
 

Abstract—Timetabling problems have been widely studied, 

of which Educational Timetabling Problem (ETP) is the biggest 

section. Generally, ETP can be divided into three modules, 

namely, course timetabling, school timetabling, and 

examination timetabling. For solving ETP, many techniques 

have been developed including conventional algorithms and 

computational intelligence approaches. Several surveys have 

been conducted focusing on those methods. Some surveys 

target on particular categories; some tend to cover all types of 

approaches. However, there are lack of reviews specifically 

focusing on computational intelligence in ETP. Therefore, this 

paper aims at providing a reference of selecting a method for 

the applications of ETP by reviewing popular computational 

intelligent algorithms, such as meta-heuristics, hyper-heuristics, 

hybrid methods, fuzzy logic, and multi-agent systems. The 

application would be categorised and described into the three 

types of ETP respectively.  

 
Index Terms—Computational intelligence, educational 

timetabling, heuristics, fuzzy logic. 
 

I.   INTRODUCTION 

Timetabling problem is known as an NP-complete 

problem, meaning that it is difficult to provide a general 

optimal solution for a wide range of cases. In the past 

decade, there has been a large interest in researching 

timetabling problems. Around three thousand studies are 

published every year in this filed, within which university 

timetabling is the most popular section occupying over 85% 

publication volume (Fig. 1). Since Appleby, Blake and 

Newman [1], which may be the first timetabling study in the 

computer field, computational timetabling has been 

developed over 50 years, and some surveys have been done 

to review those techniques [2]-[10]. However, according to 

the definition given by Engelbrecht [11], some of those 

techniques would not be able to learn, discover, reason and 

adapt to new situations, in other words, they are not 

computationally intelligent. Although some surveys focused 

on computational intelligence, they specifically paid 

attention to a single category [6]. Therefore, this paper aims 

at reviewing the current computational intelligent 

approaches in ETP and giving an overview for further 

research in solution model construction and algorithm 

selection.  
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Fig. 1. Volume of publication in timetabling (2009-2018). 

 

Educational timetabling is a significant task for ensuring 

every aspect runs smoothly and collaboratively. Its 

efficiency and reasonableness would significantly impact 

the operations between faculties, teaching implementations, 

utilisation of limited educational resources and satisfaction 

of educators and students. Wren [12] defined “Timetabling 

is the allocation, subject to constraints, of given resources to 

objects being placed in space time, in such a way as to 

satisfy as nearly as possible a set of desirable objectives”. 

For educational management purpose, timetabling can be 

described as to distribute a number of activities, such as 

lectures, tutorials, exams and meetings, into a limited 

number of timeslots and/or room-slots [13]. Each activity 

has its unique conditions that need to be satisfied. Those 

conditions generally fall into two categories: soft constraints 

and hard constraints. Hard constraints are those factors of a 

problem cannot be violated to ensure that the timetable is 

feasible. Generally, hard constraints include that 1) no 

person can be allocated to be in more than one room in any 

timeslot; 2) resource requirement cannot exceed its 

availability in any timeslot. Soft constraints are those factors 

that are not necessarily to be met, but the less the violation 

of soft constraints the better the quality of a timetable is [14].  

The sets of hard constraints and soft constraints are 

significantly different from university to university 

depending on how a university treats the importance of a 

constraint. Comprehensive studies for university timetabling 

constraints have been published in [7], [10], [15].  

ETP can be classified as course timetabling, school 

timetabling and examination timetabling [9].  

 Course timetabling, known as post-enrolment-based 

timetabling, is to assign lecturers and tutorials to 

timeslots, rooms or other facilities, against an individual 

student. The objective of it is to ensure that no student 

takes classes overlapped in timeslot.  

 School timetabling, also called curriculum-based 

timetabling, focuses on teaching resource allocation. To 

some extent, school timetabling is similar to 

curriculum-based course timetabling [3]. However, 
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school timetabling would take the availability and 

specialisation (also level of specialisation) of an 

educator as hard constraints [16].   

