
  

 

Abstract—Traditionally, supervised machine learning (ML) 

algorithms rely heavily on large sets of annotated data. This is 

especially true for deep learning (DL) neural networks, which 

need huge annotated data sets for good performance. However, 

large volumes of annotated data are not always readily 

available. In addition, some of the best performing ML and DL 

algorithms lack explainability – it is often difficult even for 

domain experts to interpret the results. This is an important 

consideration especially in safety-critical applications, such as 

AI-assisted medical endeavors, in which a DL’s failure mode is 

not well understood. This lack of explainability also increases 

the risk of malicious attacks by adversarial actors because these 

actions can become obscured in the decision-making process 

that lacks transparency. This paper describes an intensional 

learning approach which uses boosting to enhance prediction 

performance while minimizing reliance on availability of 

annotated data. The intensional information is derived from an 

unsupervised learning preprocessing step involving clustering. 

Preliminary evaluation on the MNIST data set has shown 

encouraging results. Specifically, using the proposed approach, 

it is now possible to achieve similar accuracy result as 

extensional learning alone while using only a small fraction of 

the original training data set. 

 
Index Terms—Intelligent computing, machine intelligence, 

machine learning, neural networks, intensional information, 

semi-supervised learning.  

 

I. INTRODUCTION 

Machine learning (ML) is an aspect of artificial 

intelligence (AI) that is among the most well-known, 

especially among members of the general public. ML, and in 

particular a branch of ML known as deep learning (DL) have 

shown great promises in recent years. Tasks and applications 

that were considered difficult or even impossible a few years 

ago, such as autonomous vehicles [1], unmanned aerial 

vehicles (UAV) [2], near-human level speech processing [3], 

and game playing, have repeatedly made news headlines. The 

numerous reported success stories belie the fact that despite 
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showing near-human or even super-human capabilities in an 

increasingly wide range of tasks, ML / DL lack true 

intelligence in a human sense and are vulnerable to possible 

malicious attacks. 

DL algorithms run on deep neural networks (NN). Deep 

NN are characterized by having many (hundreds or more) 

hidden layers sandwiched between an input layer, which 

accepts input data, and an output layer, which outputs a 

prediction on new / unseen data once the NN has been 

properly trained.  

NN have been around for decades, but recent advances in 

four areas of computing and engineering have led to an 

explosive growth in the use of DL NN. The first of these is in 

the area of advanced hardware architectures that support the 

large amounts of computation required for properly training 

DL NN. The second is the availability of big data, which is 

partly brought about by the democratization of content / data 

generation and dissemination in the age of the world wide 

web (WWW). Anyone with access to the internet can put 

content on the web and social media websites, and people 

have been doing so for years. The increasing popularity of 

IOT sensors is another source of big data.  

The third factor is related to algorithmic improvements in 

NN training. Whereas in the past it was not feasible to 

effectively and efficiently train deep NN due the the 

vanishing gradient problem, the bottlenecks have largely 

been suppressed. Finally, ML and DL libraries, such as 

scikit-learn [4] and keras [5], have lowered the barrier to 

development of ML and DL models. Thus, all four factors 

contribute to the popularity of ML and DL in a broad sense 

and with successes reported in a wide range of application 

domains.   

 

 
Fig. 1. Application of NN. 

 

As with other supervised learning techniques, application 

of NN involves a minimum of two phases as shown in Fig. 1. 

During Phase 1, the NN is trained on training data of the form 

(input, target) pairs. Thus, for every input there is a “correct” 
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answer associated with it, and it is the learning algorithm’s 

task to learn that. Validation is performed both to optimize all 

NN model parameters and to estimate the model’s ability to 

generalize knowledge from the data. Once the NN has been 

properly trained, it becomes a trained model of knowledge 

base that is ready for deployment. Once deployed, the model 

will make predictions on new / unseen input data. Ultimately, 

a model’s performance is judged upon how it performs on 

new / unseen data.  

The training process seems nothing remarkable. It amounts 

to a fairly mechanical process of adjusting network weights 

using backpropagation in order to minimize a set loss 

function. Adjustment of the hyperparameters, such as 

network depth and number of units per layer, requires more 

work. Importantly, NN and especially DL NN require large 

volumes of training data to achieve strong predictive 

performance. This paper investigates the use of intensional 

information for NN learning [6] to reduce the reliance on 

such large volumes of data, which can be expensive to obtain 

because of the need to annotate the training data.  

The rest of the paper is organized as follows. Section II 

outlines the general idea of intensional learning. Section III 

then proposes a boosted intensional learning pipeline, which 

uses unsupervised clustering as a preprocessing step, to 

provide optimal performance without heavy reliance on 

annotated extensional data. Section IV presents an evaluation 

of the learning pipeline, which demonstrates its applicability 

with promising results. Finally, Section V concludes the 

paper and suggests future research directions. 

