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Abstract—As various review sites grow in popularity and 

begin to hold more sway in consumer preferences, spam 

detection has become a burgeoning field of research. While there 

have been various attempts to resolve the issue of spam on the 

open web, specifically as it relates to reviews, there does not yet 

exist an adaptive and robust framework out there today. We 

attempt to address this issue in a domain-specific manner, 

choosing to apply it to Yelp.com first. We believe that while 

certain processes do exist to filter out spam reviews for Yelp, we 

have a comprehensive framework that can be extended to other 

applications of spam detection as well. Furthermore, our 

framework exhibited a robust performance even when trained 

on small datasets, providing an approach for practitioners to 

conduct spam detection when the available data is inadequate. 

To the best of our knowledge, our framework uses the most 

number of extracted features and models in order to finely tune 

our results. In this paper, we will show how various sets of online 

review features add value to the final performance of our 

proposed framework, as well as how different machine learning 

models perform regarding detecting spam reviews. 

 
Index Terms—Feature extraction, machine learning, 

predictive analytics, spam detection.  

 

I. INTRODUCTION 

As information media comes to play more prominent roles 

in modern society, people’s daily lives have become more 

and more inseparable from, as well as susceptible to, the 

dispersion of information on media platforms. Nowadays, the 

medium for communication has shifted away from more 

accountable resources such as physical newspapers to social 

media platforms where everyone has a voice. Given the major 

impact that information can have on not only individuals but 

small businesses as well, it has become of the utmost 

importance to ensure the integrity of the information that is 

being shared, liked, and commented on by individuals on 

their various platforms. 

Spamming - a practice that is used to mislead or deceive 

social media users by posting harmful links, posting 

repeatedly to trending topics to grab attention, or posting 

advertisements - has always been the biggest threat to a 

healthy social media environment [1]. Despite efforts in the 

past on combating spam posts and comments online through 

various means, the patterns for online spam are evolving so 

rapidly that few spam detection algorithms are robust and 

adaptive enough to cope. In this project, we aim to design an 

adaptive and robust online spam detection framework that 

 

 

 

 

 

combines many cutting-edge techniques related to feature 

extraction, feature engineering, as well as machine learning 

algorithms - tree-based models, neural networks, statistical 

models, and so on. Within the framework we propose, we will 

implement different predictive algorithms and compare their 

performance on our experimental dataset. We will also show 

how different sets of features add values to the predictive 

performance of our proposed spam detection framework. 

Furthermore, we will also train our framework on smaller 

datasets to exhibit the robustness of our framework. 

 

II.

 

RELATED WORKS

 

Due to the significance of the topic, a considerable amount 

of research has been done in the field of online spam detection 

over the past years. In 2010, Wang compared the performance 

of four predictive models in detecting spam tweets - Naive 

Bayes, Neural Network, Support Vector Machine, and 

Decision Tree [2]. In Wang’s approach, he described each 

tweet using user-based features - attributes that are related to 

the senders of tweets, as well as content-based features - 

attributes that are related to the text of the tweets. In 2011, 

Mccord and Chuah compared the performance of Random 

Forest, Support Vector Machine, Naive Bayes, and k-Nearest 

Neighbor in detecting spam tweets using similar set of 

features as Wang did in his design [3]. 

In 2016, Kaur, Singhal, and Kaur conducted a 

comprehensive review of the methodologies used in detecting 

spam on Twitter [1]. In their paper, they investigated both the 

attributes people used when classifying tweets and the 

algorithms for conducting the classifications. The paper 

summarized four main categories of features related to each 

tweet - user-based features, content-based features, hybrid-

based features, and relation-based features. Regarding spam 

detection algorithms, they listed various types of models that 

people had investigated during the past - Support Vector 

Machine, Naive Bayes, k-Nearest Neighbor, Neural Network, 

Decision Tree, Random Forest, Logistic Regression, and 

Ensemble Models, all of which have achieved certain levels 

of success in past Spam Detection studies. 

In 2017, Sedhai and Sun proposed a semi-supervised 

Twitter spam detection model that is capable of adaptive 

learning through batch mode - constantly retraining the model 

after a certain time window [4]. Their paper presents a way 

which enables the spam detection framework to capture new 

vocabulary and new spamming behaviors, thus making the 
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framework adaptive to deal with dynamic spamming 

activities. In the same year, Mateen, et al. proposed a hybrid 

approach of detecting spam tweets using content-based and 

graph-based features [5]. Their findings indicate that 

combining multiple approaches in spam detection may yield 

better performance overall. 

In [6], researchers proposed using an unsupervised 

machine learning algorithm in order to detect opinion spam 

on China’s Weibo. They discussed how duplicate user replies 

and posts can indicate potential spam accounts. However, 

many non-duplicated reviews can be spam suspects too. 

Some researchers tried to establish a correlation between 

spamness (how spam-like a review is) and usefulness. But [7] 

shows top-ranked reviewers (whose reviews are deemed 

‘useful’ by others) are actually less trustworthy compared to 

other reviewers. 

