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Abstract—Automatically determining similar questions and 

ranking the obtained questions according to their similarities 

to each input question is a very important task to any 

community Question Answering system (cQA). Various 

methods have applied for this task including conventional 

machine learning methods with feature extraction and some 

recent studies using deep learning methods. This paper 

addresses the problem of how to combine advantages of 

different methods into one unified model. Moreover, deep 

learning models are usually only effective for large data, while 

training data sets in cQA problems are often small, so the idea 

of integrating external knowledge into deep learning models 

for this cQA problem becomes more important. To this 

objective, we propose a neural network-based model which 

combines a Convolutional Neural Network (CNN) with 

features from other methods so that the deep learning model is 

enhanced with addtional knowledge sources. In our proposed 

model, the CNN component will learn the representation of 

two given questions, then combined additional features 

through a Multilayer Perceptron (MLP) to measure  similarity 

between the two questions. We tested our proposed model on 

the SemEval 2016 task-3 data set and obtain better results in 

comparison with previous studies on the same task.  

 
Index Terms—Community based question answering, 

convolutional neural networks, combining multiple sources.  

 

I. INTRODUCTION 

Nowadays, many cQA forums are becoming more and 

more popular and really useful such as StackOverflow1 and 

Quora2. These systems contain millions of questions and 

corresponding answers created by cQA users. The questions 

and answers on these cQA forums are diverse and enable 

different users to find answers directly from complex and 

heterogeneous information. It is a natural way that 

whenever a cQA system receives a question, it firstly 

determine whether similar questions have existed or not, 

and if yes the system prefers to show these related question-

answers contained in its database before waiting for new 

answers from other users. Therefore building a module for 

measuring the similarity between questions becomes an 
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essential task in every cQA system. 

In previous studies, particularly the conventional methods, 

the task of measuring similarity between two sentences is 

based on features extracted from linguistic analysis methods. 

These features are usually n-grams [1], [2] or richer 

linguistic information which requires deep analysis such as 

syntactic parsing [3]-[5]. The similarity degree is then 

computed based on some measures between two feature 

vectors such as Euclidean, Cosine, or Jaccard. 

It has been widely shown that machine learning methods 

are applied successfully for most of the artificial intelligence 

problems. To address the problem of measuring question 

similarity we can formulate it as a binary classification 

problem (with the two labels standing for similar and not 

similar), and can apply any machine learning classification 

methods such as Support Vector Machines, Naive Bayesian 

classification, etc. Recently, some deep learning models 

such as CNN, Long Short-Term Memory (LSTM) have 

been shown very effective in many classification problems, 

and also for similarity measurement problems such as [6], 

[7]. However, from our observation, such kinds of studies 

for the particular task of question similarity measurement 

seems absent. 

Actually, deep learning makes advantages because it has 

the ability to automatically learning abstract features via 

different layers of the deep neural models. However, as the 

major characteristic of statistical learning, such models are 

just efficient when the training data are large enough, 

especially for deep neural network-based models. It is also 

not clear whether a deep neural network contains within its 

internal structure other kinds of information that can be 

learned from other models. Therefore it should be 

remarkable that deep neural networks can get some 

complementary information from other models. 

For the above observation, in this paper, we address the 

problem to utilize different methods and different 

information sources for improving the accuracy of 

measuring question similarity as well as ranking the similar 

questions with respect to an input question. To this objective, 

we firstly based on CNN, a very successful deep learning 

model, to formulate the problem of measuring the similarity 

between two questions. And then we extend this model to 

include additional information from other sources obtained 

from other models. Various kinds of additional information 

have been used including word2vec representation which 

represents a word as a vector of real numbers; linguistic 

features such as words and name entities; question types and 

question categories, which are obtained by classification. By 

these kinds of additional information with features derived 
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from the CNN component we finally generate the joint 

representation containing miscellaneous features. In another 

way, we can imagine that this model is an effective way of 

enhancing a deep learning model by providing 

complimentary additional knowledge, especially in the case 

of lacking training data.  The joint representation is then put 

into a classification such as a multi-layer neural network 

which is well known as the fully connected layers for the 

classification stage.  

To test the proposed idea, we conducted our experiments 

on the popular dataset for cQA which is the SemEval 2016 

task 3, and implement different combinations of feature data 

sets to find out the best model. 

