



Abstract—Automatically determining similar questions and

ranking the obtained questions according to their similarities

to each input question is a very important task to any

community Question Answering system (cQA). Various

methods have applied for this task including conventional

machine learning methods with feature extraction and some

recent studies using deep learning methods. This paper

addresses the problem of how to combine advantages of

different methods into one unified model. Moreover, deep

learning models are usually only effective for large data, while

training data sets in cQA problems are often small, so the idea

of integrating external knowledge into deep learning models

for this cQA problem becomes more important. To this

objective, we propose a neural network-based model which

combines a Convolutional Neural Network (CNN) with

features from other methods so that the deep learning model is

enhanced with addtional knowledge sources. In our proposed

model, the CNN component will learn the representation of

two given questions, then combined additional features

through a Multilayer Perceptron (MLP) to measure similarity

between the two questions. We tested our proposed model on

the SemEval 2016 task-3 data set and obtain better results in

comparison with previous studies on the same task.

Index Terms—Community based question answering,

convolutional neural networks, combining multiple sources.

I. INTRODUCTION

Nowadays, many cQA forums are becoming more and

more popular and really useful such as StackOverflow1 and

Quora2. These systems contain millions of questions and

corresponding answers created by cQA users. The questions

and answers on these cQA forums are diverse and enable

different users to find answers directly from complex and

heterogeneous information. It is a natural way that

whenever a cQA system receives a question, it firstly

determine whether similar questions have existed or not,

and if yes the system prefers to show these related question-

answers contained in its database before waiting for new

answers from other users. Therefore building a module for

measuring the similarity between questions becomes an

Manuscript received February 6, 2020; revised September 8, 2020.

Van-Tu Nguyen and Ha-Nam Nguyen are with the VNU University of

Engineering and Technology, Ha Noi City, Vietnam (e-mail:
tuspttb@gmail.com, namnh@vnu.edu.vn).

Anh-Cuong Le is with the Natural Language Processing and Knowledge

Discovery Laboratory, Faculty of Information Technology, Ton Duc Thang

University, Ho Chi Minh City, Vietnam (e-mail: leanhcuong@tdtu.edu.vn).
1 https://stackoverflow.com/
2 https://www.quora.com/

essential task in every cQA system.

In previous studies, particularly the conventional methods,

the task of measuring similarity between two sentences is

based on features extracted from linguistic analysis methods.

These features are usually n-grams [1], [2] or richer

linguistic information which requires deep analysis such as

syntactic parsing [3]-[5]. The similarity degree is then

computed based on some measures between two feature

vectors such as Euclidean, Cosine, or Jaccard.

It has been widely shown that machine learning methods

are applied successfully for most of the artificial intelligence

problems. To address the problem of measuring question

similarity we can formulate it as a binary classification

problem (with the two labels standing for similar and not

similar), and can apply any machine learning classification

methods such as Support Vector Machines, Naive Bayesian

classification, etc. Recently, some deep learning models

such as CNN, Long Short-Term Memory (LSTM) have

been shown very effective in many classification problems,

and also for similarity measurement problems such as [6],

[7]. However, from our observation, such kinds of studies

for the particular task of question similarity measurement

seems absent.

Actually, deep learning makes advantages because it has

the ability to automatically learning abstract features via

different layers of the deep neural models. However, as the

major characteristic of statistical learning, such models are

just efficient when the training data are large enough,

especially for deep neural network-based models. It is also

not clear whether a deep neural network contains within its

internal structure other kinds of information that can be

learned from other models. Therefore it should be

remarkable that deep neural networks can get some

complementary information from other models.

For the above observation, in this paper, we address the

problem to utilize different methods and different

information sources for improving the accuracy of

measuring question similarity as well as ranking the similar

questions with respect to an input question. To this objective,

we firstly based on CNN, a very successful deep learning

model, to formulate the problem of measuring the similarity

between two questions. And then we extend this model to

include additional information from other sources obtained

from other models. Various kinds of additional information

have been used including word2vec representation which

represents a word as a vector of real numbers; linguistic

features such as words and name entities; question types and

question categories, which are obtained by classification. By

these kinds of additional information with features derived

A Model of Convolutional Neural Network Combined

with External Knowledge to Measure the Question

Similarity for Community Question Answering Systems

Van-Tu Nguyen, Anh-Cuong Le, and Ha-Nam Nguyen

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

194doi: 10.18178/ijmlc.2021.11.3.1035

mailto:tuspttb@gmail.com
mailto:leanhcuong@tdtu.edu.vn

from the CNN component we finally generate the joint

representation containing miscellaneous features. In another

way, we can imagine that this model is an effective way of

enhancing a deep learning model by providing

complimentary additional knowledge, especially in the case

of lacking training data. The joint representation is then put

into a classification such as a multi-layer neural network

which is well known as the fully connected layers for the

classification stage.