 Examination timetabling is to avoid students taking two 

or more exams simultaneously and to level resource 

usage over the examination period [16]. Uniquely, a 

room (exam place) or an educator (examiner) can be 

assigned to multiple courses.  

ETP is idiosyncratic. The parameters, such as teachers, 

students, courses, rooms and timeslots, to be considered are 

different from university to university. The weigh, priorities 

of those parameters are different as well. Besides, the local 

educational policies and institute structures also will 

significantly affect the timetabling solution. Perhaps, that is 

one of the reasons that there was no literature providing a 

general approach or guide for every instance. This paper 

will review the three categories of the ETP and the current 

approaches for each of them respectively. Due to the 

uniqueness of ETP, many solutions were designed for a 

specific case and tested locally. Even some approaches 

tended to solve general problems, they had not chosen the 

same benchmark data to examine the results. Consequently, 

it is very difficult to compare those methodologies. Thus, 

this paper outlines and briefly analyses each selected 

method as references for further research.  

The rest of the paper is organised as follows: Section II 

reviews the major algorithms currently being applied to ETP. 

Section III is divided into three subsections based on the 

three types of timetabling problems. Each subsection will 

review approaches evolved from the major algorithms. The 

last section concludes this paper. 

 

II.   MAJOR ALGORITHMS 

The computational intelligent approaches solving ETP 

can be classified as heuristic approaches, novel methods and 

distributed multi-agent systems [2], [5]. 

A.  Heuristic Approaches 

Heuristic approaches include meta-heuristics and hyper-

heuristics. Meta-heuristics is the interface of Artificial 

Intelligence and Operational Research using a particular 

technique to tackle specific problem, while hyper-heuristics 

is the higher-level meta-heuristics employing meta-

heuristics to select meta-heuristics for general issues [17]. It 

could be said that meta-heuristics are specific and hyper-

heuristics are general.  

1) Meta-heuristics 

In the nature, there are many successful mechanisms 

solving multi-objective and combinatorial optimisation 

problems, including biological systems, physical and 

chemical processes. These natural mechanisms inspire 

people to research their mechanism and lead to the 

popularity of meta-heuristics algorithms [18]. Timetabling 

problems are known as a NP-complete issue in almost all 

university cases [9]. As timetabling problems share the 

characteristics with Graph Colouring problems [13], 

traditionally, many timetabling algorithms were developed 

based on graphic colouring-based heuristics [4]. Given that 

metaheuristics can be applied to a set of optimisation 

problem without many modifications and take both soft and 

hard constraints into its formulations, metaheuristics have 

been paid a lot of attention to tackling timetabling problems. 

Based on the importance of soft and hard constraints for a 

particular case, metaheuristic algorithms can be classified 

into three types: one-stage, two-stage and relaxation-allowed 

algorithms [6]. 

One-stage optimisation tolerates both soft and hard 

constraints to be violated in order to seek a workable 

solution. In implementation, soft and hard constraints will 

be given corresponding weights depending on their 

importance in different scenarios. An example of this type is 

Abdullah and Turabieh [19] set penalties for both soft and 

hard constraints and used a Tabu-based memetic algorithm 

to solve university course timetabling. 

Two-stage optimisation looks for a solution in two steps. 

In step one, the algorithm searches for a feasible solution to 

satisfy hard constraints without considering the soft 

constraints. Once a feasible solution is found, soft constraint 

violations then will be attempted to minimise. Unlike one-

stage approach, this algorithm does not require weightings. 

Based on this model, Yasari, Ranjbar, Jamili and Shaelaie 

[20] developed a stochastic approach successfully solving 

university timetabling problem with course cancellation risk. 

This method allows a pre-defined timetable to be changed 

and minimises the impact of such uncertainties. 

Relaxation-allowed algorithm keeps hard constraints from 

violations and try to satisfy soft constraints under the 

conditions that some factors of the problem can be relaxed, 

such as timeslot and location [6]. 

