

Abstract—Recent exploit techniques are highly complex, and

it is not easy for cybersecurity learners to understand the

attack strategies quickly and clearly. For efficient and

comprehensive learning, this paper proposes an attack-scheme

visualization system that fulfills three requirements: attack

progress visualization in real-time, memory and register-level

description, and concise description of the attack schemes. This

paper exemplifies two cases: stack buffer overflow and ROP

attacks, and demonstrates how the system operates and how

users can learn that existing defense technologies are effective

or ineffective depending on the execution environments.

Index Terms—Exploit code, visualization, ROP,

cybersecurity learning.

I. INTRODUCTION

Nowadays, new vulnerabilities in software and hardware

are discovered every day, and new attack techniques that

exploit vulnerabilities have also been developed. Software

and hardware vendors have devised a variety of

countermeasures against those attack techniques;

nevertheless, attackers have come up with ways to

circumvent the countermeasures. Advances in attack

technologies are being highly accelerated by various bug

bounty programs (HackerOne, iDefence, etc.) and numbers

of hacking competitions (Pwn2Own, Mobile Pwn2Own,

DEFCON, etc.).

Because of this arm race between attackers and defenders,

highly sophisticated cyber-attack techniques, such as

control-flow hijack attacks [1], have been developed. One of

them is return-oriented programming (ROP) [2], which is an

exploit technique that allows attackers to achieve control

flow hijacking through executing machine instruction

sequences called a gadget, which is present in the machine's

memory and ends with a return instruction. By chaining

gadgets together, it is reported that attackers can perform

arbitrary operations [3].

Meanwhile, the growing security market requires more

security professionals. The need for skilled practitioners is

projected to grow at a rate of 32% [4]. In our opinion,

training systems for security specialists should provide the

following three requirements for efficient and

Manuscript received February 5, 2020; revised September 11, 2020.

S. Kose is with the Department of Computer Science and Engineering,

Fukuoka Institute of Technology, Fukuoka, 811-0295, Japan (e-mail:

s16a2025@bene.fit.ac.jp).

Y. Suenaga and K. Oida are with the Graduate School of Course of

Computer Science and Engineering, Fukuoka Institute of Technology,

Fukuoka, 811-0295, Japan (e-mail: mfm19102@bene.fit.ac.jp,

oida@fit.ac.jp).

comprehensive learning:

1) The system should provide an environment in which

exploit codes can run (e.g., it should not be a simulator

or emulator), and should visualize what the code is

performing in real-time because learners can gain a lot

of knowledge through modifying and executing the

codes.

2) The system should present enough detail explanation for

exploit techniques; the system should describe “how the

exploit codes work” rather than “what it can do.” The

assembly language level explanation is preferred to the

script level such as Metasploit [5] etc.

3) The system should present only essential information

related to the attack. Current exploit codes are highly

complex and often include unnecessary instructions.

Analysis tools [6] and debuggers provide sufficient

detail but at the same time too much unrelated

information. Filtering out irrelevant information in

advance can enhance the efficiency of learning.

There are companies, such as Palo Alto Networks, CISCO,

IBM, etc. and open-source frameworks, such as FBCTF [7],

CyTrONE [8], etc. that provide cyber ranges, virtual

environments for cyberwarfare training and cyber technology

development. These focus on teaching the best practice on

how to respond to network cyber-crime rather than teaching

how attack codes work. Another way to practice and learn

hacking tools is to create a personal hacking lab, an isolated

sandbox environment. A hacking lab typically uses open

source software, such as Kali Linux [9] and Metasploitable

[5]. A hacking lab explains what the script-level attack

commands can do rather than how the attack codes work. For

learning more deeply, learners must spend lots of time

reading source codes.

The prototype system in this paper is designed to visualize

in real-time the detail mechanisms related to the essence of

attack schemes. As far as we know, there are no studies that

discussed this type of learning system. The learning system

currently has three functions. (1) The system displays the

detailed status of a running exploit process on web pages. (2)

The system can explain to learners why some defense

techniques against the attack are effective/ineffective. Lastly,

(3) the system tests learners’ comprehension, for example, by

asking them to make up an attack code applicable to a

modified vulnerable code.

The paper is organized as follows. Section II presents the

work related to this paper. Section III describes how the

system visualizes a running attack code in real-time.

