
  

 

Abstract—Recent exploit techniques are highly complex, and 

it is not easy for cybersecurity learners to understand the 

attack strategies quickly and clearly. For efficient and 

comprehensive learning, this paper proposes an attack-scheme 

visualization system that fulfills three requirements: attack 

progress visualization in real-time, memory and register-level 

description, and concise description of the attack schemes. This 

paper exemplifies two cases: stack buffer overflow and ROP 

attacks, and demonstrates how the system operates and how 

users can learn that existing defense technologies are effective 

or ineffective depending on the execution environments. 

 

Index Terms—Exploit code, visualization, ROP, 

cybersecurity learning. 

 

I. INTRODUCTION 

Nowadays, new vulnerabilities in software and hardware 

are discovered every day, and new attack techniques that 

exploit vulnerabilities have also been developed. Software 

and hardware vendors have devised a variety of 

countermeasures against those attack techniques; 

nevertheless, attackers have come up with ways to 

circumvent the countermeasures. Advances in attack 

technologies are being highly accelerated by various bug 

bounty programs (HackerOne, iDefence, etc.) and numbers 

of hacking competitions (Pwn2Own, Mobile Pwn2Own, 

DEFCON, etc.). 

Because of this arm race between attackers and defenders, 

highly sophisticated cyber-attack techniques, such as 

control-flow hijack attacks [1], have been developed. One of 

them is return-oriented programming (ROP) [2], which is an 

exploit technique that allows attackers to achieve control 

flow hijacking through executing machine instruction 

sequences called a gadget, which is present in the machine's 

memory and ends with a return instruction. By chaining 

gadgets together, it is reported that attackers can perform 

arbitrary operations [3]. 

Meanwhile, the growing security market requires more 

security professionals. The need for skilled practitioners is 

projected to grow at a rate of 32% [4]. In our opinion, 

training systems for security specialists should provide the 

following three requirements for efficient and 
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comprehensive learning: 

1) The system should provide an environment in which 

exploit codes can run (e.g., it should not be a simulator 

or emulator), and should visualize what the code is 

performing in real-time because learners can gain a lot 

of knowledge through modifying and executing the 

codes. 

2) The system should present enough detail explanation for 

exploit techniques; the system should describe “how the 

exploit codes work” rather than “what it can do.” The 

assembly language level explanation is preferred to the 

script level such as Metasploit [5] etc. 

3) The system should present only essential information 

related to the attack. Current exploit codes are highly 

complex and often include unnecessary instructions. 

Analysis tools [6] and debuggers provide sufficient 

detail but at the same time too much unrelated 

information. Filtering out irrelevant information in 

advance can enhance the efficiency of learning. 

There are companies, such as Palo Alto Networks, CISCO, 

IBM, etc. and open-source frameworks, such as FBCTF [7], 

CyTrONE [8], etc. that provide cyber ranges, virtual 

environments for cyberwarfare training and cyber technology 

development. These focus on teaching the best practice on 

how to respond to network cyber-crime rather than teaching 

how attack codes work. Another way to practice and learn 

hacking tools is to create a personal hacking lab, an isolated 

sandbox environment. A hacking lab typically uses open 

source software, such as Kali Linux [9] and Metasploitable 

[5]. A hacking lab explains what the script-level attack 

commands can do rather than how the attack codes work. For 

learning more deeply, learners must spend lots of time 

reading source codes. 

The prototype system in this paper is designed to visualize 

in real-time the detail mechanisms related to the essence of 

attack schemes. As far as we know, there are no studies that 

discussed this type of learning system. The learning system 

currently has three functions.  (1) The system displays the 

detailed status of a running exploit process on web pages. (2) 

The system can explain to learners why some defense 

techniques against the attack are effective/ineffective. Lastly, 

(3) the system tests learners’ comprehension, for example, by 

asking them to make up an attack code applicable to a 

modified vulnerable code.  

The paper is organized as follows. Section II presents the 

work related to this paper. Section III describes how the 

system visualizes a running attack code in real-time. 

Although there are numbers of complex control flow 

hijacking techniques, our prototype system currently 
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supports stack buffer overflow and ROP attacks. Section IV 

exemplifies the visualization of these two attacks. Section V 

discusses how to deepen the knowledge about the attacks, and 

Section VI concludes the paper. 

 
Fig. 1. The system consists of the web-app and exploit parts. The exploit interacts with the process of vulnerable code vuln.c, file /proc/PID/mem, Firefox 

browser, and users of the system. The web-app interacts with Firefox. 

 

II. RELATED WORK 

Recent cyber-attack techniques, especially control flow 

hijacking, are highly complex and numbers of variants of the 

techniques have been developed [10]. Furthermore, there are 

studies that automatically produce exploit codes for buffer 

overflows [11], ROP chains [12], heap overflows [13], etc. 

