



Abstract—This paper details a proof-of-concept system called

Project Reporting Management System (PRMS) to manage the

project reporting process in a typical research centre where the

process can be manual for many centres. In fact, it is general

enough to be scaled up and deployed for a large department or

scaled down for a smaller setup in any organization which needs

a simple and efficient project progress reporting system but

does not entail the kind of complexity and cost of commercial

project management systems. Using a research centre scenario,

the progress of the individual projects has to be tracked

through the periodic submission of progress reports by the

Principal Investigator (PI) of the project. The centre will need

to consolidate these individual reports manually into a

consolidated report and an executive summary for higher

management. PRMS automates the tracking of individual

projects and reporting deadlines, sends reminders and allows

online submission of reports by the PIs. PRMS also

incorporates assistive and automated features exploiting

Machine Learning (ML) and Natural Language Processing

(NLP) techniques to generate the consolidated report and rank

sentences of verbose report for assistive text summarization to

facilitate the manual process of producing an executive

summary.

Index Terms—Web-based system, reporting process

automation, machine learning, natural language processing,

sentiment analysis, text summarization.

I. INTRODUCTION

A typical research centre has many projects running at the

same time. The progress of all projects has to be tracked by

the management through periodic progress report

submissions by the respective project principal investigators

(PI). These individual reports have to be consolidated to

produce an executive summary to facilitate onward reporting

to higher management. In many centres, the process is

manual as in the staff member in charge of project reports

will have to email all PIs to submit their progress reports on a

regular basis. Monitoring of reports submitted, the deadlines

and reminders to PI is usually being carried out via emails.

The staff will then have to browse through all the reports and

gather the important progress so that they can be consolidated

into an executive summary for higher management to peruse.

Important information such as lack of progress and problems


Manuscript received November 16, 2019. This work was supported in

part by Grant No. NTU M4082227. The authors also wish to thank Singtel
Cognitive and Artificial Intelligence Lab for Enterprises@Nanyang

Technological University (SCALE@NTU) for providing the project

reporting requirements of a typical research centre.
Jin Boon Benjamin Tan, Quan Chen and Chai Kiat Yeo are with School

of Computer Science and Engineering, Nanyang Technological University,

Singapore (e-mail: jtan346@e.ntu.edu.sg, qchen@ntu.edu.sg,
asckyeo@ntu.edu.sg).

encountered has to be highlighted so that remedial action can

be carried out to restore the projects back on schedule. The

process is laborious and time-consuming.

A web-based proof-of-concept system called Project

Reporting Management System (PRMS) is hence proposed to

automate as much of the manual pipeline of project progress

reporting as possible. PRMS automates the tracking of

individual projects and reporting deadlines, sends reminders

and allows online submission of reports by the PIs. PRMS

also incorporates assistive and automated features to further

automate the reporting process. It exploits Machine Learning

(ML) and Natural Language Processing (NLP) techniques to

rank sentences from the reports to facilitate the manual

process of producing an executive summary. Although this

paper uses a research scenario as the application example, the

proposed PRMS is general enough to be deployed for a large

department or for a smaller setup in any organization which

needs a project progress reporting system but does not entail

the kind of organization functional integration, complexity

and cost of commercial project management systems such as

Microsoft Project [1], Tiemchart [2], Monday [3] etc.

This paper is organized as follows: Section II provides an

overview of PRMS and its implementation. Section III details

the assistive and automated features to extract important

sentences by ranking them for report consolidation and

facilitate preparation of the executive summary. Section VI

concludes the paper.

II. OVERVIEW AND DEVELOPMENT OF PRMS

The requirements of PRMS is a fully functional enterprise

system for management of research project reporting which

include the design and development of the system, user

interface and digitization of the process flow and the

automation and optimization of areas within the reporting

framework that are identified to be manually intensive or are

prone to human-error or failure. Agile Project Management

methodology is adopted in the development of PRMS.

A. System Requirements

Without an automated tool, administrators will need to

manually consolidate all the individual project reports into a

single report. Prior to this process, the individual reports must

be reviewed and approved by the administrator to ensure they

are of sufficient quality and adhere to standards set out.

Owing to the pipelined nature of this process, administrators

face the difficulty of tracking the status of individual reports

across projects (as only approved reports are consolidated).