Although there are numbers of complex control flow

hijacking techniques, our prototype system currently

Real-time Attack-Scheme Visualization for Complex

Exploit Technique Comprehension

Seima Kose, Yumi Suenaga, and Kazumasa Oida

International Journal of Machine Learning and Computing, Vol. 11, No. 2, March 2021

164doi: 10.18178/ijmlc.2021.11.2.1030

supports stack buffer overflow and ROP attacks. Section IV

exemplifies the visualization of these two attacks. Section V

discusses how to deepen the knowledge about the attacks, and

Section VI concludes the paper.

Fig. 1. The system consists of the web-app and exploit parts. The exploit interacts with the process of vulnerable code vuln.c, file /proc/PID/mem, Firefox

browser, and users of the system. The web-app interacts with Firefox.

II. RELATED WORK

Recent cyber-attack techniques, especially control flow

hijacking, are highly complex and numbers of variants of the

techniques have been developed [10]. Furthermore, there are

studies that automatically produce exploit codes for buffer

overflows [11], ROP chains [12], heap overflows [13], etc.

To catch up with the development speed of attack tools,

various mitigation technologies have been developed. They

are Address Space Layout Randomization (ASLR) [14], No

eXecute bit (NX bit) [15], Stack Smashing Protection (SSP)

[16], Position-Independent Executable (PIE) [17],

RELocation Read-Only (RELRO) [18] etc. The

state-of-the-art defense technologies, whose implementation

are currently research prototypes, are control-flow integrity

(CFI) [19] and code-pointer integrity (CPI) [20]. All of them,

however, cannot completely defeat the exploit techniques.

Another way to prevent or mitigate cyber-attacks is to

practice hands-on training in a cyber range, where trainees

experience attacks to find the best solutions to the attacks.

There are researches that simulate attack situations for

understanding basic concepts [21]-[23]. Realistic

cybersecurity training is currently conducted in military

environments, and the proprietary systems that are available

publicly are expensive [8]. Some open-source training

frameworks [7], [8] are recently available. They are, however,

not suited for efficiently leaning how attack codes work.

III. SYSTEM CONFIGURATION

Fig. 1 illustrates the structure of our prototype system that

consists of two modules: exploit and web-app. The exploit

module attacks a vulnerable binary code vuln (whose C

language source code is vuln.c) using pwntools, where

pwntools is an exploit development library that helps

attackers to create attack codes in the following three steps.

First, it indicates what kinds of defense mechanisms the

vulnerable code and the operating system have (Fig. 2).

Second, it searches for vulnerabilities in the code. Third, it

assists in creating attack codes to exploit the vulnerabilities.

Fig. 2. Pwntools framework reveals defense mechanisms in the target file

vuln and the standard C library libc.so.6.

An attack code is not automatically created but it is

assembled by attackers. To understand the scheme of the

attackers, our system displays the memory data of a running

vulnerable code in real time. This is feasible because the proc

filesystem (procfs) [24] creates /proc/PID/mem file in

memory, which contains the memory information of the

running process whose process id is PID. The exploit

retrieves an important part of the stack data from the file and

then transfers the data to the Firefox browser in JSON format.

The Selenium framework is used to adjust the timing of

displaying the retrieved data on the browser.

When the browser is ordered to open the URL of

http://127.0.0.1.3000 using the HTTP GET

method, the web-app module returns the web page, which is

constructed by Flask, a web application framework. In Fig. 1,

only an essential portion of the process memory is displayed

on the browser and easy-to-understand comments are

attached.

The system can work properly by adding two executable

statements to the vulnerable code. The first is a function that

outputs the buffer address used in the attack, whereby the

International Journal of Machine Learning and Computing, Vol. 11, No. 2, March 2021

165

system can recognize the place where in the stack area the

system should focus on (the address can be automatically

retrieved from /proc/PID/mem file if ASLR is not

enabled). In Fig. 1, printf("[+]

address: %p\n\n", &name) in vuln.c corresponds

to the statement. The second is function sleep(3), which

requires the next statement of the function to be executed

after three seconds. The function must be inserted just before

return or exit statement; otherwise, the system may not be

able to read the data in the memory file due to the termination

of the process.

IV. CASE STUDIES

This section illustrates the feasibility of our approach. The

prototype software running on an Ubuntu 18.04.3 LTS

machine visualizes two attacks: stack buffer overflow and

ROP attacks.

