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Abstract—This paper details a proof-of-concept system called 

Project Reporting Management System (PRMS) to manage the 

project reporting process in a typical research centre where the 

process can be manual for many centres. In fact, it is general 

enough to be scaled up and deployed for a large department or 

scaled down for a smaller setup in any organization which needs 

a simple and efficient project progress reporting system but 

does not entail the kind of complexity and cost of commercial 

project management systems. Using a research centre scenario, 

the progress of the individual projects has to be tracked 

through the periodic submission of progress reports by the 

Principal Investigator (PI) of the project. The centre will need 

to consolidate these individual reports manually into a 

consolidated report and an executive summary for higher 

management. PRMS automates the tracking of individual 

projects and reporting deadlines, sends reminders and allows 

online submission of reports by the PIs. PRMS also 

incorporates assistive and automated features exploiting 

Machine Learning (ML) and Natural Language Processing 

(NLP) techniques to generate the consolidated report and rank 

sentences of verbose report for assistive text summarization to 

facilitate the manual process of producing an executive 

summary. 

 
Index Terms—Web-based system, reporting process 

automation, machine learning, natural language processing, 

sentiment analysis, text summarization.  

 

I. INTRODUCTION 

A typical research centre has many projects running at the 

same time. The progress of all projects has to be tracked by 

the management through periodic progress report 

submissions by the respective project principal investigators 

(PI). These individual reports have to be consolidated to 

produce an executive summary to facilitate onward reporting 

to higher management. In many centres, the process is 

manual as in the staff member in charge of project reports 

will have to email all PIs to submit their progress reports on a 

regular basis. Monitoring of reports submitted, the deadlines 

and reminders to PI is usually being carried out via emails. 

The staff will then have to browse through all the reports and 

gather the important progress so that they can be consolidated 

into an executive summary for higher management to peruse. 

Important information such as lack of progress and problems 
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encountered has to be highlighted so that remedial action can 

be carried out to restore the projects back on schedule. The 

process is laborious and time-consuming. 

A web-based proof-of-concept system called Project 

Reporting Management System (PRMS) is hence proposed to 

automate as much of the manual pipeline of project progress 

reporting as possible. PRMS automates the tracking of 

individual projects and reporting deadlines, sends reminders 

and allows online submission of reports by the PIs. PRMS 

also incorporates assistive and automated features to further 

automate the reporting process. It exploits Machine Learning 

(ML) and Natural Language Processing (NLP) techniques to 

rank sentences from the reports to facilitate the manual 

process of producing an executive summary. Although this 

paper uses a research scenario as the application example, the 

proposed PRMS is general enough to be deployed for a large 

department or for a smaller setup in any organization which 

needs a project progress reporting system but does not entail 

the kind of organization functional integration, complexity 

and cost of commercial project management systems such as 

Microsoft Project [1], Tiemchart [2], Monday [3] etc. 

This paper is organized as follows: Section II provides an 

overview of PRMS and its implementation. Section III details 

the assistive and automated features to extract important 

sentences by ranking them for report consolidation and 

facilitate preparation of the executive summary. Section VI 

concludes the paper. 

 

II. OVERVIEW AND DEVELOPMENT OF PRMS 

The requirements of PRMS is a fully functional enterprise 

system for management of research project reporting which 

include the design and development of the system, user 

interface and digitization of the process flow and the 

automation and optimization of areas within the reporting 

framework that are identified to be manually intensive or are 

prone to human-error or failure. Agile Project Management 

methodology is adopted in the development of PRMS.  

A. System Requirements 

Without an automated tool, administrators will need to 

manually consolidate all the individual project reports into a 

single report. Prior to this process, the individual reports must 

be reviewed and approved by the administrator to ensure they 

are of sufficient quality and adhere to standards set out. 

Owing to the pipelined nature of this process, administrators 

face the difficulty of tracking the status of individual reports 

across projects (as only approved reports are consolidated). 

Furthermore, the entire process of report consolidation is 

repetitive, tedious and prone to human error and formatting 

error. Therein lies the motivation for PRMS. 
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Fig. 1. Use case diagram of PRMS. 

 

 
Fig. 2. PRMS system architecture. 