As meta-heuristics have been widely studied for many 

years, a lot of algorithms have been introduced. Depending 

on the characteristics, they can be classified into several 

overlapping categories: (Fig. 2 listed typical algorithm being 

described in this paper). Swarm intelligence might be the 

most favoured one. Inspired by the nature, multiple swarm 

algorithms have emerged, including bird flocks, fish schools 

[21], ant colony [22], cat swarm [23] and Artificial Bee 

Colony (ABC). Among those approaches, ABC might be the 

most popular one widely studied and applied to practical 

ETP [24]. 
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Fig. 2. Classification of meta-heuristics algorithms. 

 

2) Hyper-heuristics 

Hyper-heuristics is described as “heuristics to choose 

heuristics” [25]. It aims to solve combinatorial optimisation 

problems with more generalised solutions instead of a 

technique derived from specific scenarios [26]. This idea 

was motivated by the fact that many heuristics approaches 
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could only get good results for a few cases within the scope. 

For solving this weakness, hyper-heuristics automatically 

searches low-level heuristics space rather than solution 

space [27]-[29].  

Compared to hyper-heuristics, other heuristics can be call 

low-level heuristics. Low-level heuristics can be classified 

as construction and perturbation [30]. In the implementation, 

hyper-heuristics will be fed with a number of low-level 

heuristics with particular problems, and then an adequate 

combinatorial solution would be produced. The product can 

be a low-level heuristic either selected from existing ones or 

newly generated [26]. Constructive heuristics play a role to 

construct an initial solution for later optimisation while 

perturbative heuristics are used to improve the initial 

solution generated randomly or from a constructive heuristic. 

Respectively, the hyper-heuristics based on those two types 

of low-level heuristics abovementioned are named as 

selection constructive, selection perturbative, generation 

constructive or generation perturbative [31]. 

Selection constructive hyper-heuristics apply a heuristic 

to explore the space of low-level constructive heuristics. 

Mainly, Case-Based Reasoning (CBR), local search and 

population-based methods are used to select a reasonable 

low-level constructive heuristic. CBR solves problems 

taking previous similar cases as data sources [32]-[34]. 

Local search methods look for a solution from the 

neighbourhood around the initial point and then move to 

another point with Tabu search [19], [35], [36] and 

neighbourhood search [37]. Albeit local search focuses on 

one point each time, population-based methods explore 

multiple points simultaneously [38]. 

Selection perturbative hyper-heuristics choose low-level 

perturbative heuristics to improve each point originated 

from the initial solution. Selection perturbative hyper-

heuristics designate single-point or multipoint search to 

select a solution from the low-level perturbative pool. For 

single-point search, heuristic selection and move acceptance 

[39], [40] techniques are used; in multipoint search, 

population-based methods are employed [26]. 

Generation constructive hyper-heuristics can 

automatically provide a low-level constructive heuristic as 

an initial solution which normally is derived manually and 

intuitively. Generation constructive hyper-heuristics 

automatically generating a starting solution can help reduce 

time-cost but also would create a new constructive heuristic 

[28]. Genetic programming [38], [41] is the chief method 

used for Generation constructive hyper-heuristics. 

Generation perturbative hyper-heuristics works to create a 

new low-level perturbative heuristic for solution 

improvement. Genetic programming is its major method to 

combine or configure a new heuristic from a low-level 

perturbative heuristic pool [26]. 

B.  Novel Methods 

1) Hybrid approach 

A number of computational intelligent approaches have 

been emerging to solve university timetabling problems [2], 

[4]-[6], [28]. However, each individual approach has some 

weaknesses. Therefore, people combine different methods to 

mitigate the weaknesses and generate a preferable approach 

to a problem. The form approached being hybridised 

includes integrating multiple methods for one step and 

employing different method on different steps of a whole 

process. For example, Ishak, Lee and Ibragimov [42] 

hybridised three techniques to reduce cost penalty in 

timeslot arrangement stage. In the study conducted by Fong, 

Asmuni and McCollum [21], Particle Swarm Optimisation 

(PSO) was used for exploration step and, in second step, 

Nelder-Mead simplex search was adopted for exploitation. 