A. Stack Buffer Overflow

The stack buffer overflow attacks are classical and

straightforward attacks, and at least five countermeasures

have been implemented in the current Ubuntu system:

RELRO, SSP, NX bit, PIE, and ASLR. These are explained

later when necessary. Fig. 2 shows the status of them. ASLR,

which is a system-wide property, is enabled in our

environment. Under the environment shown in Fig. 2, our

system exemplifies how an overflow attack can divert the

flow of execution into any function or codes using binary

code vuln (whose source code vuln.c is in Fig. 1).

If a function, say secret(), is also defined in the

vuln.c file and the name of the function is a priori known,

then pwntools can derive the memory address of the function

from symbol name “secret.” When vuln asks to input

your name (see puts("Please input your name")

in vuln.c), the exploit sends 49-byte data (called a payload

from now on), which consists of 40 characters of ‘A,’ the

address of function secret(), and a line feed code. The

intent of the exploit can be articulated by visualization.

Fig. 3 shows the web pages output by the system. It can be

easily recognized that the overflow attack replaces not only

the buffer area with characters ‘A’ but also the return address

of __libc_start_main with the address of function

secret(), which implies that the exploit module has

controlled the execution flow.

B. Return-Oriented Programming

ROP further develops the potential for buffer overflow

attacks. The overflow attack often inserts malicious codes

into the data storage area. Even if the NX bit [15] marks the

storage area non-executable, ROP attacks can circumvent

this mechanism by using the existing code in static or

dynamic libraries. Therefore, ROP is one of the code reuse

attacks. In the ROP attacks, attackers often make up complex

payloads that consist of a variety of “ROP gadgets,” which

are short sequences of assembly instructions that end with

ret, and put them in the stack area.

In this case study, the system demonstrates how an

attacker can invoke shell /bin/sh using vulnerable code

vuln under the same condition shown in Fig.2. Note in

general that the ability of adversaries to operate the shell

without formal login authentication implies that they can

remotely control the target machines. The exploit executes

the function main() in vuln.c twice for coping with

another defense mechanism ASLR [14], which randomly

arranges the address space positions of the stack, heap,

libraries, etc.

Fig. 3. The web page before and after the overflow attack. The ASCII code of character ‘A’ is 41in hexadecimal notation.

Fig. 4 shows a log file of pwntools, which records all

interactions with other functions such that “Sent”

(“Received”) in the log file indicates data sent (received) by

the exploit module. As shown in the figure, the exploit sends

0x49-byte (73-byte) data twice and received an address (libc:

0x7fb895320000), which is the base address of library libc

randomly selected by ASLR. Note that the exploit

successfully invokes /bin/sh; the last line of the log file

contains “$,” which works as the prompt of the shell.

The log file explains almost nothing about why the shell

prompt appears; whereas our system clearly answers the

essence of the attacker’s tactics in real-time by outputting the

International Journal of Machine Learning and Computing, Vol. 11, No. 2, March 2021

166

web pages in Fig. 5 and Fig. 6. As shown in Fig. 5, using the

stack buffer overflow, the first payload rewrites the return

address with the address of a gadget, which executes only two

instructions: pop rdi and ret. When the gadget is

executed, the stack pointer register (RSP) points to the next

address of the replaced address, in which the address of

puts@got is written. Since the gadget executes pop rdi,

the address of puts@got is moved to RDI register and the

gadget returns the execution flow to the address where the

address of puts@plt exists. Therefore, function puts()

outputs the address of puts@got and returns to the next

address where the address of main() exists. In short, the

aim of the exploit is to execute “puts(puts@got)” and go

back to main().

Fig. 4. A log file that contains data sent and received by pwntools.

Fig. 5. The web page after the first payload is sent.

Fig. 6. The web page after the second payload is sent.

The values of registers change with time. In Fig. 5, RDI

has the address of puts@got and RSP points to the address

in which the address of main() exists. Therefore, the figure

expresses the state of the memory and registers just before the

main function is executed again.

The address of puts@got is used to calculate the address

of function system() that executes /bin/sh. The address

is obtained by adding the base address of library libc to the

relative address of symbol ‘system’ in the library. Since

ASLR works, the base address of library libc is randomly

selected; nevertheless the exploit can obtain the base address

by subtracting the relative address of symbol ‘puts’ from

the address of puts@got (the current address of puts()).