To test the proposed idea, we conducted our experiments

on the popular dataset for cQA which is the SemEval 2016

task 3, and implement different combinations of feature data

sets to find out the best model.

The rest of the paper is organized as follows. Section II is

related work. The main parts of this paper include: section

III presents the CNN model for question representation and

then for measuring similarity between two questions;

Section IV presents different external knowledge sources

and how to gain them; Section V is the important part in

which we show how to integrate the external knowledge

features into the CNN model. After completing the

proposed model in theorical aspect, we present the data set

and our experimental results in Section VI. Finally, the

conclusion is shown in Section VII.

II. RELATED WORK

Whenever cQA receives an input question, it needs to

search its database for similar questions. The same set of

questions is then ranked and used to extract possible

answers to the input questions. However, determining the

similarity between questions is still one of the major

challenges in cQA due to problems such as “lexical gap”.

Many different approaches have been proposed to overcome

this problem.

Some early methods based on the statistical machine

translation approach to computing the similarity between

two questions. For example, in [8], [9] the authors used a

translation model to compare questions. In [8], the authors

constructed their translation models from a collection of

predefined similar questions. In the study from [10], the

authors rely on a machine translation model to find similar

questions, in which the authors used information from both

questions and answers. Although these machine translation

based methods have shown encouraging results, they require

a lot of labeled data to estimate the parameters, which is not

easily achieved.

Some other studies have tried to go beyond the simple

text representation of questions as presented in [11]-[15].

These studies used the data from Yahoo! Answer, in which

the similarity question pairs are assigned by the user,

sometimes assigned automatically based on some heuristic

rules. In [11], the authors estimated a similarity measure

using the category structure of the Yahoo! Answers, in

which they identify a category of input question (e.g., travel,

politics, or education) and then rank the questions stored in

the cQA belonged to user's input question. In [12], [14],

[15], the authors used the LDA (Latent Dirichlet Allocation)

model to explore latent semantic topics, create question-

answer pairs, and then used distributed learning topics to get

similar questions. These LDA based methods have

demonstrated that their models are significantly better than

other models learned from questions, answers, or both in a

simple "plus" way with traditional methods. In the study in

[13], given a new question and a set of good candidate

questions of similarity, the authors solved this problem in

two steps: firstly these candidate questions are graphically

represented by thematic terms, and secondly, they are

ranked based on the graph.

Other studies use the results of the syntactic analysis as

the main information for determining question similarities.

The authors in [3] determined related questions to a new

question by calculating the similarity between the syntactic

trees of two questions. They used the tree similarity

calculated based on the number of substructures shared

between the two trees. The study in [2], the authors also

used parsed trees, but the difference from [3] is that they

used parsed trees directly in a tree kernel, with the use of the

Kelp platform [16]. The method in [2] was applied to

SemEval 2016 task 3 and shown results in [17]. The best

performing system in this SemEval 2016 task 3 was

presented in [18], in which they used SVMrank (Joachims,

2006) to optimize ranking and use various kinds of features

including lexical-based and semantic-based features. In this

study, the semantic features are achieved by using the word

distribution representation, and the knowledge graph is

constructed using the largest multilingual language network

BabelNet from the FrameNet vocabulary database. However,

because the data in the cQA is often noisy, sparse, and

ambiguous, so the syntactic analysis often results in low

efficiency. Therefore, adding lexical-based and semantic-

based features certainly improve system’s performance, but

they require complex semantic analysis on question

sentences.

In recent years, deep neural network-based models are

useful for machine learning [19]. They have been

particularly successful in speech processing and computer

vision tasks. Recently, deep learning methods have begun to

overcome traditional, sparse linear models in Natural

Language Processing (NLP) [20], [21]. Many recent studies

have shown the effectiveness of deep neural network-based

models for tasks such as answer selection [22], [23],

sequence labeling [24], ranking question [25], and answer

sentence selection [26]. In [25], the authors used a CNN

model and bag-of-words (BOW) representations of input

questions and related questions to estimate cosine similarity

scores. In [27], the authors present a model based on LSTM

and BOW representations of questions and their answers to

assess the degree of relevance between them. In the study in

[28], the authors proposed use of three different classifiers

(naive Bayes, SVM, CNN), in which they combine scores of

the three classifiers to rank the questions. If at least 2 out of

3 classifiers result in "related" then the new question is

considered similar to the question in the database. Although

the use of CNN-based models has shown impressed

effectiveness in computer vision tasks and many NLP tasks

but in this task of question similarity measurement for cQA

it has not achieved the desired results. In our observations,

the deep learning model (e.g. CNN) applied for cQA is

currently showing limitation results due to the lack of

annotated data. So our new approach is to integrate other

information sources, which do not require the very large

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

195

data like deep learning methods, into the CNN model to

overcome its limitation.

