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Abstract—A multicopter is equipped by a passive tracking 

device to follow a specified target. However, if want to track a 

non-controlled target, the passive tracking device is failed. We 

propose a vision-based tracking system for multicopters, used 

computer vision method to track any target without additional 

tracking devices. In this study, propose scale candidate graphs 

and scale tables to improve KCF. There are also stable results 

when the scale changes. The proposed an adaptable scaled KCF 

algorithm, when the KCF tracking failed, a feature-based 

matching detector is used to re-detect the target. Several 

experiments on various scene based on the proposed approach 

were conducted and evaluated. Stable tracking results were 

obtain to show the feasibility of the proposed system. 

 

Index Terms—Computer vision, image processing, object 

tracking, multicopters.  

 

I. INTRODUCTION 

The applications of multicopters for aerial photography is 

most popular [1]. In general, the flying path of a multicopters 

is controlled by a remote controller, and manually 

controlling the multicopters to follow the moving target. 

Other equipped by a passive tracking device to follow a 

specified target. In order to conveniently track targets, a 

multicopters is equipped by a passive tracking device to 

follow a specified target. However, if we want to track a 

non-controlled target, the passive tracking device is failed. 

We propose a vision-based tracking system for multicopters, 

used computer vision method to track any target without 

additional tracking devices. The proposed system divided 

into three parts: generate reaction graphs, feature extraction 

and target matching. To do tracking, we must first be able to 

capture a target object in the image sequence. 

Generate reaction graphs method, Zhang et al. [2] using 

radius sliding window with a radius at the position tracked by 

the previous frame. Kalal et al. [3] proposed a single-target 

long-term tracking algorithm for Tracking-Learning- 

Detection (TLD), after the target is selected in the first frame, 

a sliding window is used at the beginning of each frame. In 

addition to generating candidate regions by exhaustive 

methods, can use the characteristics of the target between 

frames and frames without moving too much, using Lucas 

Kanade optical-flow [4], Kalman filter [5] and Particle Filter 

algorithm to predict the result of the next frame as a 

candidate area. 
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Feature tracking is to capture various information of a 

target in an image as feature information, Comaniciu and 

Meer [6] proposed a tracking method using mean shift to 

calculate the color distribution in the target region as the 

target feature model, and then use this color feature model to 

match each possible target region. Background subtraction 

[7], [8] usually requires background model training, using 

the trained background model as a feature to detect 

foreground images of next inputs. Kim et al. [7] proposed CB 

algorithm adopts a quantization/clustering technique, used 

color distortion and brightness distortion classified as 

background, and established multimode background model. 

This method can to encode moving backgrounds or multiple 

changing, and the capability of coping with local and global 

illumination changes backgrounds. Image features are 

important for the comparison of candidate images and target 

images. General image features are Features from 

accelerated segment test (FAST) [9], Harris Corner [10], 

Binary Robust Independent Elementary Features (BRIEF) 

[11], Scale invariant feature transform (SIFT) [12], 

Speeded-Up Robust Features (SURF) [13] and color 

histogram, the quality of the feature extraction affects the 

entire tracking result. Cheng et al. [14] proposed a tracking 

method combining Particle Swarm optimization (PSO) [15] 

and SIFT, using PSO algorithm to find candidate regions, 

and then integrating SIFT features into PSO results to obtain 

more accurate tracking results. Miao et al. [16] proposed an 

adaptive classifier tracking method to match the feature 

points between successive frames, using SURF as a feature 

point, with an adaptive online boosting [17] classifier, and a 

sample weighting mechanism  to establish robust feature 

descriptions and reliable feature point matching for tracking. 

Leichter et al. [18] proposed an extension of the mean shift 

tracking, used a color distribution map obtained from 

multiple different frames to enhance the mean shift tracking. 

Make a convex hull on the color map and use it in the target 

model, this maintains the original convergence and speed of 

the mean shift tracking and can be successfully tracked when 

the target color changes dramatically. 