More recently, many research initiatives attempted to 

integrate different paths to achieve best efficiency and 

accuracy. For example, in Extracting Product Features and 

Opinions from Reviews [8], researchers used sentiment 

analysis for labeling review text, and then associated the 

opinions with specific features of the products, which allows 

for more granular targeting of spam reviews and user 

accounts. Another group of researchers obtained the best 

accuracy with a Neural Network Classifier by combining the 

text-centric and reviewer-centric paths [9]. Besides metadata, 

recent researchers also have tried to utilize relational data by 

putting reviewers into a network. 

In [10], a new group spam detection algorithm called 

GSRank was proposed. This algorithm, while yielding 

encouraging results, requires a labeled group spam dataset 

which isn’t available for most datasets. Therefore, an 

increasing number of researches in recent years sought to 

identify a more general solution for spam detection problems. 

In 2014, Giyanani and Desai tried to take on spam by using 

a block diagram that takes into account the email URL, 

checks it against a blacklist, the number of emails this source 

sends, then broken down into keywords and passed into a 

classifier and then finally the NLP engine, which uses N-

gram modeling, Word Stemming, and Bayesian classification 

[11]. 

In [12], Shankar uses a statistical approach to NLP in order 

to determine whether or not bulk emails are spam. The 

purpose of this is to block emails that may be security 

concerns or have otherwise malicious intents for the user, and 

the system used is similarly N-gram modeling, Word 

Stemming, and Bayesian classification. Very similar to [11], 

the inputs are checked against a blacklist database, then 

classified and processed through the NLP engine, which is 

statistical in this case. This interestingly is an attempt to see 

if it is possible to minimize the massive overhead storage 

space for databases due to the threshold counter, which is a 

more traditional way of blocking spam. 

Taking a step away from emails, in their paper, Kale, 

Jadhav, and Pawar focus on customer reviews [13]. Instead 

of focusing on the extraction, classification, and 

summarization as previous works have been, however, this 

paper focuses on finding irregular text flow, vulgar language, 

and a lack of relation to the content at hand before checking 

the similarity of that with other comments, which is a 

different approach than what we have traditionally seen. 

Reference [14] focuses on Twitter once again, in order to 

determine specific spam profiles and thus their posts. They 

consider four main types of spammers, namely malware 

propagators, phishers, adult content propagators, and 

marketers. This eventually results in a three-step process, 

starting with a comparison of blacklisted URLs, feeding 

everything through an NLP engine, and then finally machine 

learning techniques. The NLP engine recognizes very 

specific phrases and ends with stemming, after which they 

switch over to the machine learning step if it is not determined 

to be spam. 

Reference [15] once again returns to email spam filtering, 

in which they focus on content-based filtering rather than the 

meta-data of the email. Their approach is to split the email 

into subject and body, as a semi-structured document, and use 

an interpolated generative model, which involves node 

probabilities to add weights to the words and understand the 

document structure. 

In our proposed framework, we will integrate and improve 

upon the many existing methodologies discussed above - 

feature extraction approaches, predictive algorithms - related 

to online spam detection, and propose a comprehensive, 

adaptive and robust online spam detection pipeline. Using the 

framework we proposed, a close experimental study will be 

conducted on detecting Yelp spam reviews. 

 

III. PROCEDURE FOR PAPER SUBMISSION 

Our framework is divided into two major pipelines, which 

consist of a feature extraction component as well as a 

predictive modeling component. Between those two main 

components, some intermediate steps - feature normalization, 

feature selection, and data sampling - may also be performed. 

Fig. 1 is the overall design diagram of our framework. 

 

 
Fig. 1. Design diagram. 

 

A. Feature Extraction 

Our designed features are divided into two main categories: 

(1). Review-Based Features - 287 features that capture 

attributes as well as patterns regarding the content of the 

online review. 

(2). Reviewer-Based Features - 12 features that capture 

attributes as well as patterns regarding the user who posts the 

online review.  

Review-Based Features (287) 

Table I summarizes the 8 structural features in our 

framework that are based on the construction of the review 

including length, word characteristics, and punctuation. 

Table II summarizes the 6 sentiment features in our 

framework that focus on the sentiment of the words in the 

review, along with a separate score for objectivity. A list of 

commonly used stop words will be excluded for this part of 

the analysis. 
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TABLE I: STRUCTURAL FEATURES 

Feature Name Description 
Review_Length The number of words for each review. 
Number_Sentences The number of sentences for each review. 
Average_Word_Length The average word length for each review, calculated as Number_of_Chars / Review_Length. 
Average_Sentence_Length The average sentence length for each review record, calculated as Number_of_Chars / Number_Sentences.  
Percent_Digits The percentage of digits for each review, calculated as Number_of_Digits / Number_of_Chars. 
Percent_Capital The percentage of capital letters for each review, calculated as Number_of_Capital_Letters / Number_of_Chars. 
Percent_Exclaimation The percentage of exclamation mark “!” for each review, calculated as Number_of_Exclaimation_Marks / 

Number_of_Chars. 
Percent_Question The percentage of question marks: “?” for each review, calculated as Number_of_Question_Marks / Number_of_Chars. 

