE); 

Calculate(&H[3], candF); 

Calculate(&E[1], candH); 

Calculate(&E[2], candE); 

Calculate(&F[1], candH); 

Calculate(&F[2], candF); 

Assign(&stage, writeback); 

2

9 

3

0 

 end 

if stage is writeback then 

3

1 

3

2 

  Update(&m[row][col], candH, candE, candF); 

Assign(&stage, preparing); 

3

3 

 end 

3

4 

end 

35 end 

 

B. Performance Optimization 

In Algorithm 1, by breaking off the original algorithm into 3 

stages with less data-dependency, our deployment into FPGA 

platform easily achieved a higher frequency than previous 

implementations. In order to further increase the performance 

of system, we applied the following enhancements: 

1) We organized each stage in Algorithm 1 as a 3-stages     

pipeline model. As it allows more data to be processed at 

a same time, the throughput of the whole system is nearly 

tripled. 

2) In Algorithm 1, we realized that the inner loop (from line 

13) ought to be executed in parallel. But, because there 

are data-dependency among different loops, a 

system-level pipeline mechanism should be applied. Fig. 

2 depicts the abstract behaviors of the system when the 

concurrency and pipeline are both indicated. When the 

inner loop is declared to be simultaneously processed, |Q| 

Processing Units (PUs), where |Q| is the number of 

characters in query string, are generated. Each PU 

conducts an iteration of the loop. After finishing an 

iteration, a PU gets a new character in target string. A PU 

accomplishes its jobs only if the whole target string 

passes through it. For instance, at time T, PU[1] generates 

3 array of data (involving H, E and F). These set of data 

will be forwarded for itself at T + 1, for its neighborhood 

at T + 1 and T + 2. By applying this optimization, we 

reduced the complexity of our adjusted algorithm from 

|Q| ∗ |T| to |Q| + |T|, where |T| is the length of target string. 

 

 
Fig. 2. Dataflow among Processing Units (PUs) over time. 

 

 
Fig. 3. Operation of BWA-MEM IP Core after optimization. 

 

3) In Algorithm 1, the first goal that motivated us to 

rearrange the original algorithm is separating complex 

operations and grouping these fragments that can be 

executed in parallel. Although there are data-dependency 

among iterations of inner loop and among stages in each 

iteration, the statements inside each stage are completely 

independent. Thank to this feature, these operations in a 
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same stage can be concurrently processed. Fig. 3(b) 

shows the order by which operations in each stage are 

executed. By applying a high density of concurrency, the 

system just requires 3 period for each iteration. 

Fig. 3(a) shows the behaviors of the system, assume that it 

has 2 PUs, when all the above optimization methods are 

applied. Firstly, input data are selected by PU[0]. Secondly, 

the selected data are stored into memory of PU[0] and are 

used to generate the data for PU[1]. At the same time, new 

input data also be selected by PU[0]. At the third period, the 

scored data from PU[0] are selected by PU[1] in order to 

update in score in the next. It is obviously that, from the third 

period, the number of PU that participates into the assembly 

line increase by 1 per period. It means that the density of data 

that are simultaneously processed, and also the throughput, 

increase rapidly over time. 

 

IV. PROPOSED SYSTEM 

There is no doubt that the sequence alignment is a 

data-intensive application, the number and size of string in 

this domain can be considered as a big data problem. Input 

data and final score are There is no doubt that the sequence 

alignment is a data-intensive application, the number and size 

of string in this domain can be considered as a big data 

problem. Input data and final score are frequently transferred 

between host and FPGA. Moreover, the IP Core has to be 

adapted with different platform where it would be deployed. 

Therefore, on our work, we only provide a communication 

protocol instead of building a specific communication bus. 

This approach helps us to eliminate technology-dependency 

of our design, which means our IP Core can be deployed into 

different FPGA’s families that come from various vendors.  