Furthermore, the entire process of report consolidation is

repetitive, tedious and prone to human error and formatting

error. Therein lies the motivation for PRMS.

Project Reporting Management System with AI based

Assistive Features for Text Summarization

Jin Boon Benjamin Tan, Quan Chen, and Chai Kiat Yeo

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

21doi: 10.18178/ijmlc.2021.11.1.1009

Fig. 1. Use case diagram of PRMS.

Fig. 2. PRMS system architecture.

Fig. 1 shows the use case diagram for PRMS. The

functional requirements are as follows:

1) Provision of administrator and user account types with

different levels of access privileges. PIs or project leads

are able to log in with a user account, Provision of

administrator and user account types with different levels

of access privileges. PIs or project leads are able to log in

with a user account, reset and change password and edit

user profile and account information. System

administrators are able to log in with an administrator

account and such account must contain all the user

functionality for account access except changing the user

password. Administrator can create, activate, deactivate

and delete user accounts.

2) Provision of project management functionalities with

controlled access according to account types. Users can

access projects according to their project membership

such as PI/lead and members of project team and view,

edit and upload reports. Besides details of the project,

reporting requirements such as the schedule, type of

reports, deadlines etc. are also included in the project

profile. Administrators can perform project management

tasks which will be a superset of those of the users.

Administrators can define project access, assign the roles

of the different users to the projects, add, delete or archive

projects, edit project information, define the reporting

types and deadlines. Administrator can define the report

types needed for each project and their associate

deadlines. Report types can be annual, bi-annual,

quarterly, bi-monthly, monthly, fortnightly or weekly.

3) Provision of report management functionalities with

controlled access according to the account type, project

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

22

role and project reporting requirements. Users can access

their reports based on project role and project reporting

requirements as well as uploading new reports.

Administrators can perform all report management tasks

for all projects, view and download reports including

review actions, namely to approve or o reject with

comments. Administrators can activate the automatic

sending of email reminders.

4) Automatic report extraction for users to effectively

preview the uploaded report prior to submission.

5) Assistive tools for automatic generation of consolidated

report.

B. System Architecture

The system architecture of PRMS is modified from the

Django framework [4] and is shown in Fig. 2. Extensions to

the Django framework comprised system-level components

(the yellow shaded blocks on the left of the figure) and

app-level components (the blue shaded blocks on the right of

the figure). The added system-level components include a

virtual environment to store and manage packages, libraries

and modules that are not part of the standard Python library as

well as directories for system-level templates, static files and

media files uploaded by the users. Added app-level

components include a URL router, directories for static files

(immutable files used in the templates) and controllers. The

app-level controller directories contain functional codes and

data (e.g. stored models from machine learning modules)

relating to each app’s business-logic. This structure will

separate controller (business-logic) code from templating

logic code in the app’s views to facilitate system

development, unit testing and code readability.

C. System Test

Acceptance Test Driven Development (ATDD) is used as

the base stratagem as User Acceptance Tests (UAT) is carried

out during the gathering of feedback for upcoming iterations

of development [5]. The various tests show that PRMS has

fulfilled the functional requirements set out in Section II-A.

In addition, it is to be noted that the longest path to execute a

user, project or report data manipulation function in PRMS is

no more than 4 interactions within the application, including

any prompts and messages for best user experience.

Fig. 3 shows an example of a PRMS screenshot. It displays

the menu available to the Administrator (on the left tab), a

listing of all the projects and the corresponding reporting

requirements and deadlines. In particular, it shows that the

administrator has the option to manually trigger email

reminder to a project’s PI which is in addition to the

automated scheduled email reminders.

III. ASSISTIVE AUTOMATIC TOOLS FOR TEXT EXTRACTION

AND SUMMARIZATION

A. Toolkits Used

The libraries used to implement the NLP features are

spaCy [6] and AllenNLP [7]. SpaCy offers a wide range of

NLP-related functionalities, such as tokenization, POS

tagging of extracted textual data and text preprocessing for

deep learning tasks. AllenNLP facilitates design of deep

learning tasks related to NLP. AllenNLP is used here to

implement the learning algorithm for sentiment analysis.

B. Template Based Automatic Text Extraction

Text Extraction involves the extraction of key sections of

the individual reports. This extraction is based on a standard

report template. In our application scenario, five important

sections are specified, namely, Milestones and Deliverables,

Expenditures and Justifications, Report Body, Publications

and Intellectual Properties. The first two sections are in table

form while the rest are free text format.