 

TABLE II: SENTIMENT FEATURES 

Feature Name Description 
Sum_Pos_Score The summation over all words’ positive sentiment scores (determined by SentiWordNet [18], [19]) for each review. If any 

negation word exists, the subsequent word’s sentiment score will be negated. 
Sum_Neg_Score The summation over all words’ negative sentiment scores (determined by SentiWordNet [18], [19]) for each review. If any 

negation word exists, the subsequent word’s sentiment score will be negated. 
Percent_Extreme_Pos The percentage of words with extreme positive sentiment score in the review. A threshold needs to be set to determine how 

positive is extremely positive (any word with positive sentiment score >= threshold is labeled as “extremely positive”).  
Percent_Extreme_Neg The percentage of words with extreme negative sentiment score in the review. A threshold needs to be set to determine how 

negative is extremely negative (any word with negative sentiment score >= threshold is labeled as “extremely negative”).  
Sum_Obj_Score The summation over all words’ objective scores in the review. Objective score is calculated as 1 - (pos_score + neg_score). 

A word is said to be objective if there is no strong sentimental implication associated with that word. 
Percent_Objective_Word The percentage of words that are “objective” in the review. A threshold needs to be set on each word’s objective score to 

determine if that word is considered as an “objective word” (any word with an objective score greater than threshold is an 

“objective word”). 
 

TABLE III: TEXTURAL FEATURES 
Feature Name Description 
First_Pronoun_Count The number of first-person pronouns, such as I, my, myself, we, us, our, ourselves, mine, etc. in the review text. 
Second_Pronoun_Count The number of second-person pronouns, such as you, yourself, your, yourselves, in the review text. 
Second_First_Ratio The ratio of First_Pronoun_Count and Second_Pronoun_Count as a real number feature. We found that spam reviews tend 

to use more second person pronouns than legitimate reviews do. 
Pos_Tags (36) The number of each of the 36 POS tags in the review.  
Unigram (100) Firstly, the percentage of each unigram token in spam reviews and the percentage of each unigram token in non-spam 

reviews are calculated. Then, the top 100 unigrams that have the most different percentages (in spam and non-spam) are 

taken out, and their counts in the review text are used as features. This process selects the 100 most distinctive unigrams 

between spam vs. non-spam contexts. 
Bigram (100) Similarly, the top 100 bigrams that have the most different percentages in spam and non-spam reviews are taken out, and 

their counts in the review text are used as features. 
LDA_Distribution (30) A LDA (Latent Dirichlet Allocation) topic model is fitted to the review dataset, and the topic distributions are used as 

features. For this project, we set num_of_topics to be 30. Normalized TF-IDF vectors are computed in order to carry out 

LDA modeling.  
 

TABLE IV: METADATA FEATURES 
Feature Name Description 

Review_Date The date in which the review was posted, normalized as a real number feature. 
Review_Time_Slides The number of days between the review posted and the first review given to the same product. We observed that spam reviews 

are often posted early in order to maximize its influence.  
Product_Id A unique ID for each product in the dataset. 
Rating The numeric rating given by the review, between 1 - 5. 

 

Table III summarizes the 269 textural features in our 

framework, that analyze the review text using features such 

as pronouns, parts-of-speech tags, and topic modeling. 

Table IV summarizes the 4 metadata features in our 

framework, that include information about the review such as 

the date it was posted and the rating given. 

Reviewer-Based Features (12) 

Table V summarizes the 12 user features in our framework, 

which take into account aspects of the profile that posted the 

review, and include features such as the user’s rating 

distribution, average review rating and length, maximum 

number of reviews a day, and other features that may indicate 

suspicious behavior. 

B. Intermediate Feature Processing 

After obtaining the numeric values for all the features 

through the feature extraction step, it could be beneficial to 

do some additional processing before feeding the samples 

into predictive algorithm training. 

In our predictive analytics framework, we designed three 

intermediate steps that could be applied to further feature 

processing after feature extraction. 

Firstly, feature normalization can be done using z-

transformation (standardization) to normalize the scales of all 

features. Since each feature has values of different ranges. 

Feeding those features directly to machine learning 

algorithms will produce bias towards features with higher 

magnitudes, thus affecting the accuracy of the overall 

framework performance. Therefore, before moving on to 

other modules of our framework, standardization of all the 

features could be done using the formula below: 
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                                         𝑧 = 
𝑥−


 (1) 

 

In (1), μ is the mean value of the feature, σ is the standard 

deviation of the feature values. After standardization, each 

feature will have a mean of 0 and a standard deviation of 1. 

