
  



 

Abstract—Slow feature analysis (SFA) is a machine learning 

method for extracting slowly time-varying feature from multi-

dimensional time series data. Recently, probabilistic SFA (PSFA) 

that extends SFA to a probabilistic framework has been 

proposed. The PSFA can be applied to stationary time series 

data with noise and missing values. In order to deal with non-

stationary time series data including change points, we propose 

a switching probabilistic slow feature analysis (switching PSFA) 

in this paper. By introducing a switching state space model, it is 

possible to extract slowly varying information even when system 

parameters change with time. Using the proposed method, we 

show that slowly time-varying components can be extracted 

more accurately from time-series data with non-stationarity. 

 
Index Terms—Slow feature analysis, switching state space 

model, Bayesian time series analysis, statistical machine 

learning. 

 

I. INTRODUCTION 

A large amount of multi-dimensional time-series data such 

as image data and sensor data has been handled, with the 

development of information technology and observation 

technology. In recent years, it has been required to make use 

of such large amount of data in order to discover useful 

knowledge [1]-[3]. 

Various machine learning studies have been conducted on 

feature extraction methods for high-dimensional time-series 

data, and slow feature analysis (SFA) has recently attracted 

attention as one of them, which was originally proposed from 

a viewpoint of human recognition system [4]. When a human 

acquires various visual information such as the position and 

shape of an object, the visual information is acquired from a 

large amount of retinal cells. Individual retinal signals are 

sensitive to slight environmental changes. However, higher 

sensations such as the position and shape of objects change 

very slowly compared to them. In this way, it is known in 

neuroscience that slowly changing components in visual 

information have an important role in the recognition of 

objects and space [4]-[6]. The SFA is an unsupervised feature 

extraction method developed based on the knowledge of 

visual information, and is an algorithm for extracting slowly 

time-varying feature from an input multi-dimensional data. 

SFA is a model proposed in the field of neuroscience, but it 

is also applied in the field of machine learning such as pattern 

recognition and information extraction [7]-[15]. Moreover, 
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Turner and Sahani proposed a probabilistic SFA by 

considering constraints to the state space model [6]. While 

deterministic SFA is difficult to estimate for data that 

includes noise, PSFA has the advantage that observation 

noise can be considered. There are also discussions on the 

effects of observation noise on PSFA [16], [17]. 

Conventionally, PSFA has been applied to multi-

dimensional time-series data that does not include change 

points. However, in time series data, the behavior of observed 

values may change suddenly from a certain time, and it is 

important to detect changes behind the time series [18]. For 

example, in sensor data related to body movements, it is 

required to detect actions from time-series data in which 

multiple actions are continuously mixed [19]. 

In this study, we propose a switching PSFA in order to 

extract hidden slow feature from non-stationary multi-

dimensional time series data. We formulate switching PSFA 

by using a switching state space model, and find a change 

point for non-steady multi-dimensional time series data so 

that PSFA can be performed.

 

The rest of this paper is 

organized as follows.

 

In Section II, we describe conventional 

SFA. In Section III, we propose switching probabilistic slow 