III. MODELING CNN FOR QUESTION SIMILARITY

MEASUREMENT

CNN is known as one of the most successful deep

learning models in computer vision and it recently attracts

many studies in solving NLP problems such as machine

translation [29], text classification [30], semantic analysis

[31], search query retrieval [32], sentence modeling [20].

Actually, in computer vision, the input represented as a

matrix of pixels that can be appropriately exploited by CNN

operators but it is not straight when applying for NLP

problems. In this section, we present our CNN based

formulation for question similarity measurement.

A. General CNN Architecture

In a vanilla CNN model, there are sequentially layers

including the convolutional layer, the pooling layer, and the

fully connected layer. CNN receives a matrix of real

numbers representing the input source, as shown in Fig. 1.

Fig. 1. A general CNN architecture.

Convolutional layer + ReLU

At the first stage, the input matrix is transferred via the

convolutional layer with different filters for extracting

synthesis features of the. Each filter is defined as a matrix

and it slides from left to right and up to down through all the

input matrix to get parts from the input matrix, which we

call a slid matrix. Consequently, it generates the called

convolved matrix via this filtering operator. Note that each

filter may stand for a feature kind thus we use different

filters to generate different feature sets.

In the convolutional layer, we implement a scalar product

between each slid matrix with the filter matrix to generate

the convolved matrix. ReLU (Rectified Linear Unit) is a

non-linear operation and it is used after every convolution

operations. Some other non-linear functions such as sigmoid

or tanh can also be used but ReLU has been popularly

chosen because it more computationally efficient than the

others.

Pooling Layer

The output of the convolutional layer is then put into the

pooling layer and processed by a pooling operator which

can be of different types such as Average, Max, Sum.

Among them, Max Pooling is the most popular choice, in

which we define a spatial neighborhood and take the largest

element from the rectified convolved matrix within that

window.

It is worth to emphasize that the unit containing a

Convolution and Pooling layer will form a basic block of

every CNN models. In a CNN architecture with multiple

blocks, the output of the right previous block will be the

input for the current block.

Fully Connected Layer

The last pooling layer results in a vector of real numbers

which are actually the features of the input in varied abstract

levels. The Fully Connected layer aims to use these features

as input to perform the classification task.

B. Representing Questions

In the task of measuring question similarity, we are given

two questions which are formed in natural language

sentences. Firstly we have to represent each question as a

matrix of real numbers as required by CNN models.

Fortunately, by using Word2Vec methods, we can represent

a word as a vector, often called word vectors, where each

vector element is a real number. Consequently, a question

can be represented as a matrix of real numbers, where the

rows stand for word vectors and the size of columns is equal

the dimension of word vectors.

It is worth to emphasize that word vectors are actually

vectors in a semantic space representing the meaning of

words, that enables us to make computational operators on

the words, such as the synonymous words by the cosine

metric between word vectors. Word vectors also considered

as semantic distributed representations of words, then it is

usually understood as word embeddings (i.e. embed words

in a semantic space).

C. A CNN Based Model for Measuring Question

Similarity

In this study, we proposed a CNN-based model to

estimate similarity score between the input question and

related questions and then ranking related questions based

on the obtained scores. The reason we use CNN in this task

is that CNN can capture both long-range dependencies and

features of n-gram [24]. These strengths make CNN useful

for handling long questions.

Our models are illustrated in Fig. 2, which consists of

four main layers: (1) an input layer for encoding words into

vectors (i.e. word embeddings), (2) a convolutional layer to

extract the higher-level features from the input layer, (3) a

pooling layer to determine the most relevant features, and

finally an MLP to determine the similarity between the

input questions and related questions.

Fig. 2. The architecture of the proposed CNN-based model for computing

the similarity between the input question and a related question.

Input layer

The input layer transforms each question into a word

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

196

embedding matrix, denoted by E ∈ Ra×b, where a is the

number of words in the question and b is the dimension of

word embeddings. The obtained matrices are used as inputs

for CNN's components in the proposed model.

In this layer, we firstly use the word2vec tool 3 to

represent words in vector form, and then each question is

represented by a matrix of real numbers. For example,

suppose there is an input question q = [w1, w2, ..., wa], then q

is represented as:

𝐸 = [

𝑒11, 𝑒12, … , 𝑒1𝑏

𝑒21, 𝑒22, … , 𝑒2𝑏
…

𝑒𝑎1, 𝑒𝑎2, … , 𝑒𝑎𝑏

]

𝑎 × 𝑏

where [ei1, ei2, ..., eib] is the b-dimension vector

representation of the word wi
 in q.

