


Abstract—As various review sites grow in popularity and

begin to hold more sway in consumer preferences, spam

detection has become a burgeoning field of research. While there

have been various attempts to resolve the issue of spam on the

open web, specifically as it relates to reviews, there does not yet

exist an adaptive and robust framework out there today. We

attempt to address this issue in a domain-specific manner,

choosing to apply it to Yelp.com first. We believe that while

certain processes do exist to filter out spam reviews for Yelp, we

have a comprehensive framework that can be extended to other

applications of spam detection as well. Furthermore, our

framework exhibited a robust performance even when trained

on small datasets, providing an approach for practitioners to

conduct spam detection when the available data is inadequate.

To the best of our knowledge, our framework uses the most

number of extracted features and models in order to finely tune

our results. In this paper, we will show how various sets of online

review features add value to the final performance of our

proposed framework, as well as how different machine learning

models perform regarding detecting spam reviews.

Index Terms—Feature extraction, machine learning,

predictive analytics, spam detection.

I. INTRODUCTION

As information media comes to play more prominent roles

in modern society, people’s daily lives have become more

and more inseparable from, as well as susceptible to, the

dispersion of information on media platforms. Nowadays, the

medium for communication has shifted away from more

accountable resources such as physical newspapers to social

media platforms where everyone has a voice. Given the major

impact that information can have on not only individuals but

small businesses as well, it has become of the utmost

importance to ensure the integrity of the information that is

being shared, liked, and commented on by individuals on

their various platforms.

Spamming - a practice that is used to mislead or deceive

social media users by posting harmful links, posting

repeatedly to trending topics to grab attention, or posting

advertisements - has always been the biggest threat to a

healthy social media environment [1]. Despite efforts in the

past on combating spam posts and comments online through

various means, the patterns for online spam are evolving so

rapidly that few spam detection algorithms are robust and

adaptive enough to cope. In this project, we aim to design an

adaptive and robust online spam detection framework that

combines many cutting-edge techniques related to feature

extraction, feature engineering, as well as machine learning

algorithms - tree-based models, neural networks, statistical

models, and so on. Within the framework we propose, we will

implement different predictive algorithms and compare their

performance on our experimental dataset. We will also show

how different sets of features add values to the predictive

performance of our proposed spam detection framework.

Furthermore, we will also train our framework on smaller

datasets to exhibit the robustness of our framework.

II.

RELATED WORKS

Due to the significance of the topic, a considerable amount

of research has been done in the field of online spam detection

over the past years. In 2010, Wang compared the performance

of four predictive models in detecting spam tweets - Naive

Bayes, Neural Network, Support Vector Machine, and

Decision Tree [2]. In Wang’s approach, he described each

tweet using user-based features - attributes that are related to

the senders of tweets, as well as content-based features -

attributes that are related to the text of the tweets. In 2011,

Mccord and Chuah compared the performance of Random

Forest, Support Vector Machine, Naive Bayes, and k-Nearest

Neighbor in detecting spam tweets using similar set of

features as Wang did in his design [3].

In 2016, Kaur, Singhal, and Kaur conducted a

comprehensive review of the methodologies used in detecting

spam on Twitter [1]. In their paper, they investigated both the

attributes people used when classifying tweets and the

algorithms for conducting the classifications. The paper

summarized four main categories of features related to each

tweet - user-based features, content-based features, hybrid-

based features, and relation-based features. Regarding spam

detection algorithms, they listed various types of models that

people had investigated during the past - Support Vector

Machine, Naive Bayes, k-Nearest Neighbor, Neural Network,

Decision Tree, Random Forest, Logistic Regression, and

Ensemble Models, all of which have achieved certain levels

of success in past Spam Detection studies.

In 2017, Sedhai and Sun proposed a semi-supervised

Twitter spam detection model that is capable of adaptive

learning through batch mode - constantly retraining the model

after a certain time window [4]. Their paper presents a way

which enables the spam detection framework to capture new

vocabulary and new spamming behaviors, thus making the

Manuscript received December 26, 2019; revised September 1, 2020.

The authors are with Courant Institute of Mathematical Sciences, New

York University, New York, NY 10003 USA (e-mail: jw4647@nyu.edu,

dx374@nyu.edu).

An Ensemble Framework for Spam Detection on Social

Media Platforms

Junzhang Wang, Diwen Xue, and Karen Shi

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

77doi: 10.18178/ijmlc.2021.11.1.1017

mailto:jw4647@nyu.edu

framework adaptive to deal with dynamic spamming

activities. In the same year, Mateen, et al. proposed a hybrid

approach of detecting spam tweets using content-based and

graph-based features [5]. Their findings indicate that

combining multiple approaches in spam detection may yield

better performance overall.