 

Fig. 1 shows the use case diagram for PRMS. The 

functional requirements are as follows: 

1) Provision of administrator and user account types with 

different levels of access privileges. PIs or project leads 

are able to log in with a user account, Provision of 

administrator and user account types with different levels 

of access privileges. PIs or project leads are able to log in 

with a user account, reset and change password and edit 

user profile and account information. System 

administrators are able to log in with an administrator 

account and such account must contain all the user 

functionality for account access except changing the user 

password. Administrator can create, activate, deactivate 

and delete user accounts.  

2) Provision of project management functionalities with 

controlled access according to account types. Users can 

access projects according to their project membership 

such as PI/lead and members of project team and view, 

edit and upload reports. Besides details of the project, 

reporting requirements such as the schedule, type of 

reports, deadlines etc. are also included in the project 

profile. Administrators can perform project management 

tasks which will be a superset of those of the users. 

Administrators can define project access, assign the roles 

of the different users to the projects, add, delete or archive 

projects, edit project information, define the reporting 

types and deadlines. Administrator can define the report 

types needed for each project and their associate 

deadlines. Report types can be annual, bi-annual, 

quarterly, bi-monthly, monthly, fortnightly or weekly. 

3) Provision of report management functionalities with 

controlled access according to the account type, project 
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role and project reporting requirements. Users can access 

their reports based on project role and project reporting 

requirements as well as uploading new reports. 

Administrators can perform all report management tasks 

for all projects, view and download reports including 

review actions, namely to approve or o reject with 

comments. Administrators can activate the automatic 

sending of email reminders. 

4) Automatic report extraction for users to effectively 

preview the uploaded report prior to submission. 

5) Assistive tools for automatic generation of consolidated 

report. 

B. System Architecture 

The system architecture of PRMS is modified from the 

Django framework [4] and is shown in Fig. 2. Extensions to 

the Django framework comprised system-level components 

(the yellow shaded blocks on the left of the figure) and 

app-level components (the blue shaded blocks on the right of 

the figure). The added system-level components include a 

virtual environment to store and manage packages, libraries 

and modules that are not part of the standard Python library as 

well as directories for system-level templates, static files and 

media files uploaded by the users. Added app-level 

components include a URL router, directories for static files 

(immutable files used in the templates) and controllers. The 

app-level controller directories contain functional codes and 

data (e.g. stored models from machine learning modules) 

relating to each app’s business-logic. This structure will 

separate controller (business-logic) code from templating 

logic code in the app’s views to facilitate system 

development, unit testing and code readability. 

C. System Test 

Acceptance Test Driven Development (ATDD) is used as 

the base stratagem as User Acceptance Tests (UAT) is carried 

out during the gathering of feedback for upcoming iterations 

of development [5]. The various tests show that PRMS has 

fulfilled the functional requirements set out in Section II-A. 

In addition, it is to be noted that the longest path to execute a 

user, project or report data manipulation function in PRMS is 

no more than 4 interactions within the application, including 

any prompts and messages for best user experience. 

Fig. 3 shows an example of a PRMS screenshot. It displays 

the menu available to the Administrator (on the left tab), a 

listing of all the projects and the corresponding reporting 

requirements and deadlines. In particular, it shows that the 

administrator has the option to manually trigger email 

reminder to a project’s PI which is in addition to the 

automated scheduled email reminders. 

 

III. ASSISTIVE AUTOMATIC TOOLS FOR TEXT EXTRACTION 

AND SUMMARIZATION 

A. Toolkits Used 

The libraries used to implement the NLP features are 

spaCy [6] and AllenNLP [7]. SpaCy offers a wide range of 

NLP-related functionalities, such as tokenization, POS 

tagging of extracted textual data and text preprocessing for 

deep learning tasks. AllenNLP facilitates design of deep 

learning tasks related to NLP. AllenNLP is used here to 

implement the learning algorithm for sentiment analysis. 

B. Template Based Automatic Text Extraction 

Text Extraction involves the extraction of key sections of 

the individual reports. This extraction is based on a standard 

report template. In our application scenario, five important 

sections are specified, namely, Milestones and Deliverables, 

Expenditures and Justifications, Report Body, Publications 

and Intellectual Properties. The first two sections are in table 

form while the rest are free text format. 

The Python library, docx2txt [8], is used to extract the text 

from the Microsoft word documents for subsequent parsing 

and text extraction. Parsing of the entire report comprises 

Text parsing, Paragraph parsing and Section parsing. Text 

parsing refers to the parsing of individual tokens (or regular 

expressions) within a sentence or paragraph object in the 

document file. Paragraph parsing parses the individual 

paragraphs or token candidates within a paragraph object 

while Section parsing parses paragraphs and paragraph styles 

(headings) within the document to demarcate the sections. 