To catch up with the development speed of attack tools, 

various mitigation technologies have been developed. They 

are Address Space Layout Randomization (ASLR) [14], No 

eXecute bit (NX bit) [15], Stack Smashing Protection (SSP) 

[16], Position-Independent Executable (PIE) [17], 

RELocation Read-Only (RELRO) [18] etc. The 

state-of-the-art defense technologies, whose implementation 

are currently research prototypes, are control-flow integrity 

(CFI) [19] and code-pointer integrity (CPI) [20]. All of them, 

however, cannot completely defeat the exploit techniques. 

Another way to prevent or mitigate cyber-attacks is to 

practice hands-on training in a cyber range, where trainees 

experience attacks to find the best solutions to the attacks. 

There are researches that simulate attack situations for 

understanding basic concepts [21]-[23]. Realistic 

cybersecurity training is currently conducted in military 

environments, and the proprietary systems that are available 

publicly are expensive [8]. Some open-source training 

frameworks [7], [8] are recently available. They are, however, 

not suited for efficiently leaning how attack codes work. 

 

III. SYSTEM CONFIGURATION 

Fig. 1 illustrates the structure of our prototype system that 

consists of two modules: exploit and web-app. The exploit 

module attacks a vulnerable binary code vuln (whose C 

language source code is vuln.c) using pwntools, where 

pwntools is an exploit development library that helps 

attackers to create attack codes in the following three steps.  

First, it indicates what kinds of defense mechanisms the 

vulnerable code and the operating system have (Fig. 2). 

Second, it searches for vulnerabilities in the code. Third, it 

assists in creating attack codes to exploit the vulnerabilities. 

 

 
Fig. 2. Pwntools framework reveals defense mechanisms in the target file 

vuln and the standard C library libc.so.6. 

 

An attack code is not automatically created but it is 

assembled by attackers. To understand the scheme of the 

attackers, our system displays the memory data of a running 

vulnerable code in real time. This is feasible because the proc 

filesystem (procfs) [24] creates /proc/PID/mem file in 

memory, which contains the memory information of the 

running process whose process id is PID. The exploit 

retrieves an important part of the stack data from the file and 

then transfers the data to the Firefox browser in JSON format. 

The Selenium framework is used to adjust the timing of 

displaying the retrieved data on the browser. 

When the browser is ordered to open the URL of 

http://127.0.0.1.3000 using the HTTP GET 

method, the web-app module returns the web page, which is 

constructed by Flask, a web application framework. In Fig. 1, 

only an essential portion of the process memory is displayed 

on the browser and easy-to-understand comments are 

attached. 

The system can work properly by adding two executable 

statements to the vulnerable code. The first is a function that 

outputs the buffer address used in the attack, whereby the 
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system can recognize the place where in the stack area the 

system should focus on (the address can be automatically 

retrieved from /proc/PID/mem file if ASLR is not 

enabled). In Fig. 1, printf("[+] 

address: %p\n\n", &name) in vuln.c corresponds 

to the statement. The second is function sleep(3), which 

requires the next statement of the function to be executed 

after three seconds. The function must be inserted just before 

return or exit statement; otherwise, the system may not be 

able to read the data in the memory file due to the termination 

of the process. 

 

IV. CASE STUDIES 

This section illustrates the feasibility of our approach. The 

prototype software running on an Ubuntu 18.04.3 LTS 

machine visualizes two attacks: stack buffer overflow and 

ROP attacks. 

A. Stack Buffer Overflow 

The stack buffer overflow attacks are classical and 

straightforward attacks, and at least five countermeasures 

have been implemented in the current Ubuntu system:  

RELRO, SSP, NX bit, PIE, and ASLR. These are explained 

later when necessary. Fig. 2 shows the status of them. ASLR, 

which is a system-wide property, is enabled in our 

environment. Under the environment shown in Fig. 2, our 

system exemplifies how an overflow attack can divert the 

flow of execution into any function or codes using binary 

code vuln (whose source code vuln.c is in Fig. 1). 

If a function, say secret(), is also defined in the 

vuln.c file and the name of the function is a priori known, 

then pwntools can derive the memory address of the function 

from symbol name “secret.” When vuln asks to input 

your name (see puts("Please input your name") 

in vuln.c), the exploit sends 49-byte data (called a payload 

from now on), which consists of 40 characters of ‘A,’ the 

address of function secret(), and a line feed code. The 

intent of the exploit can be articulated by visualization.  

Fig. 3 shows the web pages output by the system. It can be 

easily recognized that the overflow attack replaces not only 

the buffer area with characters ‘A’ but also the return address 

of __libc_start_main with the address of function 

secret(), which implies that the exploit module has 

controlled the execution flow. 

B. Return-Oriented Programming 

ROP further develops the potential for buffer overflow 

attacks. The overflow attack often inserts malicious codes 

into the data storage area. Even if the NX bit [15] marks the 

storage area non-executable, ROP attacks can circumvent 

this mechanism by using the existing code in static or 

dynamic libraries. Therefore, ROP is one of the code reuse 

attacks. In the ROP attacks, attackers often make up complex 

payloads that consist of a variety of “ROP gadgets,” which 

are short sequences of assembly instructions that end with 

ret, and put them in the stack area.  