Zhang et al. [2] proposed a real-time tracking algorithm 

based on compressed sensing. In order to achieve scale 

invariance, each sample convolved with a multi-scale 

rectangular filter to obtain high-dimensional multi-scale 

features, but high-dimensional multi-scale features can cause 

excessive computation, while sparse perceptual theory can 

compress images and preserve original features. Therefore, 

using sparse random matrices to reduce multi-scale image 

features, this can speed up feature capture and achieve 

real-time tracking. Kalal et al. [19] proposed a 
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forward-backward error method, use optical flow to find the 

possible position of the target in each frame. The features 

used by Kalal et al. [3] for TLD are similar to the local binary 

pattern (LBP) [20] and use the trained classifier to find out 

the probability that this feature may be the target. Bolme et al. 

[21] proposed the minimum output sum of squared error 

(MOSSE), using the correlation filter (CF) template as the 

target feature to measure the similarity for each input image 

and template image, the highest similarity is the target. 

After the feature captured, the target founded from a 

plurality of candidate regions. In this step, the classifier often 

used to calculate the probability of the target in each 

candidate region, as Support Vector Machine (SVM) [22] and 

AdaBoost [23]. Lu et al. [24] used PSO to replace the 

traditional sliding window search for tracking, and put the 

RGB values of the corresponding window of the particle as 

features to AdaBoost to calculate the probability that the 

particle belongs to the target. Integrating all particles whose 

probability exceeds the threshold is the target. Zhu et al. [25] 

proposed a feature matching method. Use the extracted 

Harris corner to find the affine transformation of the image 

between frames, then use SVM to check and remove the 

unmatched feature points. Babenko et al. [26] combine 

online boosting with multiple instance learning (MIL) to 

train target models. In this paper, we use the Kernel 

Correlation Filter (KCF) proposed by Henriques et al. [27] 

for target tracking, but KCF cannot adapt to target scale 

changes, so we propose scale candidate graphs and scale 

tables to improve KCF. There are also stable results when the 

scale changes. The proposed an adaptable scaled KCF 

algorithm, when the KCF tracking is failed, a feature-based 

matching detector is then used to re-detect the target.  

This paper is structured as follows: The details of the 

proposed techniques for use in the system are presented in 

Sections in Section II. Experimental results are included in 

Section III, followed by conclusions in Section IV. 

 

II. PROPOSED TECHNIQUES 

The tracking module by an adaptable scaled KCF 

algorithm are described in detail below. 
 

 
Fig. 1. Correlation filter applied to target tracking. 

 

A. Correlation Filter 

The minimum Output Sum of Squared Error filter 

(MOSSE) which applies correlation filtering to target 

tracking, as shown in Fig. 1, and evaluate the correlation of 

the two signals. If the two signals are similar, the correlation 

is higher. It is necessary to generate a filter template for 

tracking, let the target can generated the maximum response 

on the template, and the position of the maximum response 

value is the target position. 

When tracking initialization, need to generate a filter 

template to maximize the target's response on the template, 

and can be written as 
 

                                    (1) 
 

where g is reaction graphs, h is filter template and f is output 

image. 

Assume the reaction graphs is designed to be Gaussian 

shape, as shown in Fig. 2, after knowing the reaction graph 

and the input image, the template is required. The correlation 

filter can be calculated at high speed because the Fast Fourier 

Transform (FFT) is used in the operation. 
 

                (2) 
 

Let Fg = G, Ff = F, F(h)* = H* and can be described as 
 

                                (3) 
   

Refer to multiple images for application to make the 

template more robust, so described as 
 

                         (4) 
 

Solving equation (4) to get the template H, 
 

                                  (5) 
 

After getting the template, then can start tracking. Only 

need to correlate the input image after FFT with the template 

to get the reaction graph. Then use the Inverse Fast Fourier 

Transform (IFFT) to find the peak position. The position of 

the peak of the reaction graph is the position of the target. 

 

      
Fig. 2. Gaussian shape reaction graph. 

 

In order to make the tracking results better, the template 

must updated as the target changes. If the template remains 

the same forever, the tracking will fail when the target 

changes to a certain extent. The update method is 
 

                          (6) 
 

where  is determined filter template at t time, ht-1 is 

determined filter template at t+1 time,  is empirical 

constant. 

B. Generate Candidate Graphs 

The original KCF does not have the ability to adapt to the 
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target scale change. Target cannot be correctly selected when 

the scale change. As a result, it will be selected the 

background or unable to select the entire target, as shown in 

Fig. 3. Therefore, we propose scale candidate graphs and 

scale tables to improve this problem. 
 