This hybridised model offers a better balance between 

exploration and exploitation, which the former researches 

could not achieve.  

2) Fuzzy logic approaches 

In the real world, many objects do not have a precisive 

classification and thus are hard to be quantitated and 

modelled. In other words, they are fuzzy. Therefore, a 

conceptual framework for those ambiguous problems is 

required, which was introduced by Zadeh [43]. In the 

computational intelligent field, fuzzy logic was proved more 

capable over traditional methods in dealing with ill-defined 

problems [44], such as impreciseness, uncertainties or 

unreliability. Those features match the characteristics of 

ETP which contains multiple uncertain variables, parameters 

and constraints. To prove the importance of applying fuzzy 

logic for school timetabling, Gorka and Thipwiwatpotjana 

[45] chose teaching preference as the weight in their 

research.  

C.  Multi-agent Systems 

Multi-agent systems are artificial intelligence techniques 

involving many agents to achieve a common goal 

collaboratively [46]. Each agent within the system is a 

program entity, sensitive and interactive to its environment, 

able to communicate with each other with a common 

language, autonomous, able to do a task incompletely [47]. 

Generally, each agent entity consists of searcher who is to 

search a local solution, negotiator responsible for 

negotiating resources with other agents, and manager who is 

in charge the related information [2]. Since agents are 

cooperative, multi-agent systems can reach an optimal or 

sub-optimal solution [48]. 

 

III.  RELATED APPLICATIONS IN ETP 

The computational intelligences in ETP have been 

evolved and varied into many applications. These 

applications could only cover one or two ETP categories. 

Therefore, this section separates recent ETP computational 

intelligent applications into three ETP categories to describe 

and summaries them in Table III.  

A.  Course Timetabling 

1) Heuristics approaches 

Van den Broek and Hurkens [49] employed an integer-

programming-based (IP-based) with column generation to 

solve post-enrolment timetabling problems. The proposed 

approach was tested with the Track 2 of second international 

timetabling competition (ITC2007) dataset with timeslots 

and room-slot satisfaction without hard constraints violation. 

Soria-Alcaraz, Ochoa, Swan, Carpio, Puga and Burke [39] 

combined Iterated Local Search (ILS) with two types of 

learning mechanism: static (offline) and dynamic (online) 
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learning. This algorithm could automatically generate or 

select new improved solution based on the previous stage on 

each iteration, which helped it obtained a competitive result 

from Track 2 of ITC2007. A year later, Soria-Alcaraz, 

Özcan, Swan, Kendall and Carpio [50] optimised ILS 

approach integrating with generation perturbative hyper-

heuristic approach for post-enrolment timetabling and 

curriculum-based timetabling problems. Add-delete 

operators were used to improve the selected processes. The 

add or delete symbol was for indicating an event being 

temperately removed or reassigned from or to the timetable 

on the event list. This approach can be applied to both Track 

2 and Track 3 of ITC 2007.  

Table I shows the results of abovementioned heuristics 

being tested with Track 2 of ITC2007. The solution 

timetable they generated were all feasible (i.e. hard 

constraints violation is 0). The data represents the number of 

soft constraint violation. It is obvious that the Soria-Alcaraz, 

Özcan, Swan, Kendall and Carpio [50] had the best 

performance in this dataset. 
 

TABLE I: TRACK 2 TEST RESULTS OF SOFT CONSTRAINT VIOLATION (THE 

BEST RESULT IS IN BOLD) 

ITC-2007 VH SOSCPB SOSKC 
1 1636 650 630 
2 1634 470 450 
3 355 290 300 
4 644 600 602 
5 525 35 6 
6 640 20 0 
7 0 30 0 
8 241 0 0 
9 1889 630 640 
10 1677 2349 663 
11 615 350 344 
12 528 480 198 
13 485 46 0 
14 739 80 35 
15 330 0 0 
16 260 0 140 
17 35 0 0 
18 503 20 0 
19 963 360 400 
20 1229 150 150 
21 670 0 0 
22 1956 33 32 
23 2368 1007 238 
24 945 0 640 

Note: on Table I VH refers to Van den Broek and Hurkens [49], SOSCPB 

means Soria-Alcaraz, Ochoa, Swan, Carpio, Puga and Burke [39] and 

SOSKC stands for Soria-Alcaraz, Özcan, Swan, Kendall and Carpio [50]. 