The rest of the paper is organized as follows. Section II is 

related work. The main parts of this paper include: section 

III presents the CNN model for question representation and 

then for measuring similarity between two questions;  

Section IV presents different external knowledge sources 

and how to gain them; Section V is the important part in 

which we show how to integrate the external knowledge 

features into the CNN model. After completing the 

proposed model in theorical aspect, we present the data set 

and our experimental results in Section VI. Finally, the 

conclusion is shown in Section VII.   

 

II. RELATED WORK 

Whenever cQA receives an input question, it needs to 

search its database for similar questions. The same set of 

questions is then ranked and used to extract possible 

answers to the input questions. However, determining the 

similarity between questions is still one of the major 

challenges in cQA due to problems such as “lexical gap”.  

Many different approaches have been proposed to overcome 

this problem. 

Some early methods based on the statistical machine 

translation approach to computing the similarity between 

two questions. For example, in [8], [9] the authors used a 

translation model to compare questions. In [8], the authors 

constructed their translation models from a collection of 

predefined similar questions. In the study from [10], the 

authors rely on a machine translation model to find similar 

questions, in which the authors used information from both 

questions and answers. Although these machine translation 

based methods have shown encouraging results, they require 

a lot of labeled data to estimate the parameters, which is not 

easily achieved.  

Some other studies have tried to go beyond the simple 

text representation of questions as presented in [11]-[15]. 

These studies used the data from Yahoo! Answer, in which 

the similarity question pairs are assigned by the user, 

sometimes assigned automatically based on some heuristic 

rules. In [11], the authors estimated a similarity measure 

using the category structure of the Yahoo! Answers, in 

which they identify a category of input question (e.g., travel, 

politics, or education) and then rank the questions stored in 

the cQA belonged to user's input question. In [12], [14], 

[15], the authors used the LDA (Latent Dirichlet Allocation) 

model to explore latent semantic topics, create question-

answer pairs, and then used distributed learning topics to get 

similar questions. These LDA based methods have 

demonstrated that their models are significantly better than 

other models learned from questions, answers, or both in a 

simple "plus" way with traditional methods. In the study in 

[13], given a new question and a set of good candidate 

questions of similarity, the authors solved this problem in 

two steps: firstly these candidate questions are graphically 

represented by thematic terms, and secondly, they are 

ranked based on the graph. 

Other studies use the results of the syntactic analysis as 

the main information for determining question similarities.  

The authors in [3] determined related questions to a new 

question by calculating the similarity between the syntactic 

trees of two questions. They used the tree similarity 

calculated based on the number of substructures shared 

between the two trees. The study in [2], the authors also 

used parsed trees, but the difference from [3] is that they 

used parsed trees directly in a tree kernel, with the use of the 

Kelp platform [16]. The method in [2] was applied to 

SemEval 2016 task 3 and shown results in [17]. The best 

performing system in this SemEval 2016 task 3 was 

presented in [18], in which they used SVMrank (Joachims, 

2006) to optimize ranking and use various kinds of features 

including lexical-based and semantic-based features. In this 

study, the semantic features are achieved by using the word 

distribution representation, and the knowledge graph is 

constructed using the largest multilingual language network 

BabelNet from the FrameNet vocabulary database. However, 

because the data in the cQA is often noisy, sparse, and 

ambiguous, so the syntactic analysis often results in low 

efficiency. Therefore, adding lexical-based and semantic-

based features certainly improve system’s performance, but 

they require complex semantic analysis on question 

sentences. 

In recent years, deep neural network-based models are 

useful for machine learning [19]. They have been 

particularly successful in speech processing and computer 

vision tasks. Recently, deep learning methods have begun to 

overcome traditional, sparse linear models in Natural 

Language Processing (NLP) [20], [21]. Many recent studies 

have shown the effectiveness of deep neural network-based 

models for tasks such as answer selection [22], [23], 

sequence labeling [24], ranking question [25], and answer 

sentence selection [26]. In [25], the authors used a CNN 

model and bag-of-words (BOW) representations of input 

questions and related questions to estimate cosine similarity 

scores. In [27], the authors present a model based on LSTM 

and BOW representations of questions and their answers to 

assess the degree of relevance between them. In the study in 

[28], the authors proposed use of three different classifiers 

(naive Bayes, SVM, CNN), in which they combine scores of 

the three classifiers to rank the questions. If at least 2 out of 

3 classifiers result in "related" then the new question is 

considered similar to the question in the database. Although 

the use of CNN-based models has shown impressed 

effectiveness in computer vision tasks and many NLP tasks 

but in this task of question similarity measurement for cQA 

it has not achieved the desired results. In our observations, 

the deep learning model (e.g. CNN) applied for cQA is 

currently showing limitation results due to the lack of 

annotated data. So our new approach is to integrate other 

information sources, which do not require the very large  
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data like deep learning methods, into the CNN model to 

overcome its limitation.  