Secondly, feature selection using correlation could also be 

applied to discard features that are relatively uncorrelated 

with the class label. In some cases, having a high sample 

dimension can cause the sample space to be sparse, which 

will hinder the training process of machine learning models 

due to curse of dimensionality. Therefore, feature selection 

can be implemented on all the features generated based on 

each feature’s correlation with the class label: 

                     𝑟 =
𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2− (∑ 𝑥)2
][𝑛∑ 𝑦2− (∑ 𝑦)2

]

 (2) 

In (2), n represents the number of samples in the dataset; x 

represents the feature value; y represents the class label. The 

higher the correlation between a feature and the class label, 

the more that the class label of a sample depends on that 

feature. Therefore, by applying correlation feature selection, 

the framework not only reduces the dimensionality of the 

sample space but also keeps only the features that are most 

correlated with the class label. 

 
TABLE V: USER FEATURES 

Feature Name Description 
User_ID The identification code for the user who posted the review. 
Max_User_Rating The maximum rating score ever given by the user. 
Min_User_Rating The minimum rating score ever given by the user. 
Mean_User_Rating The mean rating score of the user’s ratings. 
Median_User_Rating The median rating score of the user’s ratings. 
STD_User_Rating The standard deviation of all the user’s ratings. 
Num_Ratings_by_User The number of ratings ever given by the user. 
Num_Extreme_Ratings_by_User The number of extreme ratings (score 1 or 5) ever given by the user. 
User_Avg_Review_Length The average length of the user’s reviews in number of words. 
User_Avg_Positive_Ratio The average positive word ratio in the user’s reviews defined by the sentiment features. 
User_Avg_Negative_Ratio The average negative word ratio in the user’s reviews defined by the sentiment features. 
User_Max_Rating_Num_per_Day The maximum number of ratings the user has ever made in a day. 

 

Thirdly, due to the reason that some spam detection 

datasets have imbalanced distributions - the proportion of 

spam samples is often tiny when compared to that of non-

spam samples, machine learning models may emphasize their 

trainings on non-spam samples and thus ignore those spam 

samples when comes to the final detection stage. To 

overcome this problem, data over-sampling could be 

performed and the over-sampled data could be fed into the 

training process of the predictive machine learning models. 

Fig. 2 illustrates one of the ways to conduct over-sampling, 

which is by multiplying the spam data in the training set. 

However, the downside of this approach is that it may cause 

the machine learning models to overfit on the training spam 

data and not generalize well to unseen situations. 
 

 
Fig. 2. Over-sampling. 

 

Despite the fact that those intermediate steps may add great 

value to the ultimate performance of our proposed framework, 

some of them may hinder the performance of the framework 

as well. For example, although feature selection helps reduce 

the complexity of the sample space, it reduces the amount of 

information contained in the feature space at the same time. 

Over-sampling, as mentioned above, could also cause the 

model to overfit. Therefore, it is up to the discretion by the 

practitioners who implement our framework to decide 

whether to use any of the intermediate steps or not. 

C. Predictive Modeling 

After obtaining the numeric features representing each 

review/post following any applicable intermediate feature 

processing stages, we feed those values into the last stage of 

our predictive analytics framework to conduct spam detection. 

Any machine learning models or any ensemble of models can 

be used in this step. There is no universal rule regarding 

which model is the best to use when it comes to spam 

detection problems due to the case-dependent nature of spam 

detection. Users of our framework are encouraged to conduct 

multiple experiments to compare the performance of different 

models based on the characteristics of their specific problems. 

 

IV. EXPERIMENTAL IMPLEMENTATION 

Using the framework we proposed above, we conduct a 

close experimental study on an existing dataset. In our 

experiments, we process the data through feature extraction, 

normalize the features through standardization, and train our 

framework using 6 machine learning models that were shown 

to be useful by past studies.  

A. Dataset Selection 

In our experimental implementation, we focus on one 

specific platform (Yelp) to test our algorithms when 

designing our framework. We adopt the YelpZip dataset to 

test our framework, which originally contained 608,598 

restaurant reviews. This dataset was collected by authors 

Shebuti Rayana and Leman Akoglu in 2015 [16]. Reviews in 

this dataset include product and user information, timestamp, 

ratings, and a review text. Yelp has a filtering algorithm in 
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place that identifies fake/suspicious reviews. While this 

algorithm is not perfect, it has been found to produce accurate 

results, so we will treat the labels in this dataset as ground 

truth [17]. In the original dataset, there exist 13.22% spam 

reviews by 23.91% spammers. 

In real-life spam detection applications, however, the 

amount of data available - especially the amount of labeled 

data available - is most often inadequate due to the cost and 

difficulty for analyzing online posts and reviews. In order to 

simulate such application cases as well as improve the 

robustness of our framework when applying to smaller 

datasets, we conduct our experiments on a randomly sampled 

subset of the YelpZip dataset. Our experimental dataset - the 

dataset that combines the rotating training and development 

sets as well as the test set, as shown by Fig. 6 - contains 

100,000 samples in total, with 12,264 spam samples and 

87,736 non-spam samples. By checking the distributions of 

attributes in our experimental dataset with that of the original 

dataset, we affirm that the data distribution for our 

experimental dataset aligns well with that for the original 

dataset. 

