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Abstract—An efficient intelligent cache replacement policy 

suitable for picture archiving and communication systems 

(PACS) was proposed in this work. By combining the Support 

vector machine (SVM) with the classic least recently used (LRU) 

cache replacement policy, we have created a new intelligent 

cache replacement policy called SVM-LRU. The SVM-LRU 

policy is unlike conventional cache replacement policies, which 

are solely dependent on the intrinsic properties of the cached 

items. Our PACS-oriented SVM-LRU algorithm identifies the 

variables that affect file access probabilities by mining medical 

data. The SVM algorithm is then used to model the future access 

probabilities of the cached items, thus improving cache 

performance. Finally, a simulation experiment was performed 

using the trace-driven simulation method. It was shown that the 

SVM-LRU cache algorithm significantly improves PACS cache 

performance when compared to conventional cache replacement 

policies like LRU, LFU, SIZE and GDS. 

 
Index Terms—PACS, cache replacement policy, SVM, hybrid 

Storage.  

 

I. INTRODUCTION 

The PACS is a computer application system dedicated to 

the process, storage and the transmission of medical images. 

Through the network, the images information collected by CT, 

CR, DSA, MRI, gastrointestinal, ultrasound, endoscope and 

other image equipment are digitized and transferred to the 

server for classification and storage, so that the relevant image 

terminals are retrieved as needed, quickly. For instance, the 

PACS in Yancheng 1st People's Hospital has a comparative 

20% annual data update rate each year. The growth of 

massive data poses numerous challenges to storage systems. 

Recently, the evolution of storage systems is moving toward 

high-performance, high-capacity, and low-cost. However, any 

single storage medium likewise Hard Disk Drive (HDD) and 

Solid State Drives (SSD) cannot meet the above-mention 

requirements due to restrictions of their inherent 

characteristics. Therefore, the hybrid storage media is an 

efficient solution. 

Hybrid storage system composed of storage media with 

different characteristics. According to the characteristics of 

data access and the system load conditions, the data request is 

handed over to the medium best suited to handle, thereby 

improving the performance of the entire system. The SSD is 

widely used as a memory in hybrid storage system, with high 

 
Manuscript received September 24, 2019; revised October 5, 2020.  

Yinyin Wang and Yuwang Yang are with the School of Computer 

Science and Engineering, Nanjing University of Science and Technology, 

China (e-mail: wyywx699@163.com, yuwangyang@njust.edu.cn). 

Qingguang Wang is with the Yancheng 1st People’s Hospital and 

Medical School of Nantong University, China (e-mail: wqg699@163.com). 

reliability, low energy consumption and high performance. 

Considering the high performance of SSD and the low cost of 

HDD with large capacity, SSD is usually used as the cache of 

HDD to improve the user experience by providing users with 

high-speed and large-capacity storage. However, as a cache 

medium, the SDD is of relatively high cost and limited storage 

capacity. Therefore, another cache replacement strategy is 

needed, good enough to manage the hybrid storage. 

In PACS, the classic cache replacement strategy has a 

relatively poor performance, whereas these strategies only 

consider a certain influence of the cache object (such as size, 

final access time and frequency). The literature offered 

machines learning-based approaches to improve the 

traditional cache replacement strategy likewise Artificial 

Neural Network (ANN), Support Vector Machine (SVM), 

and Decision Tree C4.5 (C4.5). However, mention 

approaches are time-consuming consequently leads to 

computation overhead besides the prediction accuracy is 

nasty. More importantly, these policies only focus on the 

influential factors of cache object itself, ignoring the 

characteristics of the cache object counterpart entity. Hence, 

the existing intelligent cache replacement strategy is 

inefficient in PACS. 

A large amount of medical data set produced during the 

medical treatment. The data set is stored in databases likewise 

HIS, RIS, and EMR. Many interesting phenomena can be 

observed via the analysis of these eigenvalues through the 

mining of data: 1. The complete image flow includes medical 

examinations, film printing, preliminary reports, final reports, 

and so on. The image data will be accessed multiple times 

before the process ends. 2. Image data of patients in the 

hospital are much more accessed than patients who have been 

discharged. 3. Image data with positive results are more 

accessed than negative. 4. Different doctors have quite 

different ways of accessing image data. 5. Imaging data of the 

patients who had undergone a surgical operation and who are 

seriously ill are more likely to be accessed than normal 

patients. Therefore, this paper hopes to use these eigenvalues 

to predict the probability that the cache object will be 

accessed in the future through machine learning. Further, to 

improve the cache hit ratio through the combination with the 

classic cache replacement strategy. 