 

III. MODELING CNN FOR QUESTION SIMILARITY 

MEASUREMENT 

CNN is known as one of the most successful deep 

learning models in computer vision and it recently attracts 

many studies in solving NLP problems such as machine 

translation [29], text classification [30], semantic analysis 

[31], search query retrieval [32], sentence modeling [20]. 

Actually, in computer vision, the input represented as a 

matrix of pixels that can be appropriately exploited by CNN 

operators but it is not straight when applying for NLP 

problems. In this section, we present our CNN based 

formulation for question similarity measurement. 

A. General CNN Architecture 

In a vanilla CNN model, there are sequentially layers 

including the convolutional layer, the pooling layer, and the 

fully connected layer. CNN receives a matrix of real 

numbers representing the input source, as shown in Fig. 1. 

 

 
Fig. 1. A general CNN architecture. 

 

Convolutional layer + ReLU 

At the first stage, the input matrix is transferred via the 

convolutional layer with different filters for extracting 

synthesis features of the. Each filter is defined as a matrix 

and it slides from left to right and up to down through all the 

input matrix to get parts from the input matrix, which we 

call a slid matrix. Consequently, it generates the called 

convolved matrix via this filtering operator. Note that each 

filter may stand for a feature kind thus we use different 

filters to generate different feature sets. 

In the convolutional layer, we implement a scalar product 

between each slid matrix with the filter matrix to generate 

the convolved matrix. ReLU (Rectified Linear Unit) is a 

non-linear operation and it is used after every convolution 

operations. Some other non-linear functions such as sigmoid 

or tanh can also be used but ReLU has been popularly 

chosen because it more computationally efficient than the 

others. 

Pooling Layer 

The output of the convolutional layer is then put into the 

pooling layer and processed by a pooling operator which 

can be of different types such as Average, Max, Sum. 

Among them, Max Pooling is the most popular choice, in 

which we define a spatial neighborhood and take the largest 

element from the rectified convolved matrix within that 

window. 

It is worth to emphasize that the unit containing a 

Convolution and Pooling layer will form a basic block of 

every CNN models. In a CNN architecture with multiple 

blocks, the output of the right previous block will be the 

input for the current block.  

Fully Connected Layer 

The last pooling layer results in a vector of real numbers 

which are actually the features of the input in varied abstract 

levels. The Fully Connected layer aims to use these features 

as input to perform the classification task. 

B. Representing Questions 

In the task of measuring question similarity, we are given 

two questions which are formed in natural language 

sentences. Firstly we have to represent each question as a 

matrix of real numbers as required by CNN models. 

Fortunately, by using Word2Vec methods, we can represent 

a word as a vector, often called word vectors, where each 

vector element is a real number. Consequently, a question 

can be represented as a matrix of real numbers, where the 

rows stand for word vectors and the size of columns is equal 

the dimension of word vectors.    

It is worth to emphasize that word vectors are actually 

vectors in a semantic space representing the meaning of 

words, that enables us to make computational operators on 

the words, such as the synonymous words by the cosine 

metric between word vectors. Word vectors also considered 

as semantic distributed representations of words, then it is 

usually understood as word embeddings (i.e. embed words 

in a semantic space). 

C. A CNN Based Model for Measuring Question 

Similarity 

In this study, we proposed a CNN-based model to 

estimate similarity score between the input question and 

related questions and then ranking related questions based 

on the obtained scores. The reason we use CNN in this task 

is that CNN can capture both long-range dependencies and 

features of n-gram [24]. These strengths make CNN useful 

for handling long questions.  

Our models are illustrated in Fig. 2, which consists of 

four main layers: (1) an input layer for encoding words into 

vectors (i.e. word embeddings), (2) a convolutional layer to 

extract the higher-level features from the input layer, (3) a 

pooling layer to determine the most relevant features, and 

finally an MLP to determine the similarity between the 

input questions and related questions. 