B. Feature Extraction 

The definitions and methods for extracting all the features 

are elaborated in Section III Framework Design. Here we 

describe some additional implementational details regarding 

our feature extraction processes. 

When parsing the original text into sentences, we used 

nltk.sent_tokenize(). When labeling our parsed review text, 

we used nltk.pos_tag(). 

When determining the words’ positive and negative 

sentiment scores in the review text, we used SentiWordNet as 

our reference [18], [19]. 

When setting thresholds for Percent_Extreme_Pos, 

Percent_Extreme_Neg, and Percent_Objective_Word, we set 

their thresholds to be 0.5. 

Fig. 3 represents the top 100 unigrams that have the most 

significant differences between the percentage in spam 

reviews and the percentage in non-spam reviews in our 

experimental dataset (The size of the token in the figure 

reflects how big is the difference).  

 

 
Fig. 3. Unigram Indicators. 

 

Fig. 4 illustrates the cloud of tokens analyzed by LDA 

when forming LDA distributions on our experimental dataset. 

Those tokens are the building blocks that form the 30 LDA 

topic features in our experimental implementation. The key 

point here is that, while n-grams models only consider the top 

50/100/150 words due to limited feature space, LDA takes 

into consideration all tokens when modeling the topics. 

Therefore, LDA topics distribution is far more informative 

than features based on top grams. In the evaluation section, 

we also observed that after adding LDA features into our 

framework, we could get a better result in terms of F-1 score. 

 

 
Fig. 4. LDA cloud. 

 

 
Fig. 5. Snippet of extracted features. 

 

C. Intermediate Processing 

We apply only the standardization step for intermediate 

processing of the extracted features in our experiments. We 

skip the feature selection step because we would like our 

experimental implementation to utilize the full power of all 

the features we extracted from the review dataset and see how 

different features add values to the performance of the 

framework. We also do not perform any data over-sampling 

in our experimental implementation because our 

experimental dataset is not incredibly imbalanced. In this case, 

it would not be worth it to apply over-sampling while 

incurring the potential risk of model over-fitting.  

D. Machine Learning Models (Predictive Modeling) 

There are various machine learning models that are proven 

to be useful when it comes to spam detection problems. We 

pick six of the widely used models to carry out the final 

component of our framework implementation. By comparing 

their performances, we conclude which model works the best 

given our experimental dataset.  

Naive Bayes 

Naive Bayes, an incredibly popular text categorization 

method, is one of the simplest Bayesian network models [20]. 

To construct the classifiers for this technique, the algorithm 

runs off of a model that will take in a considerable amount of 

features, and then assume that all of these features contribute 

independently to a total probability for a class label. This 

model relies on Bayes’ theorem, as illustrated: 

                                          

                           𝑝(𝐶𝑘 |𝑥) =
𝑝(𝐶𝑘)𝑝(𝑥|𝐶𝑘)

𝑝(𝑥)
 (3) 
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This provides the conditional probability of a certain 

instance to be classified as a specific label by taking the 

probability of the prior word multiplied by its likelihood 

divided by existing evidence. This can then be extended into 

repeated applications of Bayes’ theorem. Finally, the chosen 

classifier can be determined, for a class label y = Ck, as: 

                                          
       𝑦̂ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑘∈{1,… ,𝐾}𝑝(𝐶𝑘) ∏ 𝑝(𝑥𝑖|𝐶𝑘)𝑛

𝑖=1           (4) 

 

Logistic Regression 

Logistic Regression takes in independent variables, which 

do not have to be binary, then uses a logistic function to 

output a binary dependent variable for predicting the class 

label [21]. The logistic function is as follows: 
 

                                     𝑓(𝑥) =
1

1+𝑒−𝑥                              (5) 

 

The algorithm we used for our model starts by initializing 

a vector of weights, also known as the regression coefficients, 

to zero, then we train the selected sample features by 

calculating a new prediction vector using our version of the 

logistic regression function, updating the gradient vector, and 

then finally updating the weights (an iterative process). We 

minimize the logistic loss through gradient descent. 

Furthermore, we choose to implement methods that may 

increase our average training set loss, but decrease the 

average loss on the test set, a process known as regularization. 

We do this by adjusting the rate of learning for each gradient 

update by using a stochastic gradient descent with simulated 

annealing so that we replace the learning rate constant with 

that of a gradually diminishing variable rate. 

Decision Tree 

In a machine learning context, the decision tree is built by 

weighting a list of features with probabilities, with the 

ultimate desired output of a class label based on the input 

variables that consist of the interior nodes [22]. Each tree may 

be trained by splitting it further into smaller trees and 

recursively addressing all of the sub-trees and nodes. When 

the subset splitting no longer adds informational value, the 

recursion ends. 