All words in the report body are tokenized using spaCy. 

Pre-processing is done to convert all words to lowercase and 

to remove all stop-words and non-alphabetical characters. 

Table I shows the report sections and the associated 

extraction strategy applied. The extraction accuracy is 100% 

in our tests on three sample reports since the extraction is 

template based. It is to be noted that any changes in the report 

template will require changes to this section of the program 

codes. 

TABLE I: REPORT TEMPLATE AND TEXT EXTRACTION STRATEGY 

Report Structure 
Report Section 

   (In Sequence) 
Type Extraction Strategy Accuracy 

Milestones and 

Deliverables 
Table Text Parsing 100% 

Expenditure and 
Justifications 

Table Paragraph Parsing 100% 

Report Body 
Free 

Text/Section 

Paragraph, Section 

Parsing 
100% 

Publications 
Free 

Text/Section 
Text, Paragraph, 
Section Parsing 

100% 

Intellectual 

Properties 

Free 

Text/Section 

Text, Paragraph, 

Section Parsing 
100% 

C. Automatic Text Extraction for Report Preview 

Using the mechanism described in Section III-A, an 

automatic report extraction feature is implemented for 

effective preview of the uploaded report prior to submission 

by the user. User can perform a quick check on the key 

sections of the report before uploading to ensure that 

important details are not being left out providing an optimal 

user experience for the report submission process. Fig. 4 

shows an example of the report. Note that Fig. 4 only shows 

two sections out of the five sections spelt out in Table I. 

D. Automatic Generation of Consolidated Report 

The same mechanism detailed in Section III-A is applied to 

the individual reports to extract the sections automatically 

consolidating into a final report. Fig. 5 shows the screenshot. 

Python libraries, docxtpl [9] and docxcompose, [10] are used 

to facilitate the document generation process.  
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E. Assistive Extractive Text Summarizer 

The assistive extractive text summarizer (aETS) using 

NLP techniques is designed to help administrators in report 

analysis and summarization, via the ranking of individual 

sentences. aETS extracts a set of the most significant 

sentences from a document verbatim and comprises three 

steps, namely (1) creating an intermediate representation of 

the original text (2) scoring of sentences and (3) obtaining the 

most significant sentences [11]. The design pipeline is shown 

in Fig. 6. Output from the text extraction mechanism 

described in Section III-A is fed into the Assistive Extractive 

Text Summarizer module. The first horizontal shaded block 

(in yellow) shows the use of word frequency to score the 

word-type in each sentence. The second shaded block (in 

orange) shows the named entity extraction and the last block 

(red) performs sentiment analysis for sentence scoring. A 

scoring formula is derived to score each sentence within the 

document. We avoid techniques which require 

domain-specific training data as we do not have a large report 

corpora and settle on word-frequency-based extractive text 

summarizing technique [8] which comprises four steps as 

shown in the first shaded block of Fig. 6.   

1) Sentence Scoring using Word-Frequencies: After the 

tokenization and pre-processing as described in Section 

III-A, all word frequencies are then obtained by iterating 

through the remaining report text, where raw word counts 

for each word-type are tabulated. These word counts are 

then normalized to provide the score of each word-type in 

the report body. Lastly, all sentences in the report body 

are scored based on all the present word-types in the 

sentence. Finally, post-processing is carried out to 

manually assign scores to sentences with certain 

properties, e.g. report headers, subtitles, minimum 

sentence length, etc. 

2) Named entity recognition (NER): NER extracts, locates 

and classifies named entities from unstructured text into 

pre-defined categories. Named entities are real-world 

objects generally represented by proper nouns [12]. NER 

is used to remove named entities from the text prior to 

sentiment analysis and to add static scores to sentences. 

[11] has shown that removal of named entities or proper 

nouns leads to an improvement in extractive text 

summarization. The spaCy library, which is trained on the 

‘OntoNotes5’ dataset and boasts a 85.85% accuracy, is 

used to perform NER. 