 

 
Fig. 2. The architecture of the proposed CNN-based model for computing 

the similarity between the input question and a related question. 
 

Input layer 

The input layer transforms each question into a word 
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embedding matrix, denoted by E ∈ Ra×b, where a is the 

number of words in the question and b is the dimension of 

word embeddings. The obtained matrices are used as inputs 

for CNN's components in the proposed model. 

In this layer, we firstly use the word2vec tool 3  to 

represent words in vector form, and then each question is 

represented by a matrix of real numbers. For example, 

suppose there is an input question q = [w1, w2, ..., wa], then q 

is represented as: 

𝐸 = [

𝑒11, 𝑒12, … , 𝑒1𝑏

𝑒21, 𝑒22, … , 𝑒2𝑏 
…

𝑒𝑎1, 𝑒𝑎2, … , 𝑒𝑎𝑏

]

𝑎 × 𝑏

  

where [ei1, ei2, ..., eib] is the b-dimension vector 

representation of the word wi
 in q. 

Convolutional layer 

The convolutional layer aims to extract higher-level 

features from the input matrix E ∈ Ra×b. This layer works 

based on its filters in which we design different regional 

sizes for the filters to achieve different types of features. 

Here, we fix filters’ width equal to the length of the word 

vector (here it is b) and set filters’ height with several values, 

denoted by h which is considered as the number of adjacent 

words considered together.  

Given a filter ω ∈ Rh×b, a feature si is generated from a 

filter window of words embedding [ei : ei+h−1] by Eq. 1. We 

let [ei : ei+h−1] denote the sub-matrix of E from row i to row 

i+h−1. 

𝑠𝑖 = 𝑔(𝜔. [𝑒𝑖: 𝑒𝑖+ℎ−1] + 𝑏𝑖)                            (1) 

where bi ∈ R is a bias parameter, g is a non-linear function 

and “.” is the convolution multiplication between a sub-

matrix of E and the filter ω (a sum over element-wise 

multiplications). 

In this paper, ReLU is used as the active function for the 

convolutional layer. And then, the filters are applied to all 

the positions of an input matrix E to produce a feature map s 

∈ Ra−h+1. 

𝑠 = [𝑠1, 𝑠2, … , 𝑠𝑎−ℎ+1]                               (2) 

This process will be repeated for filters with different 

height h to achieve different types of features. 

Note that, actually after concatenating the features of two 

questions, the obtained vector will be the input of a neural 

network to estimate the similarity of the two questions. This 

concatenation vector contains the features of both questions, 

which is then put into a neural network to combine the 

related features between the two questions. The neural 

network will suppress or increase the parameters’ values 

which show the similarity degree between two questions. 

Pooling Layer and Concatenation Layer 

The pooling layer aims to abstract further the features 

created by the convolutional layer by aggregating scores for 

each filter. In this study, we applied max-pooling operation 
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on each feature map. The meaning of max-pooling 

operation is to choose the highest value in each dimension 

of the vector to capture the most important feature. With the 

pooling layer, we can create a fixed-length vector from the 

feature map and obtain the maximum value of s as the 

feature corresponding to this particular filter. 

𝑣𝑞∗ = 𝑚𝑎𝑥{𝑠𝑞∗}                                   (3) 

𝑣𝑞𝑖
= 𝑚𝑎𝑥{𝑠𝑞𝑖

}                                   (4) 

Finally, we obtain feature vectors 𝑣𝑞∗  and 𝑣𝑞𝑖
 which are 

then passed through a concatenation layer to create a single 

vector as input for the MLP layer. 

𝑐 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒{𝑣𝑞∗ , 𝑣𝑞𝑖
}                          (5) 

MLP layer 

We design our MLP layer with two hidden layers, where 

the output of each neural in the first hidden layer is 

computed as Eq. 6. 

𝑜𝑗 = 𝑓(∑ 𝑤𝑖𝑗 . 𝑐𝑖
𝑚
𝑖=1 + 𝑏𝑗1)                           (6) 

The output of each neural in the second hidden layer is 

computed as Eq. 7. 

𝑜𝑘 = 𝑓(∑ 𝑤𝑗𝑘 . 𝑜𝑗𝑗 +  𝑏𝑘2)                             (7) 

where {wij} and {wjk} are the weight vectors of hidden 

layers and f is the activation function. In the output layer, 

we use a single neuron to generate similarities between 

questions. The sigmoid activation function is used in this 

layer to produce a probability output in the range [0,1]. 