Convolutional layer

The convolutional layer aims to extract higher-level

features from the input matrix E ∈ Ra×b. This layer works

based on its filters in which we design different regional

sizes for the filters to achieve different types of features.

Here, we fix filters’ width equal to the length of the word

vector (here it is b) and set filters’ height with several values,

denoted by h which is considered as the number of adjacent

words considered together.

Given a filter ω ∈ Rh×b, a feature si is generated from a

filter window of words embedding [ei : ei+h−1] by Eq. 1. We

let [ei : ei+h−1] denote the sub-matrix of E from row i to row

i+h−1.

𝑠𝑖 = 𝑔(𝜔. [𝑒𝑖: 𝑒𝑖+ℎ−1] + 𝑏𝑖) (1)

where bi ∈ R is a bias parameter, g is a non-linear function

and “.” is the convolution multiplication between a sub-

matrix of E and the filter ω (a sum over element-wise

multiplications).

In this paper, ReLU is used as the active function for the

convolutional layer. And then, the filters are applied to all

the positions of an input matrix E to produce a feature map s

∈ Ra−h+1.

𝑠 = [𝑠1, 𝑠2, … , 𝑠𝑎−ℎ+1] (2)

This process will be repeated for filters with different

height h to achieve different types of features.

Note that, actually after concatenating the features of two

questions, the obtained vector will be the input of a neural

network to estimate the similarity of the two questions. This

concatenation vector contains the features of both questions,

which is then put into a neural network to combine the

related features between the two questions. The neural

network will suppress or increase the parameters’ values

which show the similarity degree between two questions.

Pooling Layer and Concatenation Layer

The pooling layer aims to abstract further the features

created by the convolutional layer by aggregating scores for

each filter. In this study, we applied max-pooling operation

3 https://code.google.com/p/word2vec

on each feature map. The meaning of max-pooling

operation is to choose the highest value in each dimension

of the vector to capture the most important feature. With the

pooling layer, we can create a fixed-length vector from the

feature map and obtain the maximum value of s as the

feature corresponding to this particular filter.

𝑣𝑞∗ = 𝑚𝑎𝑥{𝑠𝑞∗} (3)

𝑣𝑞𝑖
= 𝑚𝑎𝑥{𝑠𝑞𝑖

} (4)

Finally, we obtain feature vectors 𝑣𝑞∗ and 𝑣𝑞𝑖
 which are

then passed through a concatenation layer to create a single

vector as input for the MLP layer.

𝑐 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒{𝑣𝑞∗ , 𝑣𝑞𝑖
} (5)

MLP layer

We design our MLP layer with two hidden layers, where

the output of each neural in the first hidden layer is

computed as Eq. 6.

𝑜𝑗 = 𝑓(∑ 𝑤𝑖𝑗 . 𝑐𝑖
𝑚
𝑖=1 + 𝑏𝑗1) (6)

The output of each neural in the second hidden layer is

computed as Eq. 7.

𝑜𝑘 = 𝑓(∑ 𝑤𝑗𝑘 . 𝑜𝑗𝑗 + 𝑏𝑘2) (7)

where {wij} and {wjk} are the weight vectors of hidden

layers and f is the activation function. In the output layer,

we use a single neuron to generate similarities between

questions. The sigmoid activation function is used in this

layer to produce a probability output in the range [0,1].

𝑜 = ∑ 𝑤𝑘 . 𝑜𝑘 + 𝑏𝑘 (8)

𝜎(𝑜) =
1

1+ 𝑒−𝑜 (9)

IV. EXTERNAL KNOWLEDGE

In our opinion, as a general phenomenon of deep learning

models, vanilla CNNs have limitations when training data is

not large enough. Therefore, to enhance the power of CNN

based models in this task, we used External Knowledge (EK)

extracted from other aspects of exploiting question

similarities, including information from the answers of the

related questions, question types, and question

categorization.

A. Conventional Features

Convention methods usually used features extracted from

linguistic forms, which will be utilized in our model. These

features include bag-of-words and some rich linguistic

features such as nouns, name entities. It also includes the

ratio between the number of words of the input question and

a related question, and between the input question with

answers of the related question. All these features are

denoted by F1.

B. Question Type

From our observations, every question usually contains

quesion words such as “who”, “when”, “how”, “why”,

“which”, “where”, or “what”. These words help to classify

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

197

question types which are also very useful evidence for

determining whether two questions similar or not.

To construct the question type feature for each question,

in this study, we represent question words as one-hot

vectors of the vocabulary V = {“what”, “who”, “when”,

“why”, “where”, “which”, “how”}. For example, the

question with question word "who" will be represented as

the one-hot vector [0, 1, 0, 0, 0, 0, 0]. This feature vector is

denoted by F2.

C. Word Embedding

In this paper, we use the continuous Skip-gram model of

the word2vec toolkit to get vector representation of words.