 
Fig. 3. Target cannot be correctly selected when the scale change. 

 

Because the template size of the KCF algorithm cannot be 

change, so we change the size of the input image to 

approximate the template. The principle is that the camera 

shoots objects at different distances. The photosensitive 

element of the camera as our template cannot be resize, so the 

object needs to adjust the focal length of the lens when 

shooting different distances, let the object is just inserted into 

the photosensitive element through the lens. Lens zoom is 

our scale table, as shown in Fig. 4. 

 

 
Fig. 4. Camera principle. 

 

 
Fig. 5. The scale table. 

 

 
Fig. 6. Seven scales candidate graphs. 

 

Using the scale table, as shown in Fig. 5, the candidate 

graphs with seven different scales of the input image, as 

shown in Fig. 6. Let the target size in the input image be close 

to the template size, and then perform KCF tracking on the 

seven candidate images. In different scales of input images, 

the target size is closer to the template have a higher 

similarity, as shown in Fig. 7. Therefore, the highest 

similarity of the tracking results is the target. 

 

 
Fig. 7. The similarity obtained by KCF for different target sizes. 

 

The candidate graph and the template are correlate to 

obtain a reaction graph. The template correlation of the 

reaction graph is calculate by equation (7). The template 

correlation is the similarity between the candidate graph and 

the template, and the template correlation are calculated as 

 

          (7) 

 

Obtained seven template correlations, with the highest 

value as the best template correlation, if the optimal template 

correlation is higher than the threshold, the tracking is 

successful, and the peak position of the reaction map 

corresponding to the correlation is the target position. If the 

optimal template correlation is lower than the threshold, the 

tracking fails. The criteria for tracking results as 

 

            (8) 
 

In addition, the target set used to store the last 20 

high-correlation target images, as shown in Fig. 8. When the 

peak of the response graph is higher than the threshold, the 

tracking result place into target set to replace the oldest target, 

and update the scale table. The target update criterion as 
 

                                (9) 
 

where Tcorrelation is template correlation, α is empirical 

constant of template correlation, 𝑅𝑝𝑒𝑎𝑘 is peak of the 

reaction graphs, 𝑅𝑎𝑣𝑔 is average value of the reaction 

graphs, 𝑅𝑠𝑑 is standard deviation of the reaction graphs, 

Cthreshold is template correlation threshold, β is target 

update threshold. 
 

 
Fig. 8. The last 20 high-correlation target images. 

 

C. Re-detection of Target Disappearance 

Our feature point detection uses FAST, and the 

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

50



characterization uses 64-dimensional SURF. Target 

re-detection divided into six step, (i) Find the FAST corner of 

each target and the entire image in the target set. (ii) 

Calculate the SURF description for each FAST corner point. 

(iii) Euclidean distance as a basis for SURF feature matching. 

(iv) Filter bad match points (based on matching point 

distance). (v) Obtain target scale and position. (vi) Reset 

KCF scale and position. 

D. Feature Matching 

Feature matching, first needs to detect the target with 

FAST, as shown in Fig. 9, and the feature points of the input 

image, as shown in Fig. 10. Then, the SURF description of 

each feature point is calculated, and generated array 

matching points, as shown in Fig. 11, based on the use of 

Euclidean distance as SURF feature matching. In order to 

make the matching result more stable, it is necessary to filter 

the matching points, as shown in Fig. 12. 

 

  
Fig. 9. Feature points of the target image. 

 

 
Fig. 10. Feature points of the input images. 

 

 
(a)                                        (b) 

Fig. 11. Filter the matching points. (a) Matching points before filtering. (b) 

Matching points after filtering. 

 

 
Fig. 12. Distance of matching points. (The blue point is the feature point on the 

target, the green point is the feature point of the input image, and the red line is 

the matching point distance). 

 

E. Target Position and Scale Re-detection 

Calculate target displacement and scale using filtered 

matching points, and find the mode of the displacement 

vector between the matching points, which is the 

displacement vector of the target. The scale of t time 

estimated by the ratio of the sum of the distances between the 

feature points  at t-1 time and the sum of the distances 

between the feature points  at time t time. 