𝑜 =  ∑ 𝑤𝑘 . 𝑜𝑘 + 𝑏𝑘                                       (8) 

𝜎(𝑜) =  
1

1+ 𝑒−𝑜                                           (9) 

 

IV. EXTERNAL KNOWLEDGE 

In our opinion, as a general phenomenon of deep learning 

models, vanilla CNNs have limitations when training data is 

not large enough. Therefore, to enhance the power of CNN 

based models in this task, we used External Knowledge (EK) 

extracted from other aspects of exploiting question 

similarities, including information from the answers of the 

related questions, question types, and question 

categorization.  

A. Conventional Features 

Convention methods usually used features extracted from 

linguistic forms, which will be utilized in our model. These 

features include bag-of-words and some rich linguistic 

features such as nouns, name entities. It also includes the 

ratio between the number of words of the input question and 

a related question, and between the input question with 

answers of the related question. All these features are 

denoted by F1. 

B. Question Type 

From our observations, every question usually contains 

quesion words such as “who”, “when”, “how”, “why”, 

“which”, “where”, or “what”. These words help to classify 
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question types which are also very useful evidence for 

determining whether two questions similar or not.   

To construct the question type feature for each question, 

in this study, we represent question words as one-hot 

vectors of the vocabulary V = {“what”, “who”, “when”, 

“why”, “where”, “which”, “how”}. For example, the 

question with question word "who" will be represented as 

the one-hot vector [0, 1, 0, 0, 0, 0, 0]. This feature vector is 

denoted by F2.  

C. Word Embedding 

In this paper, we use the continuous Skip-gram model of 

the word2vec toolkit to get vector representation of words. 

We follow the steps below to build question vectors and 

answer vectors. 

Each answer or question with length n is represented by a 

word vector (w1, w2, ..., wn), where wi is word vector 

representation of the ith word. Suppose that we need to 

calculate the similarity between the input question q∗ and the 

answer ai, where q∗ = (w1, w2, ..., wn) and ai = (v1, v2, ..., vm)  

For each wi in q, we find the most similarity word vector 

vj in ai according to Cosine measurement as in the Eq. 10:  

score(𝑤𝑖) = (𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖(𝑤𝑖 ,  𝑣𝑗))                 
1≤j≤𝑚

𝑚𝑎𝑥
(10) 

where: m is the number of words in answer ai; wi is the word 

vector representation of ith word in q∗; vj is the word vector 

representation of jth word in ai; cosin_simi(wi, vj) is the 

Cosine similarity of two vector representations of the ith 

word in q∗ with the jth word in ai. Finally, the similarity score 

between the input question q∗ and answer ai is calculated by 

the Eq. 11: 

similarity(𝑞∗, 𝑎𝑖) =  
∑ score(𝑤𝑖)𝑛

𝑘=1

𝑛
                   (11) 

where n is the number of words in question q∗. 

Do the same as above, we also calculate the similarity 

between the input question and a related question. As the 

result, based on word embedding, we have obtained new 

features representing the similarity between the input 

question and a related question and its answers. This set of 

obtained features is denoted by F3.  

D. Question Category 

We will assign questions with corresponding category 

labels and then determine how two questions are similar 

according to their categories. Note that the question-answer 

pairs extracted from cQA forums (we denote this data of 

questions and answers by Q dataset) have been labeled with 

predefined set of category labels. Therefore to utilize this 

feature we will build a question categorization module to 

label the input questions. 

To achieve the question category feature, we implement 

the following steps: 

1. Determine the question category for each input 

question. 

2. Represent each question category in a vector form and 

calculate the similarity between the two obtained vectors. 

The question categorization module: The question 

categorization module aims at assigning labels to each input 

question q*. To this end, we implement the following steps: 

• Build a training dataset which contains the questions in 

the Q dataset, each question in Q has been assigned a 

category label (question category). 

• The questions are represented as feature vectors. 

• The SVM machine-learning method is used to learn the 

classifier. 

• For each input question, we first represent it by a 

feature vector and use the classifier obtained at the 

third step to predict the category label. 