Based on the analysis of the cache architecture of PACS 

and the features of both cache object features and users’ 

habits, this paper combines the SVM algorithm with the 

classic LRU cache replacement strategy to form the 

SVM-LRU strategy. This strategy uses a relatively simple 

SVM algorithm to establish a model that includes influencing 

factors, features, and users’ habits of the cache object. The 

SVM-LRU strategy has less training time, small computation, 
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and high prediction accuracy with improved hit ratio and byte 

hit ratio performance. 

 

II. MATERIAL AND METHODS 

A. Hybrid Storage System Architecture 

In PACS, SSD and HDD are commonly used to develop a 

hybrid storage system [1]-[3]. SSD is used as a cache for 

HDD. The logical address of the hybrid storage corresponds 

to the physical address of HDD. In SSD, only a copy of the 

hot data in HDD is cached. The total capacity of HDD is the 

entire capacity of the hybrid storage. When there is an access 

request, the data is first retrieved on the SSD and, if hit it will 

be read directly from the SSD. If not, the data is transferred 

from HDD to SSD and read. This architecture is mainly 

suitable for file-type storage systems. The PACS mainly 

stores large numbers of image files. Hence, it is very suitable 

for this architecture. 

B. Cache Replacement Strategy 

This section reviews cache replacement strategy, which is 

divided into six types: 

1) The strategy based on the Random algorithm (RAND). 

This type of strategy uses a random number generator. 

The number belongs to a software or a hardware to 

determine the replaced object in the main memory. Such, 

strategy is the simplest and straightforward to implement. 

However, this kind of strategy does not consider the 

various factors that affect the object at all, so the hit ratio 

is relatively low, hence is less practical. 

2) Strategy Based on the LRU [4]. This strategy takes 

objects that have not been accessed for the longest time in 

the recent past as replaced objects. The advantage is the 

relatively easy implementation, low time complexity, and 

has a good performance in applications with unified 

cache sizes. However, it ignores factors such as the 

frequency and size of the object, and there is a problem of 

cache pollution. 

3) The strategy based on the Least Frequently Used 

algorithm (LFU) [5]. This type of strategy selects the 

object that has been least accessed recently as the object 

to be replaced, which can help avoid caching pollution 

problems. However, this policy is very difficult to 

implement. It sets a counter for each object and selects a 

fixed clock to count for each counter. Similarly, it only 

considers the frequency factor of the cache object and 

ignores other factors. 

4) The strategy based on the SIZE [6]. This strategy 

replaces the object of maximum size from the cache when 

a new object requests for space. The strategy is simple 

and easy. However, the cache can be polluted by small 

objects that are not accessed again but are difficult to 

replace. This policy is suitable for WEB cache 

replacement applications, which have a high cache hit 

ratio but a low byte-hit ratio. 

5) The strategy based on function. Likewise, Greedy 

Dual-Size (GDS) and Greedy Dual-Size Free (GDSF) [7] 

can optimize cache performance by selecting the 

appropriate weighted parameters. Multiple influential 

factors can be considered to handle different application 

scenarios. However, it is a very difficult task to choose 

the appropriate weighted parameters for this strategy. 

Furthermore, new problems may be produced in the 

calculation of function values. 

6) Intelligent cache replacement strategy. Numerous 

intelligent cache replacement policies have been 

proposed in recent years. The strategies proposed in 

References [8]-[12] can generally be divided into two 

categories. In the first category, intelligent algorithms are 

used independently as cache replacement policies; in the 

second category, intelligent algorithms are combined 

with conventional cache replacement policies. Both of 

these approaches rely on the prediction of future access 

probabilities to enhance cache performance. 

However, these intelligent cache replacement policies 

depend only on the intrinsic properties of the cached items 

alone (e.g., filesize, last access time, and access frequency). In 

our method, medical data is mined to identify the patients who 

correspond to the PACS’s cached items. A machine learning 

algorithm is then used to construct a predictive model that is 

based on the variability of the treatment process. This model 

is then used to predict the future access probability of each 

cached item, thus improving cache performance. 