In Fig. 6, there are two ROP gadgets. The first gadget is

not meaningless; it is used for movaps instruction to work

properly. The second puts the address of characters

“/bin/sh” in RDI so that system() invokes /bin/sh.

Now that the address of system() is resolved, the address

is included in the second payload.

V. FURTHER LEARNING

Learners can observe more clearly the behavior of

payloads and the defense systems by modifying the

vulnerable codes or execution environments. Let us consider

the case where a learner changes an option of compiler gcc

so that the SSP mechanism [16] is enabled. Fig. 7 shows that

SSP inserted a stack canary between the buffer name[] and

the return address just after scanf("%s", name) was

called. After the ROP attack, as shown in Fig. 8, the canary

was overwritten by 0x4141414141414141. The change

in the canary value when the function returns indicates an

occurrence of buffer overflow. The memo in the figure

indicates termination of the process due to stack smashing

detection. The termination prevents the exploit from taking

control of the process.

International Journal of Machine Learning and Computing, Vol. 11, No. 2, March 2021

167

Fig. 7. A stack canary was used as a buffer overflow indicator.

Learners can further deepen their knowledge by creating a

payload that solves the problems given by the system. For

example, the system askes learners to invoke /bin/sh

when the buffer size of name[] in vuln.c is reduced from

32 to 16 bytes.

Since our system can visualize the memory content of

processes in real time, we can easily extend the system to

support any kind of control-flow hijacking attacks, which

include heap overflow and format string attacks.

Fig. 8. A stack canary was overwritten by 0x4141414141414141.

VI. CONCLUSIONS AND FUTURE WORK

Current exploit techniques are highly sophisticated and

complex. For efficient and comprehensive learning of the

techniques, we proposed a new approach that achieves

real-time attack progress visualization, assembly

language-level detailed description, and concise description

of the attack schemes. Our idea was to display attack code

behavior in the stack area in cooperation with the proc

filesystem.

A prototype system that visualizes stack buffer overflow

and return-oriented programming attacks demonstrated the

feasibility of our approach. The system enables learners to

further deepen their knowledge by executing a vulnerable

code after modifying the code or execution conditions.

We are currently planning two research projects. The first

is to implement the system as a web application so that users

can learn from a distance. The second is to visualize more

complex control-flow hijack attacks such as heap overflow.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Seima Kose conducted all the research and developed the

prototype system; Yumi Suenaga and Kazumasa Oida

discussed the user interface of the system and contributed to

writing the paper. All authors had approved the final version.

REFERENCES

[1] M. Payer, “Control-flow hijacking: Are we making progress?” in Proc.

the 2017 ACM on Asia Conference on Computer and Communications

Security ACM, 2017, p. 4.

[2] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented

programming: Systems, languages, and applications,” ACM

Transactions on Information and System Security (TISSEC), vol. 15, no.

1, p. 2, 2012.

[3] H. Shacham et al., “The geometry of innocent flesh on the bone:

return-into-libc without function calls (on the x86),” in Proc. ACM

Conference on Computer and Communications Security, New York,

2007, pp. 552–561.

[4] U.S. Department of Labor. Occupational outlook handbook: Information

security analysists. [Online]. Available:

https://www.bls.gov/ooh/computer-and-information-technology/informat

ion-security-analysts.htm

[5] Metasploit: Penetration Testing Software. [Online]. Available:

https://www.metasploit.com/

[6] M. Graziano, D. Balzarotti, and A. Zidouemba, “Ropmemu: A

framework for the analysis of complex code-reuse attacks,” in Proc. the

11th ACM on Asia Conference on Computer and Communications

Security, ACM, 2016, pp. 47–58.

[7] Facebook, Inc. (2017). Platform to host capture the flag competitions.

[Online]. Available: https://github.com/facebook/fbctf/

[8] R. Beuran, D. Tang, C. Pham, K.-i. Chinen, Y. Tan, and Y. Shinoda,

“Integrated framework for hands-on cybersecurity training: Cytrone,”

Computers & Security, vol. 78, pp. 43–59, 2018.

[9] N.-G. Gilberto, and J. A. Ansari, Web Penetration Testing with Kali

Linux: Explore the Methods and Tools of Ethical Hacking with Kali

Linux, Packt Publishing Ltd, 2018.