                 (10) 

                  (11) 

                            (12) 
where  is sum of the distances between the feature 

points at t-1 time,  is sum of the distances between the 

feature points at t time,  is target scale at t time,  is 

target scale at t-1 time. Last updated KCF scale and 

displacement, as shown in Fig. 13. 
 

        
                        (a)                                           (b) 

Fig. 13. Scale estimate. (a) Feature points at t-1 time. (b) Feature points at t 

time. 

 

   
(a)                                       (b) 

   
(c)                                       (d) 

Fig. 14. Experimental results of two scaling scene. (a) and (b) is skateboard 

scene No.1. (c) and (d) is skateboard scene No.2.  Each frame is the result of 

four algorithms. The upper left is the algorithm we proposed. The upper right is 

the KCF algorithm, and the lower left is the CT algorithm. The lower right is the 

TLD algorithm. 

 

III. EXPERIMENTAL RESULTS 

In this section, we will show and compare experimental 

results of our proposed algorithm detectable KCF (dKCF), 

original KCF, Tracking-Learning-Detection (TLD) and 

Compressive Tracking (CT) methods, whether it can adapt to 

scaling and shadowing. When the target size changed, 

whether each methods can accurately select the target and 

when the target obscured, whether each methods can retrieve 

the target again. In the scaling scene, the results of our 

algorithm can be change and select target when the target 

size changed, as shown in Fig. 14, and in the shadowing 

scene, when the target disappears, our algorithm can re-track 
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to the target, it will not cause the tracking to fail, as shown in 

Fig. 15. 

In Fig. 14, when the target size changes, our proposed 

algorithm can accurately selected the target, because we use 

the scale candidate map to generate different sizes of input 

images, so that the target size in the input image can be close 

to the template size, and the similarity will be the highest. 

Then take the input image of the best scale as the result. The 

target frame size of the algorithms CT and KCF will always 

remain the same, so the target cannot accurately selected. 

Instead, the frame box too large to cause the background to 

select, or the frame box too small to cause not to cover the 

target. If the target cannot accurately selected (too much 

background information or only a part of the target image 

information), the final tracking will fail. 

 

   
(a)                                        (b) 

   
(c)                                        (d) 

Fig. 15. Experimental results of two shadowing scene. (a) and (b) is car scene 

No.1. (c) and (d) is car scene No.2. Each frame is the result of four algorithms. 

The upper left is the algorithm we proposed. The upper right is the KCF 

algorithm, and the lower left is the CT algorithm. The lower right is the TLD 

algorithm. 

 

In the target tracking, it may encounter the problem that 

the target obscured or disappeared. In order to solve this 

problem, we use the target set to record the target image. 

When the target obscured or disappeared, the feature 

matching used to find out whether there is an image similar 

to the target in the input image, and the most similar image is 

the target. In the other three algorithms (KCF algorithm, CT 

algorithm and TLD algorithm), only TLD algorithm has the 

ability to process the occlusion problem, the KCF algorithm 

and CT algorithm cannot retrieve the target after 

encountering the target occlusion. 

The results of the experiment can divided into two cases, 

the target is shaded and scaled. There are total of four test 

films, each with 500 frames. The background of the film 

includes highways, general roads, trees, grasslands, shadow 

changes, etc. The success of the tracking based on manually 

selecting the target position in the film, then selecting the 

target using the algorithm, and finally comparing the results 

of selected by the manual and algorithm. In order to evaluate 

the ability of different algorithms, the target tracking success 

can be determined as positive, tracking failure determined as 

negative, and tracking success is based on 

              (13) 
 

where gt is manual selected target per frame, bb is the 

algorithm selected target per frame.  

If the manual frame selection position overlaps with the 

algorithm position selected more than 70 percent and the 

overlap area accounts more than 50 percent of the frame 

selection area of the algorithm, and the target successfully 

tracked. 