 

II. LEARNING FROM INTENSIONAL INFORMATION 

Current training scheme for NN, as outlined in Fig. 1, is 

heavily reliant on data that contain extensional information. 

Extensional information captures the scope or extent of a 

concept, such as a pedestrian, a passenger car, a bicycle, fire 

engine, or a pickup truck. When taken to an extreme, the full 

extent of a concept like passenger car is to include all 

passenger cars that ever existed or continue to exist in the 

world. In the case of NN training, the data used to recognize 

and distinguish between, say, pickup trucks and passenger 

cars are typically in the form of images of these vehicles 

(input) with corresponding labels (target).  

Therefore, when taken to extreme, current training scheme 

for NN would ideally involve training the network with all 

available images of passenger cars and trucks. This 

“everything under the sun, past, present, and future” 

approach to training NN is clearly inefficient and does not 

really mimic how humans learn. Clearly, a better approach is 

very much needed. 

In fact, humans can typically learn from much smaller 

sample sizes to recognize and distinguish between, say, 

passenger cars and pickup trucks. Furthermore, humans, even 

young children who have only learned to recognize passenger 

cars and pickup trucks, can often extrapolate and quite easily 

identify other types of vehicles, such as minivans, vans, fire 

engines, and special utility vehicles (SUV). The underlying 

reason is that people learn to associate salient characteristics, 

such as a compartment riding on a set of wheels, with 

passenger cars and pickup trucks. These are some of the 

components that characterize the concept of a type of 

vehicles and is what intensional information is all about. 

Intensional learning is intended to address the inefficiency 

associated with extensional learning and a deliberate attempt 

at injecting an element of how humans really learn. So, 

instead of trying to get a network to learn as many images of 

passenger cars and pickup trucks as possible (so that the 

network can self-learn the important features by passing 

information through its many layers), intensional learning 

emphasizes learning those important features that 

characterize a passenger car as well as features that 

characterize a pickup truck.  

Because DL NN are often touted to have the ability to 

self-learn useful features obsolescing feature engineering, 

this might seem like taking a step backward to classical ML 

techniques that require a significant amount of feature 

engineering. However, the efficiency achievable will 

potentially outstrip any additional work required. It is also 

possible to lead to the kind of extrapolation described above: 

once a network model can recognize passenger cars and 

pickup trucks by knowing the intensional information about 

these vehicles, there is an elevated opportunity of recognizing 

also other similar types of vehicles, such as minivans. In 

addition, by applying unsupervised learning, such as 

clustering, for extracting intensional information, the amount 

of additional work involved can be kept to a manageable 

level.   

In fact, by employing a light-touch approach to feature 

engineering, one that is driven by an unsupervised learning 

preprocessing step, it is a goal of this research to 

simultaneously reduce the amount of labelled extensional 

data required and reduce model complexity. The latter can 

mean shallower networks than otherwise required, which will 

have a positive impact on training efficiency. This can 

translate to faster training, less energy consumption, less 

expensive computer architecture, etc.  

In general, simpler models can also lead to improved 

interpretability. Interpretable models are easier to understand 

and fine tune. They also potentially facilitate analysis of 

failure modes, so that in the future there will be increased 

opportunities of gaining insight into how and when 

high-performance ML and DL models fail. It is anticipated 

that such elevated understanding of ML/DL failure modes 

will in turn facilitate research into effective mitigating 

strategies. 

Improved interpretability comes with another potential 

benefit. Prospective adversaries would find it harder to 

formulate malicious attacks once clarity replaces opacity.  

Any sabotage attempts would be more easily detected during 

both phases of training and deployment. During training and 

validation, attempts at injecting malicious data would be 

easily detected because intensional information that 

characterizes the input data can be captured. In Phase 2, once 

the model is deployed, the improved interpretability would 

establish clearer caused and effect relations between the 

model’s predicted output and any malicious test data supplied 

to the model. 
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III. BOOSTED INTENSIONAL LEARNING WITH CLUSTERING 

Boosting has been found to be very effective in improving 

the performance of decision-tree based ML algorithms. In 

fact, gradient boosted machines (GBM), which are ensembles 

of boosted decision trees [7], [8], are among the best 

performing ML techniques for classifying non-perceptual 

data. In addition, boosting is applicable to other ensembles, 

and this is an aspect of the research presented in this paper. 

Fig. 2 shows the pipeline of a boosted intensional learning 

algorithm that includes an unsupervised learning 

preprocessing step, which is in the form of k-means 

clustering. The pipeline starts with K-means clustering 

preprocessing using an algorithm presented in Fig. 3. It 

serves an important purpose, which is to organize data into 

similar groups to aid extract of relevant intensional 

information for training the NN.  