The similarity measure module: This module aims to 

calculate the similarity between the input question and the 

related question according to their category labels. To this 

end, we implement the following steps: 

• We firstly get word vectors for all questions in the Q 

dataset. We then generate the representative vector for 

each category label by compute the average of all word 

vectors of all questions which belong to this category 

label. Finally, for each category label we have a 

representative vector.   

• The similarity score between the related question with 

category label A and the input question category with 

category label B is calculated by the Eq. 12. 

𝑐𝑜𝑠𝑖𝑛_𝑠𝑖𝑚(𝑢, 𝑣) =  
∑ 𝑢𝑖∗𝑣𝑖

𝑚
𝑖=1

√∑ (𝑢𝑖)2𝑚
𝑖=1 ∗ √∑ (𝑣𝑖)2𝑚

𝑖=1

             

where u and v are two m-dimensional representative vectors 

of category labels A and B respectively. This similarity 

score is denoted as the feature F4. 

In summary, combine all the features obtained above, we 

finally have the overall feature vector r = {F1, F2, F3, F4} 

which is considered as the external knowledge source for 

adding to the CNN model.  

 

V. THE EXTENDED CNN MODEL 

In this section, we present the external version of the 

model in Fig. 2 in which we combine it with the external 

knowledge source presented in section IV. Fig. 3 illustrates 

our proposed model’s architecture. 

 

 
Fig. 3. The proposed CNN based model with external features for 

computing the similarity between two questions. 

 

We extended the CNN-based model in Fig. 2 by 

identifying the concatenation layer as shown in Fig. 3, in 

which we combines the feature vectors created after the 

pooling layer of the two CNNs with the external knowledge 

features (i.e. the feature vector r, it was extracted as shown 

in Section IV). We obtain the new combined feature vector 

called cv computed as in Eq. 13: 
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cv = concatenate(c, r)                             (13) 

This combined vector is then used as input for the MLP 

layer of the model. The Eq. 6 is now replaced by Eq. 14:  

𝑜𝑗 = 𝑓(∑ 𝑤𝑖𝑗 . 𝑐𝑣𝑖
𝑚+𝑘
𝑖=1 + 𝑏𝑗1)                          (14) 

where k is the dimension of the feature vector r. 

 

VI. EXPERIMENTS 

A. Dataset 

In this work, we conduct experiments on the dataset 

SemEval-2016 task 3, subtask B 4 . This is a dataset of 

questions and answers extracted from cQA Qatar Living 

(http://www.qatarliving.com/forum). The dataset includes 

337 input questions and 3369 related questions. The dataset 

is pre-split into 267 input questions and 2669 related 

questions for training, and the remain includes 70 input 

questions and 700 related questions for the test. Each data 

point is a pair of questions (an input question and the related 

question) and a similarity label, which is either “Relevant” 

or “Irrelevant”.  

In addition, this dataset also provides labels expressing 

ranks of related questions (it means a list of related 

questions that have been ranked according to their relevance 

degrees to the input question). Some statistics of this dataset 

are shown in Table I. 

In our work we do both tasks: one is the classification 

which predicts a question is “Relevant” or “Irrelevant” to 

the input question; the other task is to predict and then rank 

the obtained related questions according to their similarities 

with the input question.  

We used classification and ranking metrics to evaluate 

our models. The classification evaluation measurements 

include Accuracy (Acc), Precision (P), Recall (R), and F1− 

measure (F1). The ranking measures include Mean Average 

Precision (MAP), Average Recall (AvgRec) and Mean 

Reciprocal Rank (MRR). 

 
TABLE I: THE STATISTICS OF SEMEVAL 2016 DATASET 

 Train Test Total 

Input questions 267 70 337 

Related question-answer 

pairs 

2669-

26690 

700-7000 3369-

33690 

B. Setup Model’s Experimental Configures 

The models in this paper are implemented with Theano5 

from scratch. We use the accuracy on the validation set to 

locate the best epoch and best hyper-parameter settings for 

testing. 

The word embeddings are re-trained using the Gensim 

word2vec tool6. The training data for the word embeddings 

is the dataset provided by SemEval-2016. The parameters 

are set as follows: (1) the word vector size is 200; (2) the 

                                                           
4 http://alt.qcri.org/semeval2016/task3/index.php?id=dataand-tools 
5 http://deeplearning.net/software/theano/ 
6 www.radimrehurek.com/gensim 

maximum distance between the current word and the 

predicted word in a sentence is set to 5; (3) ignore all words 

having frequency less than 5. For comparison, we also use 

the 300-dimensional word vector pre-trained and provided 

by Google7. 