The performance of detection method can addressed by 

estimating the following parameters: (i) True Positive (TP) 

rate, (ii) False Negative (FN) rate, (iii) False Positive (FP) 

rate, and (iv) True Negative (TN) rate. Then can define the 

accuracy rate, tracking rate, and false positive rate. The 

experimental results of system assessment four video, each 

video length is 500 frames, the accuracy rate, tracking rate 

and false positive rate results of TLD, CT, KCF, and dKCF 

algorithm, as shown in Table I, Table II, and Table III. The 

average accuracy rate is 92.75 percent, the average tracking 

rate is 93.25 percent and the average false positive rate is 

13.5 percent in our proposed algorithm. 
 

TABLE I: THE ACCURACY RATE OF TLD, CT, KCF, AND ԀKCF ALGORITHM 

Algorithm Frames Skateboard 

scene No.1 

Skateboard 

scene No.2 

Car 

scene 

No.1 

Car 

scene 

No.2 

TLD 500 74% 74% 37% 96% 

CT 500 54% 68% 0% 0% 

KCF 500 68% 78% 72% 45% 

dKCF 500 78% 98% 96% 99% 

 
TABLE II: THE TRACKING RATE OF TLD, CT, KCF, AND ԀKCF ALGORITHM 

Algorithm Frames Skateboard 

scene No.1 

Skateboard 

scene No.2 

Car 

scene 

No.1 

Car 

scene 

No.2 

TLD 500 74% 74% 39% 97% 

CT 500 54% 68% 24% 0% 

KCF 500 68% 78% 100% 99% 

dKCF 500 78% 98% 98% 99% 

 

TABLE III: THE FALSE POSITIVE RATE OF TLD, CT, KCF, AND ԀKCF 

ALGORITHM 

Algorithm Frames Car scene No.1 Car scene No.2 

TLD 500 73% 0.7% 

CT 500 100% 100% 

KCF 500 100% 100% 

dKCF 500 17% 10% 

 

In addition to using the tracking status table to evaluate, 

we also compare the overlapping accuracy of the target 

selected, and the calculation equation for the overlap 

accuracy of each frame as 

 

    

(14)

 
 

where gt is manual selected target per frame, bb is the 

algorithm selected target per frame. 
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The overlap accuracy rate is to evaluate whether the 

algorithm can accurately selected target and calculate the 

area of each algorithm selected and manual selected. If the 

manual selected and algorithm selected have no overlap or 

the overlap area is less than 70 percent, the overlap accuracy 

rate is zero percent, conversely, there is overlap and area is 

higher than 70 percent then the overlap accuracy is the 

overlap area. Finally, the average overlap accuracy per frame 

is taken as the result and the average overlap accuracy is 

87.25 percent in our proposed algorithm, as shown in Table 

IV. 

 
TABLE IV: THE ALGORITHM EXECUTION SPEED AND OVERLAP ACCURACY 

OF TLD, CT, KCF, AND ԀKCF ALGORITHM 

Algorithm FPS Skateboard 

scene No.1 

Skateboard 

scene No.2 

Car 

scene 

No.1 

Car 

scene 

No.2 

TLD 386 50% 54% 61% 56% 

CT 195 51% 56% 33% 0% 

KCF 145 60% 80% 41% 73% 

dKCF 26 80% 88% 93% 88% 

 

IV. CONCLUSION 

In this paper, we have proposed dKCF algorithm allows 

multi-axis aircraft to have the ability to track non-specific 

targets through computer vision tracking. Because KCF is a 

template-based tracking method, there is no need to train the 

target in advance to achieve the goal of tracking non-specific 

targets. In tracking part, use the scale candidate graph to 

improve the KCF so that the KCF can adapt to the target 

change size and get the correct target image information. In 

re-detect part, find the FAST corner point on the input image 

target, calculate the SURF feature of each corner point, find 

the matching corner points as the matching points, and use 

the matching points to find the target position and scale to 

successfully retrieve the target. In the matching point filter 

part, use the mode of the displacement of the matching point 

as the matching criterion, such a standard is simpler and 

faster. In experimental, the proposed algorithm performs 

speed to 26 fps, tracking rate in the scaled cases can reach 

88%, tracking rate in occluded cases can reach 98%, and 

overlap rate can reach 87%. With trade-off between speed 

and accuracy, we sacrifice the execution speed of the 

algorithm to exchange for more robust tracking. The future, 

system can be added color as an auxiliary feature, or create a 

more robust target model to complement the lack of template 

updates to increase the tracking effectiveness. 
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