In [6], researchers proposed using an unsupervised

machine learning algorithm in order to detect opinion spam

on China’s Weibo. They discussed how duplicate user replies

and posts can indicate potential spam accounts. However,

many non-duplicated reviews can be spam suspects too.

Some researchers tried to establish a correlation between

spamness (how spam-like a review is) and usefulness. But [7]

shows top-ranked reviewers (whose reviews are deemed

‘useful’ by others) are actually less trustworthy compared to

other reviewers.

More recently, many research initiatives attempted to

integrate different paths to achieve best efficiency and

accuracy. For example, in Extracting Product Features and

Opinions from Reviews [8], researchers used sentiment

analysis for labeling review text, and then associated the

opinions with specific features of the products, which allows

for more granular targeting of spam reviews and user

accounts. Another group of researchers obtained the best

accuracy with a Neural Network Classifier by combining the

text-centric and reviewer-centric paths [9]. Besides metadata,

recent researchers also have tried to utilize relational data by

putting reviewers into a network.

In [10], a new group spam detection algorithm called

GSRank was proposed. This algorithm, while yielding

encouraging results, requires a labeled group spam dataset

which isn’t available for most datasets. Therefore, an

increasing number of researches in recent years sought to

identify a more general solution for spam detection problems.

In 2014, Giyanani and Desai tried to take on spam by using

a block diagram that takes into account the email URL,

checks it against a blacklist, the number of emails this source

sends, then broken down into keywords and passed into a

classifier and then finally the NLP engine, which uses N-

gram modeling, Word Stemming, and Bayesian classification

[11].

In [12], Shankar uses a statistical approach to NLP in order

to determine whether or not bulk emails are spam. The

purpose of this is to block emails that may be security

concerns or have otherwise malicious intents for the user, and

the system used is similarly N-gram modeling, Word

Stemming, and Bayesian classification. Very similar to [11],

the inputs are checked against a blacklist database, then

classified and processed through the NLP engine, which is

statistical in this case. This interestingly is an attempt to see

if it is possible to minimize the massive overhead storage

space for databases due to the threshold counter, which is a

more traditional way of blocking spam.

Taking a step away from emails, in their paper, Kale,

Jadhav, and Pawar focus on customer reviews [13]. Instead

of focusing on the extraction, classification, and

summarization as previous works have been, however, this

paper focuses on finding irregular text flow, vulgar language,

and a lack of relation to the content at hand before checking

the similarity of that with other comments, which is a

different approach than what we have traditionally seen.

Reference [14] focuses on Twitter once again, in order to

determine specific spam profiles and thus their posts. They

consider four main types of spammers, namely malware

propagators, phishers, adult content propagators, and

marketers. This eventually results in a three-step process,

starting with a comparison of blacklisted URLs, feeding

everything through an NLP engine, and then finally machine

learning techniques. The NLP engine recognizes very

specific phrases and ends with stemming, after which they

switch over to the machine learning step if it is not determined

to be spam.

Reference [15] once again returns to email spam filtering,

in which they focus on content-based filtering rather than the

meta-data of the email. Their approach is to split the email

into subject and body, as a semi-structured document, and use

an interpolated generative model, which involves node

probabilities to add weights to the words and understand the

document structure.

In our proposed framework, we will integrate and improve

upon the many existing methodologies discussed above -

feature extraction approaches, predictive algorithms - related

to online spam detection, and propose a comprehensive,

adaptive and robust online spam detection pipeline. Using the

framework we proposed, a close experimental study will be

conducted on detecting Yelp spam reviews.

III. PROCEDURE FOR PAPER SUBMISSION

Our framework is divided into two major pipelines, which

consist of a feature extraction component as well as a

predictive modeling component. Between those two main

components, some intermediate steps - feature normalization,

feature selection, and data sampling - may also be performed.

Fig. 1 is the overall design diagram of our framework.

Fig. 1. Design diagram.

A. Feature Extraction

Our designed features are divided into two main categories:

(1). Review-Based Features - 287 features that capture

attributes as well as patterns regarding the content of the

online review.

(2). Reviewer-Based Features - 12 features that capture

attributes as well as patterns regarding the user who posts the

online review.

Review-Based Features (287)

Table I summarizes the 8 structural features in our

framework that are based on the construction of the review

including length, word characteristics, and punctuation.

Table II summarizes the 6 sentiment features in our

framework that focus on the sentiment of the words in the

review, along with a separate score for objectivity. A list of

commonly used stop words will be excluded for this part of

the analysis.