We follow the steps below to build question vectors and

answer vectors.

Each answer or question with length n is represented by a

word vector (w1, w2, ..., wn), where wi is word vector

representation of the ith word. Suppose that we need to

calculate the similarity between the input question q∗ and the

answer ai, where q∗ = (w1, w2, ..., wn) and ai = (v1, v2, ..., vm)

For each wi in q, we find the most similarity word vector

vj in ai according to Cosine measurement as in the Eq. 10:

score(𝑤𝑖) = (𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖(𝑤𝑖 , 𝑣𝑗))
1≤j≤𝑚

𝑚𝑎𝑥
(10)

where: m is the number of words in answer ai; wi is the word

vector representation of ith word in q∗; vj is the word vector

representation of jth word in ai; cosin_simi(wi, vj) is the

Cosine similarity of two vector representations of the ith

word in q∗ with the jth word in ai. Finally, the similarity score

between the input question q∗ and answer ai is calculated by

the Eq. 11:

similarity(𝑞∗, 𝑎𝑖) =
∑ score(𝑤𝑖)𝑛

𝑘=1

𝑛
 (11)

where n is the number of words in question q∗.

Do the same as above, we also calculate the similarity

between the input question and a related question. As the

result, based on word embedding, we have obtained new

features representing the similarity between the input

question and a related question and its answers. This set of

obtained features is denoted by F3.

D. Question Category

We will assign questions with corresponding category

labels and then determine how two questions are similar

according to their categories. Note that the question-answer

pairs extracted from cQA forums (we denote this data of

questions and answers by Q dataset) have been labeled with

predefined set of category labels. Therefore to utilize this

feature we will build a question categorization module to

label the input questions.

To achieve the question category feature, we implement

the following steps:

1. Determine the question category for each input

question.

2. Represent each question category in a vector form and

calculate the similarity between the two obtained vectors.

The question categorization module: The question

categorization module aims at assigning labels to each input

question q*. To this end, we implement the following steps:

• Build a training dataset which contains the questions in

the Q dataset, each question in Q has been assigned a

category label (question category).

• The questions are represented as feature vectors.

• The SVM machine-learning method is used to learn the

classifier.

• For each input question, we first represent it by a

feature vector and use the classifier obtained at the

third step to predict the category label.

The similarity measure module: This module aims to

calculate the similarity between the input question and the

related question according to their category labels. To this

end, we implement the following steps:

• We firstly get word vectors for all questions in the Q

dataset. We then generate the representative vector for

each category label by compute the average of all word

vectors of all questions which belong to this category

label. Finally, for each category label we have a

representative vector.

• The similarity score between the related question with

category label A and the input question category with

category label B is calculated by the Eq. 12.

𝑐𝑜𝑠𝑖𝑛_𝑠𝑖𝑚(𝑢, 𝑣) =
∑ 𝑢𝑖∗𝑣𝑖

𝑚
𝑖=1

√∑ (𝑢𝑖)2𝑚
𝑖=1 ∗ √∑ (𝑣𝑖)2𝑚

𝑖=1

where u and v are two m-dimensional representative vectors

of category labels A and B respectively. This similarity

score is denoted as the feature F4.

In summary, combine all the features obtained above, we

finally have the overall feature vector r = {F1, F2, F3, F4}

which is considered as the external knowledge source for

adding to the CNN model.

V. THE EXTENDED CNN MODEL

In this section, we present the external version of the

model in Fig. 2 in which we combine it with the external

knowledge source presented in section IV. Fig. 3 illustrates

our proposed model’s architecture.

Fig. 3. The proposed CNN based model with external features for

computing the similarity between two questions.

We extended the CNN-based model in Fig. 2 by

identifying the concatenation layer as shown in Fig. 3, in

which we combines the feature vectors created after the

pooling layer of the two CNNs with the external knowledge

features (i.e. the feature vector r, it was extracted as shown

in Section IV). We obtain the new combined feature vector

called cv computed as in Eq. 13:

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

198

(12)

cv = concatenate(c, r) (13)

This combined vector is then used as input for the MLP

layer of the model. The Eq. 6 is now replaced by Eq. 14:

𝑜𝑗 = 𝑓(∑ 𝑤𝑖𝑗 . 𝑐𝑣𝑖
𝑚+𝑘
𝑖=1 + 𝑏𝑗1) (14)

where k is the dimension of the feature vector r.

VI. EXPERIMENTS

A. Dataset

In this work, we conduct experiments on the dataset

SemEval-2016 task 3, subtask B 4 . This is a dataset of

questions and answers extracted from cQA Qatar Living

(http://www.qatarliving.com/forum). The dataset includes

337 input questions and 3369 related questions. The dataset

is pre-split into 267 input questions and 2669 related

questions for training, and the remain includes 70 input

questions and 700 related questions for the test. Each data

point is a pair of questions (an input question and the related

question) and a similarity label, which is either “Relevant”

or “Irrelevant”.