The best results are in bold. 

 

2) Hybrid approaches 

Bolaji, Khader, Al-Betar and Awadallah [51] integrated 

ABC, and local search algorithm, Hill Climbing (HC), 

together for post-enrolment course timetabling problems. 

ABC works as its classical procedure but in neighbourhood 

food source search stage, HC will help to seek for the best 

solution in objective cost value. As this hybridisation had 

good structured exploitation to balance global exploration 

and local exploitation, it achieved good performance in 

small to large data instances. Besides room features and 

room capacity constraints were satisfied. Recently, Akkan 

and Gülcü [52] modelled bi-criteria solution by hybridising 

Hill Climbing and Simulated Annealing algorithms. This 

approach populates a solution by genetic algorithm and 

improves the solution in each iteration by two hill-climbing 

operators. This approach was tested with ITC 2007 dataset 

and gained high robustness and created high-performance 

solutions. 

3) Fuzzy logic approaches 

Kohshori, Abadeh and Sajedi [53] proposed a fuzzy 

genetic algorithm with a randomised iterative algorithm for 

local search. During the process, solutions were initialled 

and selected randomly. Crossover and mutation operators 

were used for improvement. Fuzzy sets were the evaluators 

for soft constraints violation. The simulation experiment 

results were obviously better than conventional genetic 

algorithms in many different constraint situations. A similar 

approach was applied by Perzina and Ramik [54] two year 

later. Uniquely, the formulation was constructed with self-

learning genetic algorithm along with event priority 

constraints, in which deletion and duplication operators 

were used to control polyploidy. Performance of this 

formulation was compared to a manual feasible timetable 

showing that it satisfied every soft constraint with high 

quality. The drawback of this approach is its computational 

complexity.   

4) Multi-agent systems 

Pedroso [55] established a Multi-Agent System (MAS) 

for the University of Porto to tackle course timetabling 

problem, specifically for room sharing. In the case, rooms 

were shared to different faculty and requirement of timeslot 

length was different from department to department. A 

greedy algorithm was used to search for best solution and a 

dispatch method was employed to assign the rooms. The 

computational result showed that this system could tackle 

clashes between rooms, events and students. While 

Kaplansky and Meisels [56] built up a MAS model to solve 

the shared-course problem for Ben-Gurion University, 

University of Udine did not have a centralised timetable and 

each faculty had its private room. Besides, those faculties 

maintained their timetable autonomously and were reluctant 

to share the information of room availability. However, they 

needed external room resources to mitigate their room-slot 

conflict. Therefore, Di Gaspero, Mizzaro and Schaerf [57] 

proposed a new architecture for those issues. The 

architecture treated each faculty as an independent entity of 

the system. Each unit employed three characters: solver for 

searching local solution, negotiator to communicate with 

other entities, and manager in charge of information 

management and updating. This architecture helped reach 

high satisfaction in practice. Based on the abovementioned 

technique, Yang and Paranjape [58] introduced mobile agent. 

In the study, a timetable was divided into five platform from 

Monday to Friday. Each department entity assigns solvers 

and managers to every platform. The negotiator can move 

among platforms to negotiate a compromise solution. 

Recently, Houhamdi, Athamena, Abuzaineddin and 

Muhairat [59] developed a MAS application to support 

timetable generation in reality by imitating what a human 

planner will do, which get preferences of students and 

faculty members involved.  