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

78

TABLE I: STRUCTURAL FEATURES

Feature Name Description
Review_Length The number of words for each review.
Number_Sentences The number of sentences for each review.
Average_Word_Length The average word length for each review, calculated as Number_of_Chars / Review_Length.
Average_Sentence_Length The average sentence length for each review record, calculated as Number_of_Chars / Number_Sentences.
Percent_Digits The percentage of digits for each review, calculated as Number_of_Digits / Number_of_Chars.
Percent_Capital The percentage of capital letters for each review, calculated as Number_of_Capital_Letters / Number_of_Chars.
Percent_Exclaimation The percentage of exclamation mark “!” for each review, calculated as Number_of_Exclaimation_Marks /

Number_of_Chars.
Percent_Question The percentage of question marks: “?” for each review, calculated as Number_of_Question_Marks / Number_of_Chars.

TABLE II: SENTIMENT FEATURES

Feature Name Description
Sum_Pos_Score The summation over all words’ positive sentiment scores (determined by SentiWordNet [18], [19]) for each review. If any

negation word exists, the subsequent word’s sentiment score will be negated.
Sum_Neg_Score The summation over all words’ negative sentiment scores (determined by SentiWordNet [18], [19]) for each review. If any

negation word exists, the subsequent word’s sentiment score will be negated.
Percent_Extreme_Pos The percentage of words with extreme positive sentiment score in the review. A threshold needs to be set to determine how

positive is extremely positive (any word with positive sentiment score >= threshold is labeled as “extremely positive”).
Percent_Extreme_Neg The percentage of words with extreme negative sentiment score in the review. A threshold needs to be set to determine how

negative is extremely negative (any word with negative sentiment score >= threshold is labeled as “extremely negative”).
Sum_Obj_Score The summation over all words’ objective scores in the review. Objective score is calculated as 1 - (pos_score + neg_score).

A word is said to be objective if there is no strong sentimental implication associated with that word.
Percent_Objective_Word The percentage of words that are “objective” in the review. A threshold needs to be set on each word’s objective score to

determine if that word is considered as an “objective word” (any word with an objective score greater than threshold is an

“objective word”).

TABLE III: TEXTURAL FEATURES
Feature Name Description
First_Pronoun_Count The number of first-person pronouns, such as I, my, myself, we, us, our, ourselves, mine, etc. in the review text.
Second_Pronoun_Count The number of second-person pronouns, such as you, yourself, your, yourselves, in the review text.
Second_First_Ratio The ratio of First_Pronoun_Count and Second_Pronoun_Count as a real number feature. We found that spam reviews tend

to use more second person pronouns than legitimate reviews do.
Pos_Tags (36) The number of each of the 36 POS tags in the review.
Unigram (100) Firstly, the percentage of each unigram token in spam reviews and the percentage of each unigram token in non-spam

reviews are calculated. Then, the top 100 unigrams that have the most different percentages (in spam and non-spam) are

taken out, and their counts in the review text are used as features. This process selects the 100 most distinctive unigrams

between spam vs. non-spam contexts.
Bigram (100) Similarly, the top 100 bigrams that have the most different percentages in spam and non-spam reviews are taken out, and

their counts in the review text are used as features.
LDA_Distribution (30) A LDA (Latent Dirichlet Allocation) topic model is fitted to the review dataset, and the topic distributions are used as

features. For this project, we set num_of_topics to be 30. Normalized TF-IDF vectors are computed in order to carry out

LDA modeling.

TABLE IV: METADATA FEATURES
Feature Name Description

Review_Date The date in which the review was posted, normalized as a real number feature.
Review_Time_Slides The number of days between the review posted and the first review given to the same product. We observed that spam reviews

are often posted early in order to maximize its influence.
Product_Id A unique ID for each product in the dataset.
Rating The numeric rating given by the review, between 1 - 5.

Table III summarizes the 269 textural features in our

framework, that analyze the review text using features such

as pronouns, parts-of-speech tags, and topic modeling.

Table IV summarizes the 4 metadata features in our

framework, that include information about the review such as

the date it was posted and the rating given.

Reviewer-Based Features (12)

Table V summarizes the 12 user features in our framework,

which take into account aspects of the profile that posted the

review, and include features such as the user’s rating

distribution, average review rating and length, maximum

number of reviews a day, and other features that may indicate

suspicious behavior.

B. Intermediate Feature Processing

After obtaining the numeric values for all the features

through the feature extraction step, it could be beneficial to

do some additional processing before feeding the samples

into predictive algorithm training.

In our predictive analytics framework, we designed three

intermediate steps that could be applied to further feature

processing after feature extraction.

Firstly, feature normalization can be done using z-

transformation (standardization) to normalize the scales of all

features. Since each feature has values of different ranges.