An alignment process in our proposed system follows the 

below steps: 

1) Data are loaded from database into CPU. A memory 

access enhancement mechanism, such as Direct memory 

access (DMA) or cache, can be added in order to improve 

the performance of transmission at this step. 

2) CPU executes consecutive operations before the Seed 

extension stage. These operations do not take advantage 

from heterogenous devices because they cannot be 

simultaneously processed. CPU, with high frequency, 

show their strength with such kind of operations. 

3) At the Seed extension step, CPU transfers data to the 

accelerator (implemented on FPGA) and actives a seed 

extension process. Fig. 4 shows the connections in detail 

between CPU and FPGA device. 

 

 
Fig. 4. Connections between GPP and BWA-MEM IP core. 

 

We integrate 2 FIFOs/queues in order to ensure the 

synchronization between two different platforms, one for 

write data and the other for read results. The lined data in 

FIFO are stored consecutively into memory and are taken by 

the IP Core afterwards. On the other side, results that are 

wrote back to memory are read through FIFO by host 

computer. In order to optimize the communication between 

CPU and FPGA device, event-driven technique is applied into 

the system. Fig. 5 reveals the interactions between CPU and 

FPGA-based accelerator via event-driven mechanism. When 

the transmission of data is completed, host rises a request that 

will activate the aligning process in FPGA device. After that, 

while the IP Core is running, host prepares new data for next 

tasks. Whenever host receives an event’s signal from device, 

it interrupts its current activities and then reads results from 

device. After that, host continues its interrupted works. 

4) Whenever the host reads any value from device, it must 

read the valid flag of this data beforehand. The valid flag 

is a mechanism that ensures the soundness of data before 

they are read. 

 

 
Fig. 5. Event-driven mechanism between Host and FPGA. 

 

Our implemented communication handler provides a 

flexible interface that help our design can be easily deployed 

onto different FPGA’s platform. By the helping of a general 

protocol, the implementation can work properly when it 

connects to host via any bus type. In addition, with kinds of 

bus that support an addressing mechanism, the system is even 

able to extend. Multiple acceleration’s devices can connect 

with each other and with host in a single bus, and host will 

control them via their unique identification. 

 

V. EXPERIMENTS 

A. Experimental Setup 

We deploy and test our system in Zedboard. Zedboard is a 

development kit that is integrated with Zynq-7000 (xc7z020), 

a new generation FPGA chip from Xilinx. Our rival is i5-4440, 

a General-Purpose Processor from Intel. The processing time 

on FPGA is recorded and then is compared with this on 

i5-4440. The Table I shows our experimental system in detail. 

 
TABLE I. RESOURCES OF TESTING SYSTEM 

 GPP platform FPGA platform 

CPU Intel i5-4440 Zynq-7000 

Number of Cores 4 30 

Frequency 3.30 GHx 200MHz 

Storage 16GB DDR3 1GB DDR3 

 

All performances are built based on an identical input data 

set, which is legally provided by NCBI [15] for testing. Our 

final goal is providing a Seed Extension IP Core. Therefore, 

the results only focus on the Seed extension stage, a whole 

system speed-up can be estimated based on the reports in [11]. 
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B. Results 

Tests are run with an identical input set. Input and output 

are totally stored on RAM. Because both platforms share a 

same RAM technology, we can avoid any potential 

discrimination of drive’s access technology. 

For each scenario, we run it multiple times and the average 

results are selected. In addition, different lengths of read of 

query string and target string are considered in order to 

identify the gap among them. In this contest, we measure 

execution time of strings with short read length (from 10 to 50 

bp), medium read length (from 50 to 120 bp) and long read 

length (higher than 120 bp). The total size of target strings and 

query strings of our used dataset is about 135 MB. 

Table II informs in detail about the execution time (in 

minutes) of Intel Core i5 Processor and our recommended 

system when it is deployed on Zedboard. In addition, Table II 

also shows the proportion of resources which are used to 

synthesize an IP Core that has 30 PUs. Recorded data involve 

the time that the system take to align all input strings of the 

dataset. The statistic includes time for execution and time for 

transmission. Despite Intel’s Processor has a higher frequency 

but thanks to the higher throughput and high-level of 

parallelism, our system is always by far the best. 