B.  School Timetabling 

1) Heuristics methods 

Beligiannis, Moschopoulos and Likothanassis [60] 
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proposed an adaptive genetic algorithm to help Greece high 

schools generate a workable and efficient timetable. The 

methods mainly focused on teacher allocation with a 

“teacher-course-class” circuit. A tight chromosome 

encoding scheme was adopted to avoid solution seeking 

agent diving too deep in a wrong search space. The methods 

had been exhaustively tested with data collecting from many 

high schools in the city of Patras. Although the soft 

constraint violation could not be well minimised, the test 

result showed the algorithm was efficient and effective with 

low implementation cost. Also, for solving high school 

timetabling problems, Odeniyi, Omidiora, Olabiyisi and 

Aluko [61] developed a Modified Simulated Annealing 

(MSA) approach. Simulated annealing algorithm is efficient 

for nonlinear combinational optimisation problems, but it 

takes considerable time for convergence in large search 

spaces. Hence, a temperature reduction parameter was 

introduced to make the cooling schedule parabolic. This 

approach was successfully implemented in Fakunle 

Comprehensive High School in Nigeria with the result of 

reducing convergence time and computational cost. 

2) Hybrid methods 

Skoullis, Tassopoulos and Beligiannis [23] applied Cat 

Swarm Optimisation (CSO) to specifically solve school 

timetabling problem for high schools in Greek. CSO belongs 

to nature-inspired swarm algorithm category. It mimics the 

seeking food behaviours of cats in two steps: seeking and 

chasing. In [23], seeking stage is introduced in global 

variable to find out the best cat releasing for food sources in 

each iteration; and a swap operator is integrated to change 

the status of a cat between seeking and chasing. These two 

modifications helped reduce the computational time and 

achieved high performance in Beligiannis benchmark 

dataset test. On the other hand, Sutar and Bichkar [62] 

synthesised conversional algorithms, tabu and genetic, to 

generate a faster solution. However, a workload preserving 

crossover operator was used to avoid overlaps. This 

hybridised genetic algorithm could generate a solution in a 

few seconds.  

3) Fuzzy logic 

With the purpose of increasing lecturer satisfaction and 

minimising resource usage, Babaei, Karimpour and Oroji 

[63] employed fuzzy c-means clustering algorithm for 

Islamic Azad University. To some extent, this method also 

falls into MAS as four agents were assigned to work for 

local information management, global information 

clustering, negotiating and global information management. 

Fuzzy c-means helped to optimise the timetable with feature 

weight applied to soft constraints. The proposed approach 

centrally managed resource over every faculty led to 

resource redundancy reduction. Besides, the preferences of 

lecturers were considered. 

4) Multi-agent system 

Oprea [64] noticed the lack of research on computational 

intelligence in educational administration which involves 

many communication, cooperation and negotiation 

processes. In [64], it was proved that MAS_UP-UCT could 

potentially deal with negotiations between different 

faculties(agents) and minimised conflicts as the algorithm 

was able to analyse and exchange information in the 

computational process. Initially, each faculty creates a 

timetable according to courses’ characteristics and lecturers’ 

interest. This task will be done by a faculty scheduler agent. 

After lecturer assignment, rooms will be allocated based on 

a faculty timetable. The arrangement will be done by a 

university scheduler agent. If there is a conflict toward room 

assignment. Faculty scheduler agents will enforce 

negotiation strategy. However, this approach could not 

satisfy all the lecturers’ preferences. Tkaczyk, Ganzha and 

Paprzycki [65] based on actual case of University of Gdansk 

mimicked real workflow to develop a MAS. Each node of 

the workflow was programmatically defined as an agent 

including boot agent, database agent, room agent, teacher 

agent and scheduler. Those agents work as their names 

suggest. The test result of this approach satisfies the need of 

University of Gdansk. 

C.  Examination Timetabling 

1) Heuristic methods 

Kasm, Mohandes, Diabat and El Khatib [66] combined 

constructive heuristic along with novel colour graphing 

algorithm to solve the exam timetabling problem of Masdar 

Institute. This approach overcome the limitation of Integer 

Programming that only can handle small size problems and 

optimised two constraints that arranging two course exams 

to separated days and exam room capacity. Burke and 

Bykov [67] introduced a new local search technique for 

meta-heuristics for solving exam timetabling problems and 

named it as Late Acceptance Strategy. This algorithm is a 

subclass of Hill Climbing which accepts the better solution 

from the previous few iterations. Due to its simplicity and 

easiness of implementation, this algorithm gained popularity. 