C. Support Vector Machine 

The support vector machine (SVM) is one of the most 

robust and accurate methods in all well-known machine 

learning algorithms. SVM has been used successfully in a 

wide range of applications such as text classification, Web 

page classification and bioinformatics applications [13], [14] 

Consider the problem of separating the set of training data 
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a feature vector and  1, 1  iy  its class label. If we assume 

that the two classes can be separated by a hyperplane 

0 x b  in some space H , and that we have no prior 

knowledge about the data distribution, then the optimal 

hyperplane is the one which aximizes themargin [15]. The 

optimal values for   and b can be found by solving a 

constrained minimization problem, using Lagrange 

multipliers  1,i i m . 
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where i and b are found by using an SVC learning algorithm 

[15]. Those i with nonzero 
i  are the “support vectors”. For 

( , )  K x y x y  this corresponds to constructing an optimal 

separating hyperplane in the input space NR . 

Based on results reported in the literature, in this paper we 

use the kernel  2( , ) ( , )exp -K x y X x y for histogram features 

H , and for local features we use the kernel 
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i ji jL l and ji
l  s a jet descriptor of interest point j  
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in sequence i  and 
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where 
x  is the mean of x . 

 

III. SVM-LRU INTELLIGENT CACHE REPLACEMENT 

STRATEGY FOR PACS 

The SVM-LRU intelligent cache replacement strategy for 

PACS uses SVM algorithm to predict the probability that the 

cache object will be accessed in the future by considering the 

eigenvalues of the patient corresponding to the cache object in 

the medical process to, through the combination with LRU, 

improve PACS cache replacement performance. 

A. SVM-LRU Intelligent Cache Replacement Strategy 

Framework 

In his section, the SVM-LRU intelligent cache replacement 

policy can be presented and framework is shown in Fig. 1. 

The framework consists of three functions: 

Extract-Transform-Load (ETL) component, offline 

component, and an online component. 

The ETL component is responsible for extracting data in 

heterogeneous data sources (such as HIS, RIS, EMR, etc.) 

distributed in hospitals into the temporary intermediate layer 

for cleaning, conversion, integration, and finally loading into 

the target database, which lays the basis for later data analysis 

and data mining [16], [17]. 

The offline component does not handle users’ access 

requests directly. It trains SVM-LRU policies when the server 

is idle. The updated SVM-LRU policy is then applied to the 

cache manager for online components. 

The online component manages the cache manager. In case 

of an access request from users, first, the eigenvalue of the 

cache object will be gained from the target database, which 

would then be put into cache manager use, followed by the 

fulfilment of cache management by using SVM-LRU policy.  

B. SVM-LRU Intelligent Cache Replacement Strategy 

LRU policy is a classical cache replacement policy. 

However, the LRU policy is subject to cache pollution, which 

means that unwanted objects reside on the cache for a long 

time. In other words, a new object will be inserted in the LRU, 

at the top of the cache stack. If the object is no longer accessed 

in the future, it takes a long time to move down to the bottom 

of the stack before removing it from the cache. 

SVM is combined with LRU to form a new SVM-LRU to 

reduce cache pollution in LRU. The SVM-LRU workflow is 

as follows. When the users’ requests object X, SVM predicts 

P the probability that the object will be accessed in the future. 

If P is greater than or equal to the threshold , object X is 

determined as hot data, which will be placed at the top of the 

cache stack. Otherwise, object X is cold, which will be placed 

in the middle of the cache stack for a quick elimination: 

The SVM-LRU strategy pseudo code is as follows. 
 

Algorithm: SVM-LRU 

Input: each file X requested by user 

1:  If X in SSD 

2:   Cache hit occurs return X //file X read completion 

3:  Else 

4:    Fetch X from HDD to SDD 

5:  End 

6:  While no enough space in SDD for X 

7:   Evict Y such that Y in the bottom of the cache stack 

8:   Insert X in the bottom of the cache stack 

9:   Cache hit occurs   return X //file X read completion 

10: End 

11:  Use SVM-LRU algorithm update the probability PX of X  

12:  Predict whether X is cold data or hot data 

13:  If X is cold data 

14:   Move X to the middle of the cache stack 

15:   Else 

16:    Move X to the top of the cache stack 

17:  End 

Output: X 

 

IV. EFFECT ASSESSMENT AND DISCUSSION 

A. Cache Replacement Strategy Evaluation Index 

There are two main indicators used to evaluate cache 

storage performance, Hit Ratio (HR) and Byte Hit Ratio 

(BHR). The hit ratio represents the percentage of access 

requests obtained from the cache among total access requests. 