In this case study, the system demonstrates how an 

attacker can invoke shell /bin/sh using vulnerable code 

vuln under the same condition shown in Fig.2. Note in 

general that the ability of adversaries to operate the shell 

without formal login authentication implies that they can 

remotely control the target machines. The exploit executes 

the function main() in vuln.c twice for coping with 

another defense mechanism ASLR [14], which randomly 

arranges the address space positions of the stack, heap, 

libraries, etc.  

  

 
Fig. 3. The web page before and after the overflow attack. The ASCII code of character ‘A’ is 41in hexadecimal notation. 

 

Fig. 4 shows a log file of pwntools, which records all 

interactions with other functions such that “Sent” 

(“Received”) in the log file indicates data sent (received) by 

the exploit module. As shown in the figure, the exploit sends 

0x49-byte (73-byte) data twice and received an address (libc: 

0x7fb895320000), which is the base address of library libc 

randomly selected by ASLR. Note that the exploit 

successfully invokes /bin/sh; the last line of the log file 

contains “$,” which works as the prompt of the shell. 

The log file explains almost nothing about why the shell 

prompt appears; whereas our system clearly answers the 

essence of the attacker’s tactics in real-time by outputting the 
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web pages in Fig. 5 and Fig. 6. As shown in Fig. 5, using the 

stack buffer overflow, the first payload rewrites the return 

address with the address of a gadget, which executes only two 

instructions: pop rdi and ret. When the gadget is 

executed, the stack pointer register (RSP) points to the next 

address of the replaced address, in which the address of 

puts@got is written. Since the gadget executes pop rdi, 

the address of puts@got is moved to RDI register and the 

gadget returns the execution flow to the address where the 

address of puts@plt exists. Therefore, function puts() 

outputs the address of puts@got and returns to the next 

address where the address of main() exists. In short, the 

aim of the exploit is to execute “puts(puts@got)” and go 

back to main().  

 

 
Fig. 4. A log file that contains data sent and received by pwntools. 

 

 
Fig. 5. The web page after the first payload is sent. 

 
Fig. 6. The web page after the second payload is sent. 

 

The values of registers change with time. In Fig. 5, RDI 

has the address of puts@got and RSP points to the address 

in which the address of main() exists. Therefore, the figure 

expresses the state of the memory and registers just before the 

main function is executed again. 

The address of puts@got is used to calculate the address 

of function system() that executes /bin/sh. The address 

is obtained by adding the base address of library libc to the 

relative address of symbol ‘system’ in the library. Since 

ASLR works, the base address of library libc is randomly 

selected; nevertheless the exploit can obtain the base address 

by subtracting the relative address of symbol ‘puts’ from 

the address of puts@got (the current address of puts()). 

In Fig. 6, there are two ROP gadgets. The first gadget is 

not meaningless; it is used for movaps instruction to work 

properly. The second puts the address of characters 

“/bin/sh” in RDI so that system() invokes /bin/sh. 

Now that the address of system() is resolved, the address 

is included in the second payload. 

 

V. FURTHER LEARNING 

Learners can observe more clearly the behavior of 

payloads and the defense systems by modifying the 

vulnerable codes or execution environments. Let us consider 

the case where a learner changes an option of compiler gcc 

so that the SSP mechanism [16] is enabled. Fig. 7 shows that 

SSP inserted a stack canary between the buffer name[] and 

the return address just after scanf("%s", name) was 

called. After the ROP attack, as shown in Fig. 8, the canary 

was overwritten by 0x4141414141414141. The change 

in the canary value when the function returns indicates an 

occurrence of buffer overflow. The memo in the figure 

indicates termination of the process due to stack smashing 

detection. The termination prevents the exploit from taking 

control of the process.  
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Fig. 7. A stack canary was used as a buffer overflow indicator. 

 

Learners can further deepen their knowledge by creating a 

payload that solves the problems given by the system. For 

example, the system askes learners to invoke /bin/sh 

when the buffer size of name[] in vuln.c is reduced from 

32 to 16 bytes. 

Since our system can visualize the memory content of 

processes in real time, we can easily extend the system to 

support any kind of control-flow hijacking attacks, which 

include heap overflow and format string attacks. 

 

 
Fig. 8. A stack canary was overwritten by 0x4141414141414141. 

 

VI. CONCLUSIONS AND FUTURE WORK 

Current exploit techniques are highly sophisticated and 

complex. For efficient and comprehensive learning of the 

techniques, we proposed a new approach that achieves 

real-time attack progress visualization, assembly 

language-level detailed description, and concise description 

of the attack schemes. Our idea was to display attack code 

behavior in the stack area in cooperation with the proc 

filesystem.  

A prototype system that visualizes stack buffer overflow 

and return-oriented programming attacks demonstrated the 

feasibility of our approach. The system enables learners to 

further deepen their knowledge by executing a vulnerable 

code after modifying the code or execution conditions.  

We are currently planning two research projects. The first 

is to implement the system as a web application so that users 

can learn from a distance. The second is to visualize more 

complex control-flow hijack attacks such as heap overflow. 
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