[10] C. Wang, “Advanced code reuse attacks against modern defenses,” Ph.D.

dissertation, 2019.

[11] L. Xu, W. Jia, W. Dong, and Y. Li, “Automatic exploit generation for

buffer overflow vulnerabilities,” in Proc. 2018 IEEE International

Conference on Software Quality, Reliability and Security Companion

(QRS-C). IEEE, 2018, pp. 463–468.

[12] Y. Wei, S. Luo, J. Zhuge, J. Gao, E. Zheng, B. Li, and L. Pan, “Arg:

Automatic Rop chains generation,” IEEE Access, vol. 7, no. 120, pp.

152–120, 2019.

[13] S. Heelan, T. Melham, and D. Kroening, “Gollum: Modular and greybox

exploit generation for heap overflows in interpreters,” in Proc. the 2019

ACM SIGSAC Conference on Computer and Communications Security,

2019, pp. 1689–1706.

[14] PaX Team. (2003). Address Space Layout Randomization. [Online].

Available: https://pax.grsecurity.net/docs/aslr.txt

[15] L. D. Paulson, “New chips stop buffer overflow attacks,” Computer, vol.

37, no. 10, pp. 28-30, 2004.

[16] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,

A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic adaptive

International Journal of Machine Learning and Computing, Vol. 11, No. 2, March 2021

168

detection and prevention of buffer-overflow attacks,” in Proc. USENIX

Security Symposium, 1997, pp. 63–78.

[17] J. Jelinek, “Position Independent Executable (PIE),”

http://gcc.gnu.org/ml/gcc-patches/2003-06/msg00140.html, June 2003.

[18] Hardening ELF binaries using Relocation Read-Only (RELRO). (Jan.

2019). [Online]. Available:

https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-

read-only-relro

[19] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M.

Payer, “Control-flow integrity: Precision, security, and performance,”

ACM Computing Surveys (CSUR), vol. 50, no. 1, p. 16, 2017.

[20] V. Kuznetsov, L. Szekeres, M. Paea, R. Sekar, and D. Song,

“Code-pointer integrity,” in Proc. 11th Symposium on Operating

Systems Design and Implementation, 2014, pp. 147–163.

[21] M. Liljenstam, J. Liu, D. M. Nicol, Y. Yuan, G. Yan, and C. Grier,

“Rinse: The real-time immersive network simulation environment for

network security exercises (extended version),” Simulation, vol. 82, no. 1,

pp. 43–59, 2006.

[22] M. E. Kuhl, M. Sudit, J. Kistner, and K. Costantini, “Cyber attack

modeling and simulation for network security analysis,” in Proc. 2007

Winter Simulation Conference, 2007, pp. 1180–1188.

[23] A. Futoransky, F. Miranda, J. Orlicki, and C. Sarraute, “Simulating

cyber-attacks for fun and profit,” arXiv preprint arXiv: 1006.1919, 2010.

[24] Linux kernel documentation for procfs. [Online]. Available:

https://www.kernel.org/doc/Documentation/filesystems/proc.txt

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is

properly cited (CC BY 4.0).

Makoto Kose was born in Kagoshima, Japan in 1997. He received a bachelor

of computer science and engineering from Fukuoka Institute of Technology,

Fukuoka, Japan in 2020. He is now working for Basic Inc. His interest includes

binary exploitation and web application security.

Yumi Suenaga was born in Fukuoka, Japan in 1997. She received a bachelor

of computer science and engineering from Fukuoka Institute of Technology,

Fukuoka, Japan in 2019. She is currently enrolled in the Graduate School of

Course of Computer Science and Engineering, Fukuoka Institute of

Technology. She is interested in blockchain technologies.

Kazumasa Oida received a bachelor of information science, master of

engineering, and doctor of informatics degrees from the University of Tsukuba

in 1983, Hokkaido University in 1985, and Kyoto University in 2002,

respectively. He worked for the Nippon Telegraph and Telephone Corporation

for twenty years as an engineer, where he participated in the development of

private network systems. He is currently a professor in the Department of

Computer Science and Engineering, Fukuoka Institute of Technology, Japan.

His main interests include cybersecurity, social network analysis, and

blockchain.

International Journal of Machine Learning and Computing, Vol. 11, No. 2, March 2021

169

https://creativecommons.org/licenses/by/4.0/