Gradient Boosted Trees 

Generally, boosting in machine learning refers to training 

the model to learn and weight weak classifiers based off of 

their accuracy to add to a strong classifying label [23]. For a 

gradient boosted tree, we use a fixed-sized decision tree as 

the base, and minimize the loss function to update and better 

the quality of fit. This improves upon the logistic regression 

and decision tree models, as it allows for us to use our large 

number of features without having to input a similarly large 

number of parameters. 

Random Forest 

Building off of the various decision trees we have worked 

with, the Random Forest uses multiple decision trees with 

each one providing a class label given the input parameters, 

and the class label that results from the most number of trees 

will be the final label outputted by the random forest. The 

randomness comes from the selection of sample data used to 

train the trees, and the resulting trees are built using a random 

selection of features [24]. 

Neural Network 

Commonly used in machine learning, neural networks are 

modeled off the human brain and include components such as 

neurons, which are similar to the nodes in a decision tree, 

connections which include probability weights, along with a 

propagation function that is fed the output of predecessor 

neurons and then converts it into an input for the next neuron 

[25]. Neural networks are meant to be hyper-adaptable and to 

be able to fine tune themselves to the task at hand through 

repetition and training. 

E. Evaluation 

Our paper aims to propose a general framework for spam 

detection on online platforms. As mentioned in Section III 

Framework Design, due to the domain-dependent nature of 

spam detection problems, the best configuration of our 

framework (the best choices regarding the features, the 

intermediate steps and the machine learning models) may 

vary case by case. Therefore, instead of proposing specific 

configurations of our framework in general, we mainly test 

and compare different framework configurations using cross-

validation results, discuss the results’ implications, and 

suggest the configuration that works the best on our 

experimental dataset in the next section.  

As shown in Fig. 6, firstly, we split our experimental 

dataset into a test set (10% - 10k samples), and a training and 

development set (90% - 90k samples). The training and 

development set is then split into rotating training and 

development sets in cross-validation. Based on cross-

validation performances, we pick a framework configuration 

that works best for our experimental dataset and test it using 

the test set. We also discuss the general adaptiveness and 

robustness of our framework as well as different framework 

configurations’ pros and cons by comparing their cross-

validation results in the next section - Section V Experimental 

Results. 
 

 
Fig. 6. Experimental implementation + evaluation. 

 

We employ 5-fold cross-validation (rotation estimation) 

when evaluating our framework performances. Once we 

obtain the features through feature extraction and the 

intermediate steps, the training and development set is then 

randomly split into 5 equal portions with the same sizes and 

with the same distributions (same spam vs. non-spam ratios). 

As shown by Fig. 6, within each of the 5 folds, one portion of 

the set is treated as the development set for model validation 

while the others are used for training purposes. Thus, for 

every framework run (per every unique framework 

configuration), 5 folds of training-validation processes 

described above are performed. The 5 evaluation results are 

combined to form the final cross-validation evaluation result 

that can help estimate the overall performance of the 
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framework configuration.  

We adopt overall accuracy, and F-1 score (combines 

precision and recall) on spam labeled reviews as our 

performance evaluation metrics. 

 

V. EXPERIMENTAL RESULTS 

Table 6 shows our experimental results when evaluating 

our framework with different learning algorithms during the 

cross-validation phase (on the 90k training and development 

samples). Moreover, for each learning algorithm we also train 

our framework with different combinations of features to 

show how our holistic approach enhances analytical 

performance. (Note: Purely Textual Features = Structural 

Features + Sentiment Features + Textural Features (without 

LDA Features), User-Based Features = Meta Data + 

Reviewer-Based Features.) 

Based on the cross-validation results in Table VI, we can 

observe that as we include more features in our framework, 

the framework performance improves progressively. As 

shown in Table VI, among all framework configurations that 

we experimented on, Gradient Boosted Trees combined with 

all proposed features yielded the best cross-validation 

performance. 

 
TABLE VI: CROSS-VALIDATION RESULTS ON 90K TRAINING AND 

DEVELOPMENT SET: FRAMEWORK CONFIGURATIONS COMPARISON 

 Purely Textual 
Features 

Purely Textual 
Features + User-

Based Features 

Purely Textual 

Features + User-

Based Features + 

LDA Features 

Accuracy F-1 

Score 

Accuracy F-1 

Score 

Accuracy F-1 

Score 

NB 76.27% 46.64% 77.82% 48.46% 78.65% 49.23% 

LR 89.39% 40.48% 92.63% 67.14% 92.62% 67.05% 

DT 87.79% 30.69% 91.27% 64.79% 91.44% 65.09% 

GBT 89.78% 50.19% 93.84% 73.62% 94.35% 75.88% 

RF 87.79% 1.15% 88.37% 11.66% 92.65% 71.15% 

NN 89.46% 44.10% 92.43% 66.93% 93.07% 69.87% 

 

Based on the cross-validation results in Table VI, we pick 

the best framework configuration on our experimental dataset 

- ‘All Features + Gradient Boosted Trees’. After testing this 

configuration using the test set, we obtain the results in Table 

VII. When comparing our framework’s test performance with 

that of the state-of-the-art model we have found in [9], in 

which the model was tested on the same Yelp dataset, our 

framework outperforms their model in terms of the overall 

test accuracy ([9] achieves a test accuracy of 81.92%). Our 

test F-1 score also reaches a level that is close to that in [9] 

([9] achieves a test F-1 score of 81.42%). 