Feeding those features directly to machine learning

algorithms will produce bias towards features with higher

magnitudes, thus affecting the accuracy of the overall

framework performance. Therefore, before moving on to

other modules of our framework, standardization of all the

features could be done using the formula below:

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

79

 𝑧 =
𝑥−


 (1)

In (1), μ is the mean value of the feature, σ is the standard

deviation of the feature values. After standardization, each

feature will have a mean of 0 and a standard deviation of 1.

Secondly, feature selection using correlation could also be

applied to discard features that are relatively uncorrelated

with the class label. In some cases, having a high sample

dimension can cause the sample space to be sparse, which

will hinder the training process of machine learning models

due to curse of dimensionality. Therefore, feature selection

can be implemented on all the features generated based on

each feature’s correlation with the class label:

 𝑟 =
𝑛(∑ 𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2− (∑ 𝑥)2
][𝑛∑ 𝑦2− (∑ 𝑦)2

]

 (2)

In (2), n represents the number of samples in the dataset; x

represents the feature value; y represents the class label. The

higher the correlation between a feature and the class label,

the more that the class label of a sample depends on that

feature. Therefore, by applying correlation feature selection,

the framework not only reduces the dimensionality of the

sample space but also keeps only the features that are most

correlated with the class label.

TABLE V: USER FEATURES

Feature Name Description
User_ID The identification code for the user who posted the review.
Max_User_Rating The maximum rating score ever given by the user.
Min_User_Rating The minimum rating score ever given by the user.
Mean_User_Rating The mean rating score of the user’s ratings.
Median_User_Rating The median rating score of the user’s ratings.
STD_User_Rating The standard deviation of all the user’s ratings.
Num_Ratings_by_User The number of ratings ever given by the user.
Num_Extreme_Ratings_by_User The number of extreme ratings (score 1 or 5) ever given by the user.
User_Avg_Review_Length The average length of the user’s reviews in number of words.
User_Avg_Positive_Ratio The average positive word ratio in the user’s reviews defined by the sentiment features.
User_Avg_Negative_Ratio The average negative word ratio in the user’s reviews defined by the sentiment features.
User_Max_Rating_Num_per_Day The maximum number of ratings the user has ever made in a day.

Thirdly, due to the reason that some spam detection

datasets have imbalanced distributions - the proportion of

spam samples is often tiny when compared to that of non-

spam samples, machine learning models may emphasize their

trainings on non-spam samples and thus ignore those spam

samples when comes to the final detection stage. To

overcome this problem, data over-sampling could be

performed and the over-sampled data could be fed into the

training process of the predictive machine learning models.

Fig. 2 illustrates one of the ways to conduct over-sampling,

which is by multiplying the spam data in the training set.

However, the downside of this approach is that it may cause

the machine learning models to overfit on the training spam

data and not generalize well to unseen situations.

Fig. 2. Over-sampling.

Despite the fact that those intermediate steps may add great

value to the ultimate performance of our proposed framework,

some of them may hinder the performance of the framework

as well. For example, although feature selection helps reduce

the complexity of the sample space, it reduces the amount of

information contained in the feature space at the same time.

Over-sampling, as mentioned above, could also cause the

model to overfit. Therefore, it is up to the discretion by the

practitioners who implement our framework to decide

whether to use any of the intermediate steps or not.

C. Predictive Modeling

After obtaining the numeric features representing each

review/post following any applicable intermediate feature

processing stages, we feed those values into the last stage of

our predictive analytics framework to conduct spam detection.

Any machine learning models or any ensemble of models can

be used in this step. There is no universal rule regarding

which model is the best to use when it comes to spam

detection problems due to the case-dependent nature of spam

detection. Users of our framework are encouraged to conduct

multiple experiments to compare the performance of different

models based on the characteristics of their specific problems.

IV. EXPERIMENTAL IMPLEMENTATION

Using the framework we proposed above, we conduct a

close experimental study on an existing dataset. In our

experiments, we process the data through feature extraction,

normalize the features through standardization, and train our

framework using 6 machine learning models that were shown

to be useful by past studies.

A. Dataset Selection

In our experimental implementation, we focus on one

specific platform (Yelp) to test our algorithms when

designing our framework. We adopt the YelpZip dataset to

test our framework, which originally contained 608,598

restaurant reviews. This dataset was collected by authors

Shebuti Rayana and Leman Akoglu in 2015 [16]. Reviews in

this dataset include product and user information, timestamp,

ratings, and a review text. Yelp has a filtering algorithm in

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

80

place that identifies fake/suspicious reviews. While this

algorithm is not perfect, it has been found to produce accurate

results, so we will treat the labels in this dataset as ground

truth [17]. In the original dataset, there exist 13.22% spam

reviews by 23.91% spammers.