In addition, this dataset also provides labels expressing

ranks of related questions (it means a list of related

questions that have been ranked according to their relevance

degrees to the input question). Some statistics of this dataset

are shown in Table I.

In our work we do both tasks: one is the classification

which predicts a question is “Relevant” or “Irrelevant” to

the input question; the other task is to predict and then rank

the obtained related questions according to their similarities

with the input question.

We used classification and ranking metrics to evaluate

our models. The classification evaluation measurements

include Accuracy (Acc), Precision (P), Recall (R), and F1−

measure (F1). The ranking measures include Mean Average

Precision (MAP), Average Recall (AvgRec) and Mean

Reciprocal Rank (MRR).

TABLE I: THE STATISTICS OF SEMEVAL 2016 DATASET

 Train Test Total

Input questions 267 70 337

Related question-answer

pairs

2669-

26690

700-7000 3369-

33690

B. Setup Model’s Experimental Configures

The models in this paper are implemented with Theano5

from scratch. We use the accuracy on the validation set to

locate the best epoch and best hyper-parameter settings for

testing.

The word embeddings are re-trained using the Gensim

word2vec tool6. The training data for the word embeddings

is the dataset provided by SemEval-2016. The parameters

are set as follows: (1) the word vector size is 200; (2) the

4 http://alt.qcri.org/semeval2016/task3/index.php?id=dataand-tools
5 http://deeplearning.net/software/theano/
6 www.radimrehurek.com/gensim

maximum distance between the current word and the

predicted word in a sentence is set to 5; (3) ignore all words

having frequency less than 5. For comparison, we also use

the 300-dimensional word vector pre-trained and provided

by Google7.

We train our models in mini-batches (the batch size is 64),

and the maximum length of input questions and related

questions is 256. Any tokens out of this range will be

discarded. The hyper-parameters of the proposed model are

summarized in Table II.

TABLE II: HYPER-PARAMETERS OF THE CNN-BASED MODEL

Descriptions Values

word embedding d=300, d=200

filter region size 2, 3, 4

the number of filters for each region size 128

activation function ReLU

pooling max pooling

dropout rate 0.2

batch size 64

C. Results

In this experiment we implement two models: the first

one is the basic CNN-based model (in Fig. 2) which we call

the “CNN-based”; the second one is the extended CNN

model, i.g. the CNN combined with external knowledge

features (in Fig. 3) which we call the “CNN-based + EK”,

where EK means external knowledge. We let both models

try with two kinds of word embeddings, one with dimension

of 300 and the other with dimension of 200.

The experimental results on SemEval 2016 dataset are

summarized in Table 3. The first two rows show results of

the CNN-based model and the next two rows are the results

for the CNN-based+EK model.

 The experimental results show that there is no significant

improvement in the use of different dimensions of word

embedding. For the basic CNN model, the classification

(Acc) and ranking (MAP) measures increased by 0.14% and

0.26%, respectively. For the extended model, the

classification (Acc) and ranking (MAP) measures increased

by 0.29% and 0.01%, respectively. However, in both

models, the use of word embeddings re-trained (d=200)

show higher results comparing with the pre-train word

embeddings (d=300).

From Table 3 it is clear that by using additional

knowledge features the CNN-based+EK model gives much

better results than the CNN-based model. The classification

(Acc) and ranking (MAP) measures increased by 8.86% and

5.17%, respectively.

To compare the performance of the proposed models with

the best previous studies we also make a summary as shown

in Table 4. Note that all these studies conducted

experiments on the same dataset (the SemEval 2016 task 3,

subtask B).

The table of comparison results shows that our proposed

models achieve greater efficiency with the Accuracy and

MAP measures of 82.86% and 78.38% respectively.