 
TABLE VII: TEST RESULTS ON 10K TEST SET: EVALUATION ON THE BEST 

EXPERIMENTAL FRAMEWORK CONFIGURATION 

 Accuracy F-1 Score 

GBT + All Features 94.06% 74.72% 

To show the robustness of our framework, we re-run 

feature extraction, intermediate steps, and cross-validation on 

datasets with different sizes (all with full features this time). 

The three datasets we feed into the above procedures are: our 

entire experimental dataset (100k samples), randomly 

sampled 50k samples from the experimental dataset, and 

randomly sampled 10k samples from the experimental dataset 

(the class distributions within the random samples are kept). 

Resulting cross-validation accuracies and F-1 scores 

associated with each dataset can be found in Table VIII. 

Despite that when acting on smaller datasets, our framework 

evaluates to lower accuracies and F-1 scores, the performance 

in general does not vary significantly on datasets with 

different sizes. The results in Table VIII show that our 

framework can give decent analytical accuracy as well as F-

1 scores even with limited training information. 

 
TABLE VIII: CROSS-VALIDATION RESULTS ON 10K, 50K, 100K SETS: 

ROBUSTNESS OF FRAMEWORK PERFORMANCE ON SMALL DATASETS 

 10k Samples 50k Samples 100k Samples 

Accuracy F-1 

Score 

Accuracy F-1 

Score 

Accuracy F-1 

Score 

NB 76.07% 45.07% 76.49% 47.84% 77.22% 47.65% 

LR 91.04% 58.61% 92.29% 66.37% 92.62% 67.04% 

DT 89.27% 35.47% 90.58% 62.53% 91.52% 65.51% 

GBT 92.82% 68.40% 93.79% 73.67% 94.42% 76.46% 

RF 90.41% 39.64% 92.30% 70.43% 92.64% 71.36% 

NN 90.22% 54.52% 91.99% 66.95% 93.08% 70.29% 

 

VI. CONCLUSION AND FUTURE WORK 

There are a lot of studies going on with regards to detecting 

opinion spam on websites that host reviews. Many of the 

recent techniques for detecting such opinion spam boils down 

to one of the two paths: review (textual) centric path and 

reviewer (meta-data) centric path. 

In our paper, we propose a holistic framework that 

integrates both paths into analytics. Our framework looks at 

both the review text and the review metadata. For textural 

features, our framework attempts to find structural / semantic 

/ sentimental patterns that are associated with spamness. On 

the other hand, in generating meta-data features, our 

framework looks for suspicious, cross-review patterns. These 

patterns could be temporal (such as the review_timeslide 

feature) or relational (such as a user’s rating history). 

Moreover, we compare the performance of different machine 

learning algorithms in problem-solving. And in the 

evaluation section we have shown that our framework works 

nearly as well as the state-of-the-art model in this field. 

Furthermore, our framework achieved decent accuracy and F-

1 score even on very small datasets, which shows the 

adaptiveness and robustness of our framework under limited 

training data. 

Our framework is also domain-independent. This means 

that any site that offers reviews for anything, whether that be 

their own products, or other businesses, can use what we have 
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proposed to gain insight on suspicious activities in the review 

section of their domain. Of course, since we took a domain-

independent design for our framework, our framework is 

almost certainly not as strong as individual algorithms that 

are custom-made to detect spam for specific domains. 

However, our method thrives in its scalability to multiple 

domains and its robustness under limited training data, and 

thus can be used by a wider audience. 

In the future, we plan to incorporate more features in our 

framework such as network-based features that capture the 

relationship among multiple reviews. We also plan to try to 

implement more ensemble models in the predictive modeling 

stage to discover potentially better ways to conduct detection.  

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Junzhang Wang designed and implemented reviewer-

based features, designed and implemented the intermediate 

processing steps and the machine learning modeling 

procedures, involved in writing and editing of the paper. 

Diwen Xue designed and implemented review-based 

features, designed and implemented LDA modeling as well 

as uni-gram modeling, involved in writing and editing of the 

paper.  

Karen Shi designed structural-based features, involved in 

writing and editing of the paper. 

All authors had approved the final version. 

ACKNOWLEDGMENT 

The authors would like to thank those who had done 

previous studies in the field of spam detection. This work was 

inspired in part by their contributions. The authors would also 

like to thank Professor Adam Meyers from New York 

University, whose teaching in Natural Language Processing 

motivated this work. 