We train our models in mini-batches (the batch size is 64), 

and the maximum length of input questions and related 

questions is 256. Any tokens out of this range will be 

discarded. The hyper-parameters of the proposed model are 

summarized in Table II.  

 
TABLE II: HYPER-PARAMETERS OF THE CNN-BASED MODEL 

Descriptions Values 

word embedding d=300, d=200 

filter region size 2, 3, 4 

the number of filters for each region size 128 

activation function ReLU 

pooling max pooling 

dropout rate 0.2 

batch size 64 

C. Results 

In this experiment we implement two models: the first 

one is the basic CNN-based model (in Fig. 2) which we call 

the “CNN-based”; the second one is the extended CNN 

model, i.g. the CNN combined with external knowledge 

features (in Fig. 3) which we call the “CNN-based + EK”, 

where EK means external knowledge. We let both models 

try with two kinds of word embeddings, one with dimension 

of 300 and the other with dimension of 200. 

The experimental results on SemEval 2016 dataset are 

summarized in Table 3. The first two rows show results of 

the CNN-based model and the next two rows are the results 

for the CNN-based+EK model.  

 The experimental results show that there is no significant 

improvement in the use of different dimensions of word 

embedding. For the basic CNN model, the classification 

(Acc) and ranking (MAP) measures increased by 0.14% and 

0.26%, respectively. For the extended model, the 

classification (Acc) and ranking (MAP) measures increased 

by 0.29% and 0.01%, respectively. However, in both 

models, the use of word embeddings re-trained (d=200) 

show higher results comparing with the pre-train word 

embeddings (d=300).  

From Table 3 it is clear that by using additional 

knowledge features the CNN-based+EK model gives much 

better results than the CNN-based model. The classification 

(Acc) and ranking (MAP) measures increased by 8.86% and 

5.17%, respectively.  

To compare the performance of the proposed models with 

the best previous studies we also make a summary as shown 

in Table 4. Note that all these studies conducted 

experiments on the same dataset (the SemEval 2016 task 3, 

subtask B). 

The table of comparison results shows that our proposed 

models achieve greater efficiency with the Accuracy and 

MAP measures of 82.86% and 78.38% respectively. 
 

                                                           
7 https://code.google.com/p/word2vec 
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TABLE III: OUR EXPERIMENT RESULTS USING SEMEVAL 2016 DATASET 

Models Word Embedding 
 Classification measures  Ranking measures 

Acc P R F1 MAP AvgRec MRR 

CNN-based d=300 73.71 53.65 62.19 57.60 72.95 87.87 78.29 

CNN-based d=200 74.00 53.65 62.81 57.87 73.21 88.35 79.24 

CNN-based + EK d=300 82.57 71.24 75.11 73.13 78.37 91.97 86.23 

CNN-based + EK d=200 82.86 72.10 75.34 73.68 78.38 92.01 86.23 

 
TABLE IV: COMPARISON WITH PREVIOUS STUDIES ON THE SEMEVAL 2016 DATASET 

Models 
Classification measures Ranking measures 

Acc P R F1 MAP AveRec MRR 

UH-PRHLT-primary [18] 76.57 63.53 69.53 66.39 76.70 90.31 83.02 

ConvKN-primary [3] 78.71 68.58 66.52 67.54 76.02 90.70 84.64 

Kelp-primary [4] 79.43 66.79 75.97 71.08 75.83 91.02 82.71 

SLS-primary[27] 79.43 76.33 55.36 64.18 75.55 90.65 84.64 

Our (CNN-based + EK, d=300) 82.57 71.24 75.11 73.13 78.37 91.97 86.23 

Our (CNN-based + EK, d=200) 82.86 72.10 75.34 73.68 78.38 92.01 86.23 

 

VII. CONCLUSION 

In this paper, we have presented our proposals for the 

problem identifying similar questions and ranking these 

questions according to their similarities to each input 

question in cQA systems. We have built models based on 

CNN to represent the questions as well as to calculate the 

similarities between them. Moreover, we proposed an 

extended model, which combines external knowledge 

sources with the CNN-based model which achieves the best 

results in comparison with the previous recent studies. The 

experimental results on the SemEval dataset achieved a 

classification accuracy (acc) of 82.86% and a ranking 

measure (MAP) of 78.38%. 
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