In real-life spam detection applications, however, the

amount of data available - especially the amount of labeled

data available - is most often inadequate due to the cost and

difficulty for analyzing online posts and reviews. In order to

simulate such application cases as well as improve the

robustness of our framework when applying to smaller

datasets, we conduct our experiments on a randomly sampled

subset of the YelpZip dataset. Our experimental dataset - the

dataset that combines the rotating training and development

sets as well as the test set, as shown by Fig. 6 - contains

100,000 samples in total, with 12,264 spam samples and

87,736 non-spam samples. By checking the distributions of

attributes in our experimental dataset with that of the original

dataset, we affirm that the data distribution for our

experimental dataset aligns well with that for the original

dataset.

B. Feature Extraction

The definitions and methods for extracting all the features

are elaborated in Section III Framework Design. Here we

describe some additional implementational details regarding

our feature extraction processes.

When parsing the original text into sentences, we used

nltk.sent_tokenize(). When labeling our parsed review text,

we used nltk.pos_tag().

When determining the words’ positive and negative

sentiment scores in the review text, we used SentiWordNet as

our reference [18], [19].

When setting thresholds for Percent_Extreme_Pos,

Percent_Extreme_Neg, and Percent_Objective_Word, we set

their thresholds to be 0.5.

Fig. 3 represents the top 100 unigrams that have the most

significant differences between the percentage in spam

reviews and the percentage in non-spam reviews in our

experimental dataset (The size of the token in the figure

reflects how big is the difference).

Fig. 3. Unigram Indicators.

Fig. 4 illustrates the cloud of tokens analyzed by LDA

when forming LDA distributions on our experimental dataset.

Those tokens are the building blocks that form the 30 LDA

topic features in our experimental implementation. The key

point here is that, while n-grams models only consider the top

50/100/150 words due to limited feature space, LDA takes

into consideration all tokens when modeling the topics.

Therefore, LDA topics distribution is far more informative

than features based on top grams. In the evaluation section,

we also observed that after adding LDA features into our

framework, we could get a better result in terms of F-1 score.

Fig. 4. LDA cloud.

Fig. 5. Snippet of extracted features.

C. Intermediate Processing

We apply only the standardization step for intermediate

processing of the extracted features in our experiments. We

skip the feature selection step because we would like our

experimental implementation to utilize the full power of all

the features we extracted from the review dataset and see how

different features add values to the performance of the

framework. We also do not perform any data over-sampling

in our experimental implementation because our

experimental dataset is not incredibly imbalanced. In this case,

it would not be worth it to apply over-sampling while

incurring the potential risk of model over-fitting.

D. Machine Learning Models (Predictive Modeling)

There are various machine learning models that are proven

to be useful when it comes to spam detection problems. We

pick six of the widely used models to carry out the final

component of our framework implementation. By comparing

their performances, we conclude which model works the best

given our experimental dataset.

Naive Bayes

Naive Bayes, an incredibly popular text categorization

method, is one of the simplest Bayesian network models [20].

To construct the classifiers for this technique, the algorithm

runs off of a model that will take in a considerable amount of

features, and then assume that all of these features contribute

independently to a total probability for a class label. This

model relies on Bayes’ theorem, as illustrated:

 𝑝(𝐶𝑘 |𝑥) =
𝑝(𝐶𝑘)𝑝(𝑥|𝐶𝑘)

𝑝(𝑥)
 (3)

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

81

This provides the conditional probability of a certain

instance to be classified as a specific label by taking the

probability of the prior word multiplied by its likelihood

divided by existing evidence. This can then be extended into

repeated applications of Bayes’ theorem. Finally, the chosen

classifier can be determined, for a class label y = Ck, as:

 𝑦̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘∈{1,… ,𝐾}𝑝(𝐶𝑘) ∏ 𝑝(𝑥𝑖|𝐶𝑘)𝑛

𝑖=1 (4)

Logistic Regression

Logistic Regression takes in independent variables, which

do not have to be binary, then uses a logistic function to

output a binary dependent variable for predicting the class

label [21]. The logistic function is as follows:

 𝑓(𝑥) =
1

1+𝑒−𝑥 (5)

The algorithm we used for our model starts by initializing

a vector of weights, also known as the regression coefficients,

to zero, then we train the selected sample features by

calculating a new prediction vector using our version of the

logistic regression function, updating the gradient vector, and

then finally updating the weights (an iterative process). We

minimize the logistic loss through gradient descent.

Furthermore, we choose to implement methods that may

increase our average training set loss, but decrease the

average loss on the test set, a process known as regularization.

We do this by adjusting the rate of learning for each gradient

update by using a stochastic gradient descent with simulated

annealing so that we replace the learning rate constant with

that of a gradually diminishing variable rate.