7 https://code.google.com/p/word2vec

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

199

TABLE III: OUR EXPERIMENT RESULTS USING SEMEVAL 2016 DATASET

Models Word Embedding
 Classification measures Ranking measures

Acc P R F1 MAP AvgRec MRR

CNN-based d=300 73.71 53.65 62.19 57.60 72.95 87.87 78.29

CNN-based d=200 74.00 53.65 62.81 57.87 73.21 88.35 79.24

CNN-based + EK d=300 82.57 71.24 75.11 73.13 78.37 91.97 86.23

CNN-based + EK d=200 82.86 72.10 75.34 73.68 78.38 92.01 86.23

TABLE IV: COMPARISON WITH PREVIOUS STUDIES ON THE SEMEVAL 2016 DATASET

Models
Classification measures Ranking measures

Acc P R F1 MAP AveRec MRR

UH-PRHLT-primary [18] 76.57 63.53 69.53 66.39 76.70 90.31 83.02

ConvKN-primary [3] 78.71 68.58 66.52 67.54 76.02 90.70 84.64

Kelp-primary [4] 79.43 66.79 75.97 71.08 75.83 91.02 82.71

SLS-primary[27] 79.43 76.33 55.36 64.18 75.55 90.65 84.64

Our (CNN-based + EK, d=300) 82.57 71.24 75.11 73.13 78.37 91.97 86.23

Our (CNN-based + EK, d=200) 82.86 72.10 75.34 73.68 78.38 92.01 86.23

VII. CONCLUSION

In this paper, we have presented our proposals for the

problem identifying similar questions and ranking these

questions according to their similarities to each input

question in cQA systems. We have built models based on

CNN to represent the questions as well as to calculate the

similarities between them. Moreover, we proposed an

extended model, which combines external knowledge

sources with the CNN-based model which achieves the best

results in comparison with the previous recent studies. The

experimental results on the SemEval dataset achieved a

classification accuracy (acc) of 82.86% and a ranking

measure (MAP) of 78.38%.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

The first author is responsible for organizing the steps of

experimentation and preparing the manuscript. The second

author is responsible for designing a framework study that

helps to edit the manuscript and confirm the research steps.

The last author helps to confirm the experimental results

and discuss future research trends.

REFERENCES

[1] D. Buscaldi, J. L. Roux, and A. Popescu, “LIPN-CORE: Semantic text
similarity using n-grams, WordNet, syntactic analysis, ESA and

information retrieval based features,” in Proc. the Main Conference
and the Shared Task, 2013, pp. 162-168.

[2] G. Kondrak, N-Gram Similarity and Distance, Springer-Verlag Berlin

Heidelberg, 2005, p. 115126.
[3] B.-C. Alberto, D. Bonadiman, and G. D. S. Martino, “ConvKN at

SemEval-2016 task 3: Answer and question selection for question

answering on arabic and english fora,” in Proc. SemEval-2016, 2016,
pp. 896-903.

[4] S. Filice, D. Croce et al., “KeLP at SemEval-2016 task 3: Learning

semantic relations between questions and answers,” in Proc.

SemEval-2016, 2016, pp. 1116-1123.

[5] K. Wang, Z. Y. Ming, and T.-S. Chua, “A syntactic tree matching
approach to finding similar questions in community-based qa services,”

in Proc. SIGIR, 2009, pp. 187-194.

[6] B. T. Hu, Z. D. Lu, H. Li, and Q. C. Chen, “Convolutional neural
network architectures for matching natural language sentences,”

Advances in Neural Information Processing Systems, pp. 2042-2050,
2014.

[7] H. He, K. Gimpe, and J. Lin, Multi-Perspective Sentence Similarity

Modeling with Convolutional Neural Networks, pp. 1576-1586, 2015.
[8] J. Jeon, W. B. Croft, and J. H. Lee, “Finding similar questions in large

question and answer archives,” in Proc. the 14th ACM International

Conference on Information and Knowledge Management, 2005, pp.
84-90.

[9] G. Zhou, L. Cai, J. Zhao, and K. Liu, “Phrasebased translation model

for question retrieval in community question answer archives,” in
Proc. the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies, 2011, vol. 1, pp. 653-662.

[10] X. Xue, J. Jeon, and W. Croft, “Retrieval models for question and
answer archives,” in Proc. the International ACM Conference on

Research and Development in Information Retrieval (SIGIR), 2008,

pp. 475-482.

[11] X. Cao, G. Cong, B. Cui, C. S. Jensen, and C. Zhang, “The use of

categorization information in language models for question retrieval,”

in Proc. CIKM, 2009, pp. 265-274.
[12] H. Duan, Y. Cao, C. Y. Lin, and Y. Yu, “Searching questions by

identifying question topic and question focus,” in Proc. ACL, 2008, pp.

156-164.
[13] Y. Cao, H. Duan, C. Y. Lin, Y. Yu, and H. W. Hon, “Recommending

questions using the Mdl-based tree cut model,” in Proc. the 17th

International Conference on World Wide Web, 2008, pp. 81-90.
[14] Z. Ji, F. Xu, B. Wang, and B. He, “Question answer topic model for

question retrieval in community question answering,” in Proc. the 21st

ACM International Conference on Information and Knowledge
Management, 2012, pp. 2471-2474.

[15] K. Zhang, W. Wu, H. Wu, Z. Li, and M. Zhou, “Question retrieval

with high quality answers in community question answering,” in Proc.
the 23rd ACM International Conference on Conference on

Information and Knowledge Management, 2014, pp. 371-380.