The Python library, docx2txt [8], is used to extract the text

from the Microsoft word documents for subsequent parsing

and text extraction. Parsing of the entire report comprises

Text parsing, Paragraph parsing and Section parsing. Text

parsing refers to the parsing of individual tokens (or regular

expressions) within a sentence or paragraph object in the

document file. Paragraph parsing parses the individual

paragraphs or token candidates within a paragraph object

while Section parsing parses paragraphs and paragraph styles

(headings) within the document to demarcate the sections.

All words in the report body are tokenized using spaCy.

Pre-processing is done to convert all words to lowercase and

to remove all stop-words and non-alphabetical characters.

Table I shows the report sections and the associated

extraction strategy applied. The extraction accuracy is 100%

in our tests on three sample reports since the extraction is

template based. It is to be noted that any changes in the report

template will require changes to this section of the program

codes.

TABLE I: REPORT TEMPLATE AND TEXT EXTRACTION STRATEGY

Report Structure
Report Section

 (In Sequence)
Type Extraction Strategy Accuracy

Milestones and

Deliverables
Table Text Parsing 100%

Expenditure and
Justifications

Table Paragraph Parsing 100%

Report Body
Free

Text/Section

Paragraph, Section

Parsing
100%

Publications
Free

Text/Section
Text, Paragraph,
Section Parsing

100%

Intellectual

Properties

Free

Text/Section

Text, Paragraph,

Section Parsing
100%

C. Automatic Text Extraction for Report Preview

Using the mechanism described in Section III-A, an

automatic report extraction feature is implemented for

effective preview of the uploaded report prior to submission

by the user. User can perform a quick check on the key

sections of the report before uploading to ensure that

important details are not being left out providing an optimal

user experience for the report submission process. Fig. 4

shows an example of the report. Note that Fig. 4 only shows

two sections out of the five sections spelt out in Table I.

D. Automatic Generation of Consolidated Report

The same mechanism detailed in Section III-A is applied to

the individual reports to extract the sections automatically

consolidating into a final report. Fig. 5 shows the screenshot.

Python libraries, docxtpl [9] and docxcompose, [10] are used

to facilitate the document generation process.

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

23

E. Assistive Extractive Text Summarizer

The assistive extractive text summarizer (aETS) using

NLP techniques is designed to help administrators in report

analysis and summarization, via the ranking of individual

sentences. aETS extracts a set of the most significant

sentences from a document verbatim and comprises three

steps, namely (1) creating an intermediate representation of

the original text (2) scoring of sentences and (3) obtaining the

most significant sentences [11]. The design pipeline is shown

in Fig. 6. Output from the text extraction mechanism

described in Section III-A is fed into the Assistive Extractive

Text Summarizer module. The first horizontal shaded block

(in yellow) shows the use of word frequency to score the

word-type in each sentence. The second shaded block (in

orange) shows the named entity extraction and the last block

(red) performs sentiment analysis for sentence scoring. A

scoring formula is derived to score each sentence within the

document. We avoid techniques which require

domain-specific training data as we do not have a large report

corpora and settle on word-frequency-based extractive text

summarizing technique [8] which comprises four steps as

shown in the first shaded block of Fig. 6.

1) Sentence Scoring using Word-Frequencies: After the

tokenization and pre-processing as described in Section

III-A, all word frequencies are then obtained by iterating

through the remaining report text, where raw word counts

for each word-type are tabulated. These word counts are

then normalized to provide the score of each word-type in

the report body. Lastly, all sentences in the report body

are scored based on all the present word-types in the

sentence. Finally, post-processing is carried out to

manually assign scores to sentences with certain

properties, e.g. report headers, subtitles, minimum

sentence length, etc.

2) Named entity recognition (NER): NER extracts, locates

and classifies named entities from unstructured text into

pre-defined categories. Named entities are real-world

objects generally represented by proper nouns [12]. NER

is used to remove named entities from the text prior to

sentiment analysis and to add static scores to sentences.

[11] has shown that removal of named entities or proper

nouns leads to an improvement in extractive text

summarization. The spaCy library, which is trained on the

‘OntoNotes5’ dataset and boasts a 85.85% accuracy, is

used to perform NER.