3) Sentiment Analysis: Sentiment Analysis is used to 

identify and classify the polarity or sentiment, of a given 

text, where sentiment refers to the opinion or emotion 

contained within the text [13]. We use deep learning 

models for sentiment analysis [14] using the 5-class 

classification model due to its wide polarity range. The 

Stanford Sentiment Treebank (SST) Dataset [15] is used 

for the training due to its state-of-the-art annotation 

scheme. SST is the standard benchmark for neural 

network models that can capture the syntactic structures 

of sentence [16]. In SST, sentiment labels are assigned to 

every phrase and word in sentences in a nested tree 

structure. This allows the study the complex semantic 

interactions between words and phrases. 

 

 

 
Fig. 3. Sample screenshot of PRMS. 

 

 
Fig. 4. Example of text extraction of sections of uploaded report for preview. 
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Fig. 5. A screenshot of the generated consolidated report page. 

 
Fig. 6. Design of assistive extractive text summarizer. 

 

The learning algorithm from AllenNLP library used here is 

the Biattentive Classification Network (BCN) and uses 

pre-trained word vector Embeddings from Language Models 

(ELMo) [17]. AllenNLP allows the pre-set learning 

algorithms to be fine-tuned to customize the models needed 

for aETS. While [17] reported an accuracy of 54.7% using 

the SST dataset, it only achieves 43.2% in aETS 

implementation. 

Sentence scoring formula derived heuristically to improve 

accuracy: The output of the semantic analysis is a logit tensor 

containing the non-normalized output of the BCN+ELMo 

model. This tensor contains 5 logits, each corresponding to a 

class in the 5-class annotation of SST. The logit with the 

highest probability (argmax) is then used to classify the 

sentiment of the sentence. Sentiment analysis plays a huge 

role in the ranking of importance of sentences in PRMS.  

Observations of logits produced show that while there are 

frequent cases of misclassification due to BCN-ELMo’s low 

accuracy of 43.2%, there is a very high probability observed 

in misclassifications when (1) the ground truth is ±1 of the 

output class, and (2) the post-normalized logits have a low 

standard deviation with window size of 3 of the ground truth. 

Based on these observations and that the ground truth is 

unknown, a scoring formula is proposed as follows: 

 Perform Min-max normalization of the logits 

 Obtain window size of 3 by finding two neighbouring 

classes with the largest logit score and obtain the possible 

label 

 Compute the confidence score of the result using the 

normalized difference between the score and the  

neighbouring classes’ logit score 

Compute the final static score depending on the output 

label versus the possible label, confidence score and flat 

score. This final score is then added to the computed score of 

the first two blocks in Fig. 6 as a static score instead of a 

multiplier. This is due to bias in the sentence scores of the 

former towards shorter sentences (i.e. a short negative 

sentence will have a lower score despite having a high, 

negative sentiment). 

Fig. 7 illustrates the application of the aforementioned 

formula to a previously misclassified neutral sentence by 

BCN-ELMo to positive as can be seen from Result (Red box). 

The proposed scoring formula is able to detect the 

classification error and give the correct label of ‘Neutral’ 

shown as Possible Output (Green box). 

F. Incorporation of aETS into PRMS 

aETS is integrated into PRMS and Fig. 8 shows the user 

interface. The output of aETS is the ranked sentences which 

are displayed onto a user-friendly and intuitive interface 

focusing on assisting users in text summarization. Sliders on 
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the interface allow the user to freely adjust their top N number of significant sentences, which are displayed in bold.  

 
Fig. 7. Heuristic formula to compute sentiment static score to improve accuracy. 

 

 
Fig. 8. User interface of aETS in PRMS. 

 

IV. CONCLUSION 

This paper details the development of a Project Reporting 

Management System (PRMS) to automate project reporting 

in the scenario of a typical research centre. In fact, the 

proposed PRMS is general enough to be scaled up and 

deployed for a large department or scaled down for a smaller 

setup in any organization which needs a simple and efficient 

project progress reporting system without incurring the 

complexity and cost of commercial project management 

systems. The progress of the individual projects has to be 

tracked through the periodic submission of progress reports 

and the administrator will need to compile these individual 

reports manually into a consolidated report and an executive 

summary for higher management. PRMS automates the 

tracking of individual projects and reporting deadlines, sends 

email reminders and allows online submission of reports by 

the PIs. PRMS also incorporates automated and assistive 

features exploiting Machine Learning (ML) and Natural 

Language Processing (NLP) techniques to generate the 

consolidated report. A proof-of-concept assistive extractive 

text summarizer has also been developed to rank the 
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sentences thereby facilitating the extraction of important 

portions of the reports to assist the administrator in preparing 

an executive summary. 
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