[16] S. Filice, G. Castellucci, D. Croce, G. D. S. Martino, A. Moschitti, and

R. Basili, “KeLP, a Kernel-based Learning Platform for Natural

Language Processing,” in Proc. ACLIJCNLP, 2015, pp. 19-24.

[17] P. Nakov, L. Marquez, A. Moschitti, W. Magdy, H. Mubarak, A. A.
Freihat, J. Glass, and B. Randeree, “SemEval-2016 task 3:

Community question answering,” in Proc. SemEval, San Diego,

California, June 2016.
[18] M. F. Salvador, S. Kar, T. Solorio, and P. Rosso, “UH-PRHLT at

SemEval-2016 task 3: Combining lexical and semantic-based features

for community question answering,” in Proc. SemEval, 2016, pp. 814-
821.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.

521, no. 7553, pp. 436-444, 2015.
[20] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional

neural network for modelling sentences,” in Proc. ACL, 2014, pp.

655-665.
[21] Y. Goldberg, “A primer on neural network models for natural

language processing,” arXiv preprint arXiv: 1510.00726, 2015.
[22] M. Tan, B. Xiang, and B. Zhou, “Lstm-based deep learning models for

non-factoid answer selection,” arXiv: 1511.04108 [cs.CL], 2015.

[23] M. Feng, B. Xiang, M. R. Glass, L. Wang, and B. Zhou, “Applying
deep learning to answer selection: A study and an open task,” CoRR,

abs/1508.01585, 2015.

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

200

[24] Y. Graves, “Supervised sequence labelling with recurrent neural

networks,” SCI, vol. 385, Springer, Heidelberg, 2012.

[25] D. S. Cicero, B. Luciano, D. Bogdanova, and B. Zadrozny, “Learning

hybrid representations to retrieve semantically equivalent questions,”

in Proc. ACL, 2015, pp. 694-699.

[26] Y. Lei, K.M. Hermann, P. Blunsom, and S. Pulman, “Deep learning
for answer sentence selection,” CoRR, abs/1412.1632, 2014.

[27] M. Mitra, Y. Belinkov et al., “SLS at SemEval-2016 task 3: Neural-

based approaches for ranking in community question answering,” in
Proc. SemEval2016, 2016, pp. 828-835.

[28] D. Hoogeveen, Y. Li, H. Liang, B. Salehi, L. Duong, and T. Baldwin,

“UniMelb at SemEval-2016 task 3: Identifying similar questions by
combining a CNN with string similarity measures,” in Proc. SemEval,

2016, pp. 851-856.

[29] J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin, “A
convolutional encoder model for neural machine translation,” CoRR,

2016.

[30] Y. Zhang and B. C. Wallace, “A sensitivity analysis of (and
practitioners guide to) convolutional neural networks for sentence

classification,” arXiv: 1510.03820v4 [cs.CL], 2016.

[31] W.-T. Yih and X. D. He, “Christopher meek. Semantic parsing for
single-relation question answering,” in Proc. ACL, 2014, pp. 643-648.

[32] Y. L. Shen, X. D. He, J. F. Gao, and L. Deng, “Gregoire mesnil.

learning semantic representations using convolutional neural networks
for web search,” in Proc. the 23rd International Conference on World

Wide Web, 2014, pp. 373-374.

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits

unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited (CC BY 4.0).

Van-Tu Nguyen received his bachelor's degree in

information technology from Thai Nguyen University

of Education in 2005, and received his master's degree

in computer science from Hanoi National University of

Education in 2009. He is currently a PhD student at the

University of Engineering and Technology – Vietnam

National University, Hanoi. He is now also a lecturer at

the Faculty of Natural Science and Technology of Northwestern University

in Vietnam. His research interests include machine learning and natural

language processing.

Anh-Cuong Le received his bachelor's and master's

degrees in information technology from the University

of Engineering and Technology – Vietnam National

University, Hanoi in 1998 and 2001 respectively. He

received his PhD degree in information science from

the Japan Advanced Institute of Science and

Technology in 2007. Currently, Le Anh Cuong is an

associate professor at the Faculty of Information

Technology, Ton Duc Thang University in Ho Chi Minh city, Vietnam. His

research interests include natural language processing, text mining and

machine learning.

Ha-Nam Nguyen received the bachelor's degree in

information technology at the University of Science,

Vietnam National University, Hanoi in 2001, received

the master's degree from Chungwoon University, South

Korea in 2003 and the PhD at the University of

Aviation, Korea in 2007. Currently, Nguyen Ha Nam is

an associate professor at the Faculty of Information

Technology, University of Engineering and

Technology, Vietnam National University, Hanoi. His research areas

include data mining, machine learning, data warehouse and OLAP.

International Journal of Machine Learning and Computing, Vol. 11, No. 3, May 2021

201