3) Sentiment Analysis: Sentiment Analysis is used to

identify and classify the polarity or sentiment, of a given

text, where sentiment refers to the opinion or emotion

contained within the text [13]. We use deep learning

models for sentiment analysis [14] using the 5-class

classification model due to its wide polarity range. The

Stanford Sentiment Treebank (SST) Dataset [15] is used

for the training due to its state-of-the-art annotation

scheme. SST is the standard benchmark for neural

network models that can capture the syntactic structures

of sentence [16]. In SST, sentiment labels are assigned to

every phrase and word in sentences in a nested tree

structure. This allows the study the complex semantic

interactions between words and phrases.

Fig. 3. Sample screenshot of PRMS.

Fig. 4. Example of text extraction of sections of uploaded report for preview.

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

24

Fig. 5. A screenshot of the generated consolidated report page.

Fig. 6. Design of assistive extractive text summarizer.

The learning algorithm from AllenNLP library used here is

the Biattentive Classification Network (BCN) and uses

pre-trained word vector Embeddings from Language Models

(ELMo) [17]. AllenNLP allows the pre-set learning

algorithms to be fine-tuned to customize the models needed

for aETS. While [17] reported an accuracy of 54.7% using

the SST dataset, it only achieves 43.2% in aETS

implementation.

Sentence scoring formula derived heuristically to improve

accuracy: The output of the semantic analysis is a logit tensor

containing the non-normalized output of the BCN+ELMo

model. This tensor contains 5 logits, each corresponding to a

class in the 5-class annotation of SST. The logit with the

highest probability (argmax) is then used to classify the

sentiment of the sentence. Sentiment analysis plays a huge

role in the ranking of importance of sentences in PRMS.

Observations of logits produced show that while there are

frequent cases of misclassification due to BCN-ELMo’s low

accuracy of 43.2%, there is a very high probability observed

in misclassifications when (1) the ground truth is ±1 of the

output class, and (2) the post-normalized logits have a low

standard deviation with window size of 3 of the ground truth.

Based on these observations and that the ground truth is

unknown, a scoring formula is proposed as follows:

 Perform Min-max normalization of the logits

 Obtain window size of 3 by finding two neighbouring

classes with the largest logit score and obtain the possible

label

 Compute the confidence score of the result using the

normalized difference between the score and the

neighbouring classes’ logit score

Compute the final static score depending on the output

label versus the possible label, confidence score and flat

score. This final score is then added to the computed score of

the first two blocks in Fig. 6 as a static score instead of a

multiplier. This is due to bias in the sentence scores of the

former towards shorter sentences (i.e. a short negative

sentence will have a lower score despite having a high,

negative sentiment).

Fig. 7 illustrates the application of the aforementioned

formula to a previously misclassified neutral sentence by

BCN-ELMo to positive as can be seen from Result (Red box).

The proposed scoring formula is able to detect the

classification error and give the correct label of ‘Neutral’

shown as Possible Output (Green box).

F. Incorporation of aETS into PRMS

aETS is integrated into PRMS and Fig. 8 shows the user

interface. The output of aETS is the ranked sentences which

are displayed onto a user-friendly and intuitive interface

focusing on assisting users in text summarization. Sliders on

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

25

the interface allow the user to freely adjust their top N number of significant sentences, which are displayed in bold.

Fig. 7. Heuristic formula to compute sentiment static score to improve accuracy.

Fig. 8. User interface of aETS in PRMS.

IV. CONCLUSION

This paper details the development of a Project Reporting

Management System (PRMS) to automate project reporting

in the scenario of a typical research centre. In fact, the

proposed PRMS is general enough to be scaled up and

deployed for a large department or scaled down for a smaller

setup in any organization which needs a simple and efficient

project progress reporting system without incurring the

complexity and cost of commercial project management

systems. The progress of the individual projects has to be

tracked through the periodic submission of progress reports

and the administrator will need to compile these individual

reports manually into a consolidated report and an executive

summary for higher management. PRMS automates the

tracking of individual projects and reporting deadlines, sends

email reminders and allows online submission of reports by

the PIs. PRMS also incorporates automated and assistive

features exploiting Machine Learning (ML) and Natural

Language Processing (NLP) techniques to generate the

consolidated report. A proof-of-concept assistive extractive

text summarizer has also been developed to rank the

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

26

sentences thereby facilitating the extraction of important

portions of the reports to assist the administrator in preparing

an executive summary.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Jin Boon Benjamin Tan designed and developed the

system and conducted the research work involved. Quan

Chen spelt out the system requirements, performed system

analysis and conducted detailed testing and verification. Chai

Kiat Yeo conceived the project, supervised the design,

development as well as the research conducted and wrote the

paper with inputs from all authors. All authors had approved

the final version.