And the byte hit ratio represents the percentage of bytes 

obtained from the cache among the total bytes of access 

requests. 

 
Fig. 1. SVM-LRU intelligent cache replacement strategy framework. 
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HR and BHR calculation methods are as the following 

Formulas. Each request corresponds (1 ) i i N  to a cached 

object. im  represents the size of the object i .
iq  indicates 

object i  hit or not, if hit 1=iq , not hit =0iq . 
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HR and BHR have different focuses. HR focuses on 

reducing users’ response time and achieving a better user 

experience. While BHR focuses on reducing the erase 

frequency of SSD and extending its service life. It is very 

difficult for a cache replacement strategy to make HR and 

BHR both get optimal performance [18]. This is because the 

strategy of improving HR usually favour small-sized objects 

instead of large-sized objects, thus reducing BHR. In contrast, 

strategies that do not favour small-sized objects tend to 

increase BHR at the expense of HR 

B. Comparison between SVM-LRU Strategy and Classic 

Strategy 

The Track Driven Simulation method is used to conduct 

experiments [19] he experimental data was derived from the 

PACS of Yancheng No. 1 People’s Hospital, and the data was 

collected between 7th May 2018 and 27th May 2018 (a total 

of 21 days). Before the experiment, the stop point of the 

experiment, namely the infinite cache size, should be 

determined. Infinite cache means that there is enough space to 

store all cached objects without replacing any cached objects. 

In addition, the capacity of infinite cache is the total sum of all 

cache object sizes, among which HR and BHR can reach 

maximum values. Considering the cost element, however, 

infinite cache is impossible to realize. The infinite cache 

obtained through the experiment is 16134GB. 
max 42.36%HR  

max 45.18%BHR . So 9 levels are selected, and the cache 

capacity is from 52 GB to 132 GB. 

The SVM-LRU strategy and the classic GDS, LRU, LFU, 

and SIZE were used for experiments. Fig. 3 and Fig. 4 show 

HR and BHR in different strategies with different cache 

capacities. As the cache capacity increases, HR and BHR in 

all strategies increase. When the cache capacity is close to the 

capacity of the infinite cache, HR and BHR become stable 

and close to its maximum value. 

As shown in Fig. 3, it is obvious that SVM-LRU has 

improved the hit ratio of the classic LRU strategy as regards 

to HR, indicating II at the introduction of the SVM in the LRU 

strategy is effective. Since the frequency at which the image 

cache stored in PACS is accessed is not much different under 

the same circumstances, that is, there are fewer over-heated or 

over-cooled cache files, so the LFU strategy that introduces 

frequency factors has the worst performance. Similarly, the 

large difference in the cache size of the image stored by PACS, 

for example, the cache files such as ultrasonography, DR, etc. 

are only1~10MB, while the cache file size of CT, MIR and 

others have hundreds of MB. So when the introduced 

dimension factors like SIZE, GDS are smaller in cache 

capacity, it has more advantages over other strategies. But 

with the increase in cache capacity and the over-abandonment 

of large files, HR's growth rate is significantly slower than 

other strategies. In GDS, there is not much difference between 

and SVM-LRU and HR. GDSF has more advantages with 

small cache capacity, otherwise, SVM-LRU has more 

advantages. 

From the point of BHR, as shown in Fig. 4, size factors are 

not considered in SVM-LRU, LRU, and LFU, so the trend of 

BHR is basically the same as that of HR. Small-size objects 

are preferred by SIZE and GDS, so a high HR is obtained at 

the expense of low BHR. When the cache capacity is small, 

HR is superior to SVM-LRU, but BHR is significantly 

inferior to it. 
 

 
Fig. 3. Comparison of HR for multiple algorithm. 

 

 
Fig. 4. Comparison of BHR for multiple algorithms. 