Fig. 6 illustrates the speed-ups of our proposed system with 

Intel Core i5. In our test, we assume that the speed of Intel 

Core i5 is 1, and then we calculate the speed-ups of our system. 

The chart clearly proves that our system provides a 

signification acceleration in the processing time. Results show 

that our system archives nearly 45.66x speed-up from Intel 

Core i5 with the long read’s scenario. There is a fact that the 

grade of acceleration is not the same among different size of 

input strings. For instance, our system shows the higher 

performance with input strings that have a longer read length. 

On the contrary side, it shows a worse performance when the 

read length is small, the speed-ups are only 4.48x. We have 

already tried further experiments and conclude that the longer 

string is, the higher performance the system gets. 

The reason that causes this phenomenon is the limitation of 

flexibility of hardware designs. When hardware systems are 

deployed, they are only able to execute the functions which 

they were designed for. In contrast, software’s behaviors are 

able to change more flexibly based on their internal code. In 

our case, the deployed BWA-MEM’s hardware accelerator 

has a fixed number of cores. When the IP Core deals with 

short read strings, there is small proportion that target strings 

can fill all PUs. It means there are some PUs that are still 

working despite the final result was calculated. These 

unnecessary operations make the whole process become 

longer than it should be. Our system achieves its highest 

performance only if the length of target strings is equal to the 

number of PUs. 

The performance of the system is also affected by the 

number of PUs. The system achieves its ideal performance 

only if the number of integrated PUs is equal to the number of 

characters of query string. In our experiments, due to the 

limitation of resources, we can only deploy an IP Core with 30 

PUs. Therefore, our experimental system does not reach its 

best. Despite the number of PUs does not equal the length of 

query string, the system still works properly thank to a 

mechanism that allows a new scoring process to begin with 

nonzero initial values. According to the experimental results, 

we can state that our proposed system has already achieved 

our final goals: providing an IP Core and an efficient system 

that can take advantage from the improved BWA-MEM 

algorithm. 

 
TABLE II.  EXECUTION TIME OF OUR PROPOSED SYSTEM IN COMPARISON 

WITH A GENERAL PURPOSE PROCESSOR (UNIT: MINUTES) 

Read length i5-4440 Zynq-7000 Resource utilization (%) 

Short 15.98 3.57 

86.7% Medium 56.31 3.45 

Long 149.32 3.27 

 

 
Fig. 6. Speed-up of proposed system (with 30 PUs) when it is compared with 

Intel Core i5 processor. 

 

VI. CONCLUSION 

In this paper, by optimizing one of the three essential stages 

of BWA-MEM algorithm as well as providing an efficient 

optimized communication protocol and connections, we have 

presented an BWA-MEM’s hardware accelerator based on 

FPGA. Our proposed system, as well as the improved 

BWA-MEM algorithm’s hardware implementation, has 

already reached the following features:  

1) High performance: speed-up achieved up to 46.52x for 

both processing and transmission time. 

2) High throughput: 2-level pipeline noticeably increase the 

throughput of the whole system. 

3) Extensibility: the number of IP Cores in single FPGA 

device can be integrated when a specific bus that supports 

addressing mechanism is used. Moreover, thank to our 

designed protocol, as well as its handler, host is able to 

easily control multiple cores. 

4) Soundness: by providing an optimized and reliable 

communication protocol, we ensure that the transmission 

is fast and accurately operated. 

BWA-MEM algorithm is a fast and accurate aligner that 

can works well for wide variety of length of sequence. 

BWA-MEM can be still accelerated by both software and 

hardware. On our next effort, we will focus on reduce the 

charge that is caused by the limited flexibility of hardware. 

This is the reason that lead the less-efficient performance of 

our system when there is a huge gap between the length of 

target string and the length of query string. 
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