Decision Tree

In a machine learning context, the decision tree is built by

weighting a list of features with probabilities, with the

ultimate desired output of a class label based on the input

variables that consist of the interior nodes [22]. Each tree may

be trained by splitting it further into smaller trees and

recursively addressing all of the sub-trees and nodes. When

the subset splitting no longer adds informational value, the

recursion ends.

Gradient Boosted Trees

Generally, boosting in machine learning refers to training

the model to learn and weight weak classifiers based off of

their accuracy to add to a strong classifying label [23]. For a

gradient boosted tree, we use a fixed-sized decision tree as

the base, and minimize the loss function to update and better

the quality of fit. This improves upon the logistic regression

and decision tree models, as it allows for us to use our large

number of features without having to input a similarly large

number of parameters.

Random Forest

Building off of the various decision trees we have worked

with, the Random Forest uses multiple decision trees with

each one providing a class label given the input parameters,

and the class label that results from the most number of trees

will be the final label outputted by the random forest. The

randomness comes from the selection of sample data used to

train the trees, and the resulting trees are built using a random

selection of features [24].

Neural Network

Commonly used in machine learning, neural networks are

modeled off the human brain and include components such as

neurons, which are similar to the nodes in a decision tree,

connections which include probability weights, along with a

propagation function that is fed the output of predecessor

neurons and then converts it into an input for the next neuron

[25]. Neural networks are meant to be hyper-adaptable and to

be able to fine tune themselves to the task at hand through

repetition and training.

E. Evaluation

Our paper aims to propose a general framework for spam

detection on online platforms. As mentioned in Section III

Framework Design, due to the domain-dependent nature of

spam detection problems, the best configuration of our

framework (the best choices regarding the features, the

intermediate steps and the machine learning models) may

vary case by case. Therefore, instead of proposing specific

configurations of our framework in general, we mainly test

and compare different framework configurations using cross-

validation results, discuss the results’ implications, and

suggest the configuration that works the best on our

experimental dataset in the next section.

As shown in Fig. 6, firstly, we split our experimental

dataset into a test set (10% - 10k samples), and a training and

development set (90% - 90k samples). The training and

development set is then split into rotating training and

development sets in cross-validation. Based on cross-

validation performances, we pick a framework configuration

that works best for our experimental dataset and test it using

the test set. We also discuss the general adaptiveness and

robustness of our framework as well as different framework

configurations’ pros and cons by comparing their cross-

validation results in the next section - Section V Experimental

Results.

Fig. 6. Experimental implementation + evaluation.

We employ 5-fold cross-validation (rotation estimation)

when evaluating our framework performances. Once we

obtain the features through feature extraction and the

intermediate steps, the training and development set is then

randomly split into 5 equal portions with the same sizes and

with the same distributions (same spam vs. non-spam ratios).

As shown by Fig. 6, within each of the 5 folds, one portion of

the set is treated as the development set for model validation

while the others are used for training purposes. Thus, for

every framework run (per every unique framework

configuration), 5 folds of training-validation processes

described above are performed. The 5 evaluation results are

combined to form the final cross-validation evaluation result

that can help estimate the overall performance of the

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

82

framework configuration.

We adopt overall accuracy, and F-1 score (combines

precision and recall) on spam labeled reviews as our

performance evaluation metrics.

V. EXPERIMENTAL RESULTS

Table 6 shows our experimental results when evaluating

our framework with different learning algorithms during the

cross-validation phase (on the 90k training and development

samples). Moreover, for each learning algorithm we also train

our framework with different combinations of features to

show how our holistic approach enhances analytical

performance. (Note: Purely Textual Features = Structural

Features + Sentiment Features + Textural Features (without

LDA Features), User-Based Features = Meta Data +

Reviewer-Based Features.)

Based on the cross-validation results in Table VI, we can

observe that as we include more features in our framework,

the framework performance improves progressively. As

shown in Table VI, among all framework configurations that

we experimented on, Gradient Boosted Trees combined with

all proposed features yielded the best cross-validation

performance.