 

To better illustrate the advantages of SVM-LRU strategy, 

the Improvement Ratios (IR) of HR and BHR performance 

are introduced to evaluate the advantages and disadvantages 

of different strategies. IR calculation formula is as formula 

(16), where PM represents the suggested Proposed Method 

(PM) and CM represents a comparative model (CM). Table I 

summarizes IR statistics of SVM-LRU and other strategies. 
 

( - )
= 100%

PM CM
IR

CM
                                (6) 

 

Form the overall, the results in Table I show that BHR in 

SVM-LRU is superior to other policies in all cache capacity. 

But HR is only inferior to SIZE, GDS and GDSF when cache 

capacity is relatively small, for such strategy often sacrifice 

BHR for higher HR, especially SIZE, which only focuses on

dimensions. When the cache capacity is 32GB, 17.06%HRIR   , 209.79%BHRIR  . It can be seen that 
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SVM-LRU has got a bigger BHR advantage at a relatively small loss of HR.  

 
TABLE I: IR STATISTICS FOR SVM-LRU OVER CLASSICAL STRATEGIES 

Cache size 

(GB) 

SVM-LRU Over 

GDS(%) 

SVM-LRU Over 

LRU(%) 

SVM-LRU Over 

LFU(%) 

SVM-LRU Over 

SIZE(%) 

HR BHR HR BHR HR BHR HR BHR 

32 -6.39  1.45  17.00  19.29  55.96  52.99  -17.60  209.79  

64 5.45  13.48  18.48  21.80  51.90  50.34  11.64  175.57  

128 18.93  29.01  25.14  30.32  49.20  43.22  21.45  111.84  

256 17.97  23.83  18.27  19.75  44.57  42.56  27.62  72.96  

512 18.99  26.53  15.56  18.80  34.49  40.58  28.58  42.44  

1024 17.26  22.46  14.82  16.24  30.47  27.13  25.83  27.38  

2048 15.11  14.52  10.17  13.70  27.89  23.81  21.94  22.37  

4096 9.01  12.71  6.92  13.47  22.12  19.85  19.22  17.37  

8192 5.38  10.63  2.57  10.35  14.17  14.70  8.41  14.49  

 

Compared to LRU, SVM-LRU significantly improves HR 

and BHR performance and has the best performance when the 

cache capacity is 128GB, where 25.14%HRIR   , 

30.32%BHRIR  .  SVM-LRU can predict and replace cold data 

in the cache faster, and it can significantly improve cache 

performance especially when the cache capacity is relatively 

small, which indicates that the introduction of the SVM into 

LRU is correct and effective. SVM-LRU has a good 

performance on HR and BHR compared to LFU, indicating 

that access frequency is not a key factor of the hybrid storage 

cache replacement strategy like PACS. Comparing 

SVM-LRU with GDS and SVM-LRU with SIZE, HR is 

slightly worse only when the cache capacity is 32GB. HR and 

BHR in other cases have been significantly improved, which 

indicates that the strategy of focusing on dimensions is not 

suitable for PACS hybrid storage cache.  

In summary, SVM-LRU is better than other classical 

strategies, and its BHR is good enough. HR has a good 

performance when the cache capacity is large enough, and it is 

generally superior to other classical strategies. 

 

V. CONCLUSION AND FUTURE WORKS 

This paper proposes an intelligent cache substitution 

strategy for PACS, which combines the SVM with the LRU to 

form the SVM-LRU intelligent cache replacement strategy. 

Different from the existing cache replacement policy, only the 

nature of the cache object itself is used to formulate the 

strategy (such as size, final access time and frequency). The 

SVM-LRU strategy oriented towards PACS obtains the 

eigenvalues in the medical process that belongs to the patients 

corresponding to the cached object through mining the 

medical data. Experimental results show that SVM-LRU 

significantly improves cache performance compared to LRU, 

LFU, SIZE and GDS. 

The SVM-LRU strategy proposed in this article is based on 

the example of PACS in hospitals. Its core ideas can be 

extended to industries such as electricity, banking, aerospace, 

and telecommunications. Which are similar to hospital 

systems with a large amount of data, a large number of data 

dimensions, and strong data relevance. The eigenvalues are 

obtained through data mining. The machine learning 

algorithm is used to establish a model to predict the 

probability that the cache object will be accessed in the future, 

thus improving the cache performance. 
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