REFERENCES 

[1] K. Prabhjot, A. Singhal, and J. Kaur, "Spam detection on Twitter: A 

survey," in Proc. 2016 3rd International Conference on Computing for 

Sustainable Global Development (INDIACom), 2016. 

[2] A. H. Wang, "Don't follow me: Spam detection in twitter," in Proc. 

2010 International Conference on Security and Cryptography, 2010. 

[3] M. Michael and M. Chuah, "Spam detection on twitter using traditional 

classifiers," in Proc. International Conference on Autonomic and 

Trusted Computing, Springer, Berlin, Heidelberg, 2011. 

[4] S. Surendra and A. X. Sun, "Semi-supervised spam detection in Twitter 

stream," IEEE Transactions on Computational Social Systems, vol. 5, 

no. 1, pp. 169-175, 2017. 

[5] M. Malik et al., "A hybrid approach for spam detection for Twitter," in 

Proc. 2017 14th International Bhurban Conference on Applied 

Sciences and Technology, 2017. 

[6] Z. Guo, L. Wang, Y. Wang, G. Zeng, S. Liu, and G. Melo, Public 

Opinion Spamming: A Model for Content and Users on Sina Weibo. 

[7] N. Jindal and B. Liu, "Opinion spam and analysis,” WSDM, 2008. 

[8] A. Popescu and O Etzioni, “Extracting product features and opinions 

from reviews," in Proc. HLT/EMNLP, 2005, 339- 346. 

[9] Z. H. Wang, Y. Z. Zhang, and T. P. Qian, Fake Review Detection on 

Yelp. 

[10] A. Mukherjee, B. Liu, and N. Glance, "Spotting fake reviewer groups 

in consumer reviews," WWW’2012. 

[11] R. Gyanani and M. Desai, "Spam detection using natural language 

processing," IOSR Journal of Computer Engineering (IOSR-JCE), 

2014. 

[12] S. Shankar, "Advanced detection of spam and email filtering using 

natural language processing algorithms," International Journal of 

Advance Research, Ideas and Innovations in Technology, 2018. 

[13] C. Kale, D. Jadhav, and T. Pawar. "Spam review detection using natural 

language processing techniques," International Journal of Innovations 

in Engineering Research and Technology, 2016. 

[14] S. Chorey and R. Sawade, "Detecting spam classification on Twitter 

using URL analysis, natural language processing, and machine 

learning," International Journal of Innovative and Emerging Research 

in Engineering, 2016. 

[15] B. Medlock, Investigating Classification for Natural Language 

Processing Tasks, University of Cambridge, 2008. 

[16] R. Shebuti and L. Akoglu, "Collective opinion spam detection: 

Bridging review networks and metadata," in Proc. the 21th ACM 

SIGKDD International Conference on Knowledge Discovery and Data 

Mining, 2015. 

[17] W. Karen, "A lie detector test for online reviewers," Bloomberg 

Business Week, 2011. 

[18] E. Andrea and F. Sebastiani, "Sentiwordnet: A publicly available 

lexical resource for opinion mining," LREC, vol. 6, 2006. 

[19] B. Stefano, A. Esuli, and F. Sebastiani, "Sentiwordnet 3.0: An enhanced 

lexical resource for sentiment analysis and opinion mining," Lrec., vol. 

10, 2010. 

[20] T. H. Sun, "Spam filtering based on naive bayes classification," Archive 

of Research Papers, Babes Bolyai University, 2009. 

[21] A. Nikhila, Logistic Regression for Spam Filtering, 2008. 

[22] C. Sarit and B.Mondal, "Spam mail filtering technique using different 

decision tree classifiers through data mining approach-a comparative 

performance analysis," International Journal of Computer 

Applications, vol. 47, no. 16, 2012. 

[23] J. R. He and T. Bo, "Asymmetric gradient boosting with application to 

spam filtering," CEAS, 2007. 

[24] B. U. Gaikwad and P. P. Halkarnikar, "Spam e-mail detection by 

random forest algorithm," Computer Science & Technology, 

Department of Technology, Shivaji University, Kolhapur, Maharashtra, 

India, 2013. 

[25] E. Andrew, Detecting Spam with Artificial Neural Networks, 2017. 

 

 

Copyright © 2021 by the authors. This is an open access article distributed 

under the Creative Commons Attribution License which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original 

work is properly cited (CC BY 4.0). 

 

 

Junzhang Wang received his bachelor’s degree from 

New York University. His research interests include 

machine learning, natural language processing, and 

predictive analytics. He has done other research 

projects in areas such as anomaly detection and using 

A.I. algorithms to detect severe clinical cases of 

COVID-19. 

 

 

 

 

Diwen Xue received his bachelor’s degree from New York University. He is 

currently pursuing a PhD degree at the University of Michigan. His research 

interests include adversarial Machine Learning and Privacy-preserving 

analytics.  

 

 

 

 

 

 

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

84

https://creativecommons.org/licenses/by/4.0/