TABLE VI: CROSS-VALIDATION RESULTS ON 90K TRAINING AND

DEVELOPMENT SET: FRAMEWORK CONFIGURATIONS COMPARISON

 Purely Textual
Features

Purely Textual
Features + User-

Based Features

Purely Textual

Features + User-

Based Features +

LDA Features

Accuracy F-1

Score

Accuracy F-1

Score

Accuracy F-1

Score

NB 76.27% 46.64% 77.82% 48.46% 78.65% 49.23%

LR 89.39% 40.48% 92.63% 67.14% 92.62% 67.05%

DT 87.79% 30.69% 91.27% 64.79% 91.44% 65.09%

GBT 89.78% 50.19% 93.84% 73.62% 94.35% 75.88%

RF 87.79% 1.15% 88.37% 11.66% 92.65% 71.15%

NN 89.46% 44.10% 92.43% 66.93% 93.07% 69.87%

Based on the cross-validation results in Table VI, we pick

the best framework configuration on our experimental dataset

- ‘All Features + Gradient Boosted Trees’. After testing this

configuration using the test set, we obtain the results in Table

VII. When comparing our framework’s test performance with

that of the state-of-the-art model we have found in [9], in

which the model was tested on the same Yelp dataset, our

framework outperforms their model in terms of the overall

test accuracy ([9] achieves a test accuracy of 81.92%). Our

test F-1 score also reaches a level that is close to that in [9]

([9] achieves a test F-1 score of 81.42%).

TABLE VII: TEST RESULTS ON 10K TEST SET: EVALUATION ON THE BEST

EXPERIMENTAL FRAMEWORK CONFIGURATION

 Accuracy F-1 Score

GBT + All Features 94.06% 74.72%

To show the robustness of our framework, we re-run

feature extraction, intermediate steps, and cross-validation on

datasets with different sizes (all with full features this time).

The three datasets we feed into the above procedures are: our

entire experimental dataset (100k samples), randomly

sampled 50k samples from the experimental dataset, and

randomly sampled 10k samples from the experimental dataset

(the class distributions within the random samples are kept).

Resulting cross-validation accuracies and F-1 scores

associated with each dataset can be found in Table VIII.

Despite that when acting on smaller datasets, our framework

evaluates to lower accuracies and F-1 scores, the performance

in general does not vary significantly on datasets with

different sizes. The results in Table VIII show that our

framework can give decent analytical accuracy as well as F-

1 scores even with limited training information.

TABLE VIII: CROSS-VALIDATION RESULTS ON 10K, 50K, 100K SETS:

ROBUSTNESS OF FRAMEWORK PERFORMANCE ON SMALL DATASETS

 10k Samples 50k Samples 100k Samples

Accuracy F-1

Score

Accuracy F-1

Score

Accuracy F-1

Score

NB 76.07% 45.07% 76.49% 47.84% 77.22% 47.65%

LR 91.04% 58.61% 92.29% 66.37% 92.62% 67.04%

DT 89.27% 35.47% 90.58% 62.53% 91.52% 65.51%

GBT 92.82% 68.40% 93.79% 73.67% 94.42% 76.46%

RF 90.41% 39.64% 92.30% 70.43% 92.64% 71.36%

NN 90.22% 54.52% 91.99% 66.95% 93.08% 70.29%

VI. CONCLUSION AND FUTURE WORK

There are a lot of studies going on with regards to detecting

opinion spam on websites that host reviews. Many of the

recent techniques for detecting such opinion spam boils down

to one of the two paths: review (textual) centric path and

reviewer (meta-data) centric path.

In our paper, we propose a holistic framework that

integrates both paths into analytics. Our framework looks at

both the review text and the review metadata. For textural

features, our framework attempts to find structural / semantic

/ sentimental patterns that are associated with spamness. On

the other hand, in generating meta-data features, our

framework looks for suspicious, cross-review patterns. These

patterns could be temporal (such as the review_timeslide

feature) or relational (such as a user’s rating history).

Moreover, we compare the performance of different machine

learning algorithms in problem-solving. And in the

evaluation section we have shown that our framework works

nearly as well as the state-of-the-art model in this field.

Furthermore, our framework achieved decent accuracy and F-

1 score even on very small datasets, which shows the

adaptiveness and robustness of our framework under limited

training data.

Our framework is also domain-independent. This means

that any site that offers reviews for anything, whether that be

their own products, or other businesses, can use what we have

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

83

proposed to gain insight on suspicious activities in the review

section of their domain. Of course, since we took a domain-

independent design for our framework, our framework is

almost certainly not as strong as individual algorithms that

are custom-made to detect spam for specific domains.

However, our method thrives in its scalability to multiple

domains and its robustness under limited training data, and

thus can be used by a wider audience.

In the future, we plan to incorporate more features in our

framework such as network-based features that capture the

relationship among multiple reviews. We also plan to try to

implement more ensemble models in the predictive modeling

stage to discover potentially better ways to conduct detection.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Junzhang Wang designed and implemented reviewer-

based features, designed and implemented the intermediate

processing steps and the machine learning modeling

procedures, involved in writing and editing of the paper.

Diwen Xue designed and implemented review-based

features, designed and implemented LDA modeling as well

as uni-gram modeling, involved in writing and editing of the

paper.

Karen Shi designed structural-based features, involved in

writing and editing of the paper.

All authors had approved the final version.