 

 
Fig. 2. Pipeline of boosted intensional learning supported by k-means 

clustering. 

 
Set K 

Initialization: randomly assign one of K class labels to each of the n 

data points 

 

Iterate the following two sub-steps until convergence is reached  

 

a) For each of the K clusters, compute the cluster centroid.  

b) Assign each data point to the cluster with the closest centroid.  
 

Fig. 3. K-means clustering algorithm. 

 

In the algorithm shown in Fig. 3, convergence means no 

further changes are observed in class label assignments. In 

sub-step a), the kth cluster centroid is the vector of the p 

feature mean for the samples in the kth cluster. In sub-step b), 

proximity is determined based on some popular distance 

measure, e.g. Euclidean distance. K-means clustering results 

in a flat structure of K groups of items that are semantically 

similar within each group.  

In this research, K-means clustering serves as an important 

preprocessing step that extracts useful intensional 

information for subsequent learning. At the same time, 

typical annotated samples with extensional information are 

also presented to the NN for training. A shallow network is 

used with a small fraction of annotated samples that would 

typically be used for DL training. Boosting is applied to 

gradually build up the shallow NN model using an adjustable 

learning rate.  

Finally, Phase 1 is complete when the NN is fully trained 

(when slight overfitting is just observable) and ready for 

deployment in Phase 2. In Phase 2, the deployment is per 

typical deployment and the trained network is evaluated on 

unseen test data as depicted in Fig. 1. 

 

IV. EVALUATION 

An experiment has been conducted to evaluate the 

performance of the clustering-supported boosted intensional 

pipeline as described in Sec III and demonstrate its 

effectiveness. The MNIST data set [9], which is widely used 

by researchers in the field for benchmarking purposes, was 

used for this experiment. The data set contains a set of 

grayscale images of handwritten digits 0 ... 9. Each image is 

of a low resolution of 28 pixels × 28 pixels. The complete 

MNIST data set comprises 60,000 training sample images 

and 10,000 test sample images. To illustrate what they look 

like, example images are presented in Fig. 4. 

The machine learning task amounts to classifying each of 

the low-resolution grayscale images into any of the ten digits 

0 … 9. It is therefore essentially a multiclass classification 

problem.  

Evaluation is based on comparing a typical NN trained on 

the full set of training data with the boosted intensional 

pipeline trained on a significantly reduced set of training 

examples. The purpose is to demonstrate that the boosted 

intensional approach can achieve comparable test results on a 

much smaller training data set compared with more 

conventional extensional learning with large labelled data 

sets. 

 

 
Fig. 4. Example images drawn from the MNIST data set [8]. Each grayscale 

image has a low resolution of 28 × 28 pixels. 

 

A. Procedure 

The evaluation procedure is as follows. First, a baseline is 

established by going through a standard NN training and 

deployment workflow as shown in Fig. 1. Second, the 

clustering-supported boosted intensional learning pipeline as 

described in Sec III is applied to train on the full set, followed 

by a small subset of the training data, which is varied from 

half of the original set to a quarter. The purpose of varying 
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the amount of training data size reduction is to see how this 

gradual change affects the classification performance.  

Finally, the results from these two approaches are 

compared to see if there is any significant difference in 

performance of the two approaches. Another aspect that is 

also of interest is the sensitivity of the gradual reduction of 

the size of training data set (a half vs. a quarter of the original 

set) to boosted intensional learning.  

B. Results 

The experimental results are tabulated in Table I, which 

compares standard, data-intensive, extensional learning with 

more data-efficient clustering-supported boosted intensional 

learning. These are denoted methods 1 and 2, respectively, in 

Table I. The metric is accuracy of the predicted class, i.e. one 

of ten classes that correspond to ten digits.  

The results for standard extensional learning are achieved 

using a NN architecture with two fully connected hidden 

layer. For boosted intensional learning, one of the hidden 

layer is omitted. This arrangement is, in part, to demonstrate 

that a simpler NN is possibly applicable to intensional 

learning because of the deliberate injection of intensional 

information into the learning process. 

 
TABLE I: SUMMARY OF RESULTS 

Method                      Accuracy given Size of Training Data Set 

                                   Full set              ½ set                ¼ set 

      1 0.978 0.966 0.950 

      2 0.977 0.975 0.972 

 

In Table I, size of the training data set refers to the number 

of training examples used in training. Recall that the full set 

contains 60,000 grayscale images. For the subsets of ½ and ¼ 

of the full set, 30,000 and 15,000 examples, respectively, 

they were randomly drawn from the full set. The results refer 

to test classification accuracy once the respective NN is in 

Phase 2 deployment mode. The full test set of 10,000 

examples was used in each case. Therefore, the results reflect 

true performances and therefore generalization abilities of the 

two methods. 