REFERENCES

[1] Microsoft, Project. [Online]. Available:

https://products.office.com/en-sg/project/project-management-softwar

e?rtc=1
[2] Tiemchart, Online Project Management Software.

[3] Monday, Project Management Software.

[4] Danjo, Danjo: The Web Framework for Perfectionists with Deadlines.
[Online]. Available: https://www.djangoproject.com/

[5] ReQTest, Agile Testing – Principles, Methods & Advantages, 18 July

2018.
[6] spaCy. SpaCy - Facts & Figures. [Online]. Available:

https://spacy.io/usage/facts-figures

[7] Allen Institute of AI. AllenNLP. [Online]. Available:
https://allennlp.org/

[8] Python Software Foundation, Python Project. [Online]. Available:

https://pypi.org/project/doc2text/
[9] Python Software Foundation, Python Project. [Online]. Available:

https://pypi.org/project/docxtpl/

[10] Python Software Foundation, Python Project. [Online]. Available:

https://pypi.org/project/docxcompose/

[11] R. Ferreiraa et al, “Assessing sentence scoring techniques for
extractive text summarization,” Expert System Applications, 2013.

[12] S. Li, “Named entity recognition with NLTK and SpaCy,” Towards

Data Science, August 17, 2018.
[13] S. Gupta, “Sentiment analysis: Concept, analysis and applications,”

Towards Data Science, January 8, 2018.

[14] "NLP-progress: Sentiment analysis," NLP-progress, [Online].
Available: http://nlpprogress.com/english/sentiment_analysis.html.

[15] Stanford University, Stanford Sentiment Treebank, Deeply Moving:

Deep Learning for Sentiment Analysis.
[16] R. Socher et al., “Recursive deep models for semantic compositionality

over a sentiment treebank,” in Proc. Conference on Empirical Methods

in Natural Language Processing (EMNLP), 2013.

[17] M. E. Peters et al., “Deep contextualized word representations,” Allen

Institute for Artificial Intelligence, Paul G. Allen School of Computer

Science & Engineering, University of Washington, 2018.

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Jin Boon Benjamin Tan is an undergraduate from

Nanyang Technological University (NTU) and will
receive his B.Eng in computer science with

specialization in artificial intelligence and data

science & analytics in 2020. His areas of interest
include system design & development, machine

learning, natural language processing, deep

learning and information retrieval. He is
particularly interested in the ideation and

development of practical system tools using

machine learning techniques.

Chen Quan received his PhD in computer
engineering from Nanyang Technological

University (NTU). He is a principal research fellow

in NTU and his research interests include
computer-assisted animation, computer graphics

and game related technologies. He is also an

associate director of Singtel Cognitive and
Artificial Intelligence Lab for Enterprises

(SCALE@NTU), managing various research

projects in AI, data analytics, robotics and smart
computing.

Chai Kiat Yeo received the B.Eng. (Hons.) and

M.Sc. degrees both in electrical engineering, from

the National University of Singapore and the
Ph.D. degree from the School of Electrical and

Electronics Engineering, Nanyang Technological
University (NTU), Singapore. She was an

assistant principal engineer with Singapore

Technologies Electronics and Engineering
Limited prior to joining NTU in 1993. She is an

associate professor and was the deputy director of

Centre for Multimedia and Network Technology
(CeMNet) and the associate chair (academic) with the School of Computer

Science and Engineering, NTU. She is currently the deputy director and

programme lead of Singtel Cognitive and Artificial Intelligence Lab for
Enterprises@NTU. Her current research interests include anomaly detection,

machine learning, artificial intelligence, predictive operational analytics, ad

hoc and mobile networks.

International Journal of Machine Learning and Computing, Vol. 11, No. 1, January 2021

27

https://creativecommons.org/licenses/by/4.0/