ACKNOWLEDGMENT

The authors would like to thank those who had done

previous studies in the field of spam detection. This work was

inspired in part by their contributions. The authors would also

like to thank Professor Adam Meyers from New York

University, whose teaching in Natural Language Processing

motivated this work.

REFERENCES

[1] K. Prabhjot, A. Singhal, and J. Kaur, "Spam detection on Twitter: A

survey," in Proc. 2016 3rd International Conference on Computing for

Sustainable Global Development (INDIACom), 2016.

[2] A. H. Wang, "Don't follow me: Spam detection in twitter," in Proc.

2010 International Conference on Security and Cryptography, 2010.

[3] M. Michael and M. Chuah, "Spam detection on twitter using traditional

classifiers," in Proc. International Conference on Autonomic and

Trusted Computing, Springer, Berlin, Heidelberg, 2011.

[4] S. Surendra and A. X. Sun, "Semi-supervised spam detection in Twitter

stream," IEEE Transactions on Computational Social Systems, vol. 5,

no. 1, pp. 169-175, 2017.

[5] M. Malik et al., "A hybrid approach for spam detection for Twitter," in

Proc. 2017 14th International Bhurban Conference on Applied

Sciences and Technology, 2017.

[6] Z. Guo, L. Wang, Y. Wang, G. Zeng, S. Liu, and G. Melo, Public

Opinion Spamming: A Model for Content and Users on Sina Weibo.

[7] N. Jindal and B. Liu, "Opinion spam and analysis,” WSDM, 2008.

[8] A. Popescu and O Etzioni, “Extracting product features and opinions

from reviews," in Proc. HLT/EMNLP, 2005, 339- 346.

[9] Z. H. Wang, Y. Z. Zhang, and T. P. Qian, Fake Review Detection on

Yelp.

[10] A. Mukherjee, B. Liu, and N. Glance, "Spotting fake reviewer groups

in consumer reviews," WWW’2012.

[11] R. Gyanani and M. Desai, "Spam detection using natural language

processing," IOSR Journal of Computer Engineering (IOSR-JCE),

2014.

[12] S. Shankar, "Advanced detection of spam and email filtering using

natural language processing algorithms," International Journal of

Advance Research, Ideas and Innovations in Technology, 2018.

[13] C. Kale, D. Jadhav, and T. Pawar. "Spam review detection using natural

language processing techniques," International Journal of Innovations

in Engineering Research and Technology, 2016.

[14] S. Chorey and R. Sawade, "Detecting spam classification on Twitter

using URL analysis, natural language processing, and machine

learning," International Journal of Innovative and Emerging Research

in Engineering, 2016.

[15] B. Medlock, Investigating Classification for Natural Language

Processing Tasks, University of Cambridge, 2008.

[16] R. Shebuti and L. Akoglu, "Collective opinion spam detection:

Bridging review networks and metadata," in Proc. the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2015.

[17] W. Karen, "A lie detector test for online reviewers," Bloomberg

Business Week, 2011.

[18] E. Andrea and F. Sebastiani, "Sentiwordnet: A publicly available

lexical resource for opinion mining," LREC, vol. 6, 2006.

[19] B. Stefano, A. Esuli, and F. Sebastiani, "Sentiwordnet 3.0: An enhanced

lexical resource for sentiment analysis and opinion mining," Lrec., vol.

10, 2010.

[20] T. H. Sun, "Spam filtering based on naive bayes classification," Archive

of Research Papers, Babes Bolyai University, 2009.

[21] A. Nikhila, Logistic Regression for Spam Filtering, 2008.

[22] C. Sarit and B.Mondal, "Spam mail filtering technique using different

decision tree classifiers through data mining approach-a comparative

performance analysis," International Journal of Computer

Applications, vol. 47, no. 16, 2012.

[23] J. R. He and T. Bo, "Asymmetric gradient boosting with application to

spam filtering," CEAS, 2007.

[24] B. U. Gaikwad and P. P. Halkarnikar, "Spam e-mail detection by

random forest algorithm," Computer Science & Technology,

Department of Technology, Shivaji University, Kolhapur, Maharashtra,

India, 2013.

[25] E. Andrew, Detecting Spam with Artificial Neural Networks, 2017.

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Junzhang Wang received his bachelor’s degree from

New York University. His research interests include

machine learning, natural language processing, and

predictive analytics. He has done other research

projects in areas such as anomaly detection and using

A.I. algorithms to detect severe clinical cases of

COVID-19.

Diwen Xue received his bachelor’s degree from New York University. He is

currently pursuing a PhD degree at the University of Michigan. His research

interests include adversarial Machine Learning and Privacy-preserving

analytics.

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

84

https://creativecommons.org/licenses/by/4.0/