C. Discussion 

From Table I, it is evident that while both methods perform 

similarly in test accuracy when trained with the full set of 

training data. However, Method 1, which relies totally on 

extensional learning, shows noticeable deterioration in test 

performance with decreasing size of the training data set. On 

the other hand, Method 2, which injects intensional 

information in a boosted fashion, shows much less significant 

deterioration (more resilience) in test performance with 

decreasing size of the training data set. In other words, 

Method 2 is much less sensitive to reduction in size of 

training data set. This can be a very useful trait in many 

real-world applications where availability of high-quality 

annotated data is limited.  

While both the standard extensional and boosted 

intensional methods gave a similar accuracy performance 

result with the full training set, there are significant 

differences to consider. First, NN, and especially DL NN, are 

good at learning salient features on their own. So, feature 

engineering is minimized. However, this form of 

convenience comes at a cost in terms of the amount of 

annotated training data necessary to achieve feature 

extraction and generalization necessary for good 

classification performance.  

As a form of engineering tradeoff, the boosted intensional 

approach requires a moderate amount of feature engineering 

in the terms of deliberately injecting intensional information 

that is fine-tuned to provide salient features for efficient 

supervised training. The upshot is that it is possible to achieve 

similar levels of performance even when the training data set 

is reduced to ½ or even ¼ of the full set. This is quite 

remarkable compared to standard extensional learning.  

In the case of a relatively simple classification task 

involving the MNIST data set, the choice is not particularly 

clear. One might argue that training on the full set of MNIST 

is not really much of an effort. However, in the many 

real-world scenarios where high-quality annotated data are 

hard to come by, a relatively moderate amount of feature 

engineering can be an effective countermeasure.  

It should be noted that Method 2 (boosted intensional) uses 

a simpler fully connected network (with one hidden layer 

omitted) than Method 1 (extensional), while achieving results 

that are fundamentally no worse (if not better) than Method 1. 

This highlights the positive effect intensional learning has on 

the expressive power (and therefore complexity) of a model. 

In addition, while both methods used relatively simple fully 

connected networks, both would likely perform better using 

more computationally-intensive 2D convolutional networks 

for image data. The reason is that 2D convolutional networks 

are especially useful for finding local features in images, such 

as those in the MNIST data set.  

With reduced model complexity comes possibility of 

improved interpretability. Thus, intensional learning offers a 

further advantage in that the model’s decision can become 

more interpretable. For example, when predicting a class that 

corresponds to the digit “1”, it is likely that it recognizes 

salient features, such as a prominent vertical line and not 

much else. With improved interpretability of the model’s 

decision making, the chances of detecting adversarial attacks 

is improved through enhanced transparency in the entire 

process. This is an important consideration as security of AI 

systems is often under the spotlight. 

 

V. CONCLUSION 

This paper has presented a comparison between standard 

extensional training for neural networks with a boosted 

intensional learning method that relies on an unsupervised 

preprocessing stage. Specifically, K-means clustering is 

selected as an unsupervised learning method to provide 

useful intensional information. This reduces a model’s 

reliance on extensional (labeled) data. This is often an 

important consideration because in many real-world 

applications, availability of high-quality annotated data can 

be limited.  

Ultimately, it represents a tradeoff between convenience 

(of not having to explicitly perform feature engineering) with 
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deep learning neural networks vs. availability of high-quality 

labeled data. It is also about a tradeoff involving a learning 

model’s expressive power. These tradeoffs empower ML 

designers to choose and balance how they want their learning 

models to behave, especially when availability of good 

annotated data is limited. 

Intensional learning offers a further advantage over 

extensional learning in that decision making by a trained 

neural network model is more interpretable. With better 

interpretability and transparency, the risks of adversarial 

attacks can be reduced. Thus, the introduction of intensional 

information in learning can simultaneously mitigate three 

major shortcomings of standard extensional NN learning, 

namely the needs for large amounts of high-quality annotated 

data, relative low levels of interpretability, and vulnerability 

to adversarial attacks caused by a relative lack of 

interpretability.  

In this research, intensional information was extracted 

from an unsupervised clustering preprocessing step. Domain 

ontologies [10]-[13] which contain rich intensional domain 

information, can be used to drive this approach. It can be 

considered as either an alternative to unsupervised clustering, 

or as a complement that works collaboratively with other 

unsupervised preprocessing techniques, such as clustering. In 

this regard, hierarchical clustering could also be useful 

because it can capture real-world relations that cannot be 

readily represented using a flat structure achievable using 

K-means clustering.  

Another future research direction is to investigate the 

amount of intensional information to inject into the learning 

process, relative to the amount of extensional information 

used in the training process. The investigation will answer 

questions like “Is there an optimal equilibrium?” and “Is it 

possible to overdo it?”. Future research that aims to address 

these and related issues is currently underway, and the results 

will be reported in due course. 
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