Hence, Bykov and Petrovic [68], Bykov and Petrovic [69] 

developed it further to be Step Counting Hill Climbing 

(SCHC). SCHC remains all the merits of Hill Climbing. 

Additionally, the counting mechanism is easy to be 

implemented and to be implemented in many steps of the 

solution selection process.  

2) Hybrid approaches 

Bolaji, Khader, Al-Betar and Awadallah [70] hybridised 

ABC with Simple Local Search (SLS) and Harmony Search 

(HS). The SLS improved local exploitation while HS 

controlled diversity and fasted convergence. In the same 

year, Alzaqebah and Abdullah [71] introduced several 

algorithms to modify the original ABC. On selection stage, 

tournament selection, rank selection and disruptive selection 

were proposed to diversify the population; on 

neighbourhood search phase, self-adaptive mechanism was 

employed to maintain the useful neighbourhood structure to 

guide the search; on local search step, simulated annealing 

and late acceptance hill climbing algorithms were adopted to 

filter improved solutions and demolish the worse ones. 

Inspired by PSO, Fong, Asmuni and McCollum [21] 

implemented a “global best” model into ABC to improve the 

search process. Meanwhile, Nelder-Mead simplex search 

(NMSS) and Great Deluge (GD) algorithms were integrated 

to enhance exploitation. By combining these two algorithm 

sets, both exploration and exploitation were optimised. 

Three of abovementioned approaches were tested on Carter 

un-capacitated examination timetabling dataset. In Table II, 

it can be seen that the three approaches are competitive to 
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the best known result produced by Burke and Bykov [67]. 

The reason to choose this result as the reference is its 

capability and feasibility was verified in [8]. 

 
TABLE II: RESULT COMPARISON OF HYBRID APPROACHES FOR 

EXAMINATION TIMETABLING 

Carter 
A.A BKABA FAMC BB 

Best Avg Best Avg Best Best Avg Best 

car91I 4.38 4.52 5 5.05 3.89 4.27 4.58 4.68 

car92I 3.88 4.09 4.22 4.29 4.79 4.85 3.81 3.92 

ear83 I 33.34 33.66 34.52 34.86 33.43 34.48 32.65 32.91 

hec92 I 10.39 10.9 10.68 10.78 10.49 10.61 10.06 10.22 

kfu93 13.23 13.46 14.02 14.17 13.72 13.76 12.81 13.02 

lse91 10.52 10.82 11.04 14.17 10.29 10.39 9.86 10.14 

rye92 8.92 9.26 9.28 9.49 N/A N/A 7.93 8.06 

sta83 I 157.06 157.16 157.04 157.13 157.07 157.37 157.03 157.05 

tre92 7.89 8.09 8.38 8.47 7.86 8.04 7.72 7.89 

uta92 I 3.13 3.23 3.4 3.45 3.1 3.31 3.16 3.26 

ute92 25.12 25.33 25.8 26.17 25.33 26.04 24.79 24.82 

yor83 I 35.49 35.69 37.53 37.69 36.12 36.67 34.78 35.16 

Note: on Table II, AA stands for Alzaqebah and Abdullah [71], BKABA 

represents Bolaji, Khader, Al-Betar and Awadallah [70] and FAMC refers 

to Fong, Asmuni and McCollum [21], BB: Burke and Bykov [67]. The best 

results are in bold 

3) Fuzzy logic approaches 

Asmuni [72] proved that fuzzy approach would have 

significant potential to evaluate examination timetabling 

solutions. Five criteria, largest degree, saturation degree, 

largest enrolment, largest coloured degree and weighted 

largest degree, had been examined in the studied. The 

experimental results showed fuzzy multiple heuristic 

orderings suppressed wide range of algorithms in 

examination timetabling research filed. Chaudhuri and De 

[73] applied fuzzy logic to solve a real-world problem. A 

fuzzy integer linear programming was employed to Netaji 

Subhas Open University in India, which not only tackled the 

examination timetabling problem in the university in high 

quality but also obtained good result when being tested in 

Carter dataset. Cavdur and Kose [74] introduced a fuzzy-

criticality methodology to identify the exam criticalities and 

then generated a balanced-exam timetabling solution. This 

approach could satisfy the scenario integrated with different 

seniority and examiner distribution, and had been applied to 

Uludag University gaining a better solution in satisfaction 

than the one generated by the human expert.  

 
TABLE III: SUMMARY OF RELATED APPLICATIONS IN ETP 

Categories Approaches Methodologies Performances References 

 

 

 

 

 

 
Course 

timetabling 

Heuristics  

IP-based with column generation Satisfied time-slot and room-slot without hard constraints violations [49] 

ILS with static and dynamic learning Automatically generate or select new improved solution on each 

iteration 

[39] 

ILS with generation perturbative hyper-

heuristic approach 

Satisfied both Track 2 and Track 3 of ITC2007 [50] 

Hybrid  

ABC + LS + HC Had good performances in small to large data instances and satisfied 

room constraints 

[51] 

HC + SA + GA  Gained high performance in ITC 2007 [52] 

Fuzzy Logic  

Fuzzy GA with randomised iterative 

algorithm for local search 

Gained better results in many different constraints situations [53] 

Self-learning genetic alogrithm Satisfied every soft constraint with high quality [54] 

MAS 

Greedy algorithm to search best solution, 

dispatch method to assign rooms 

Tackled rooms, events and students conflicts [55] 

Treat every faculty as an entity Reach high performance in practice [57] 

Treat every workday as an entity Gained effective and flexible solution for the practical problem [58] 

Imitates human planner Get preferences of students and faculty members involved [59] 

 

 

 

 
School 

timetabling 

Heuristics 

With tight chromosome encoding scheme Low implementation cost [60] 

Modified SA with temperature reduction 

parameter 

Reduce convergence time and computational cost [61] 

Hybrid  
Modified CSO with swap operator Gained good result in Beligiannis benchmark dataset [23] 

Tabu + GA Could generate a solution in a short time [62] 

Fuzzy Logic  Employed fuzzy c-means clustering Reduce resource redundancy [63] 

MAS 

Uses MAS_UP-UCT Enhance negotiation between faculties and minimise conflicts. [64] 

Treat each workflow of the university as 

an agent 

Satisfied the need of University of Gdansk [65] 

 

 

 

 
Examination 

timetabling 

Heuristics 

Integrated colour graphing algorithm Can handle big size problems [66] 

Late Acceptance Strategy Simple and easy to implement [67] 

SCHC Easy to be implemented in many steps of solution selection process [68, 69] 

Hybrid  

ABC + SLS + HS Improve local exploitation and fast convergence [70] 

ABC + tournament, rank and disruptive 

selection + self-adpative mechanism + 

SA + late acceptance HC 

Gained good result in Carter dataset [71] 

ABC + NMSS + GD [21] 

Fuzzy Logic  

Fuzzy multiple heuristic orderings Gained better results than many algorithms [72] 

Fuzzy interger linear Gained high performance in the university and good result in Carte 

dataset 

[73] 

Fuzzy-criticality Gained good result in the university [74] 

 

IV.  CONCLUSION 

This paper reviewed the computational intelligence 

applied to educational timetabling problems. After 

introducing major intelligent algorithms being used in 

educational scheduling section, those approaches evolved 

from major algorithms were classified into three categories, 

namely, course timetabling, school timetabling and 

examination timetabling, with briefly descriptions. Due to 

the idiosyncratic traits, timetabling problems do not have a 
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general solution. Each method only tackles a specific 

scenario or a narrow range of instances. Besides, those 

approaches described in this paper had not been tested with 

a general dataset resulting in a difficulty to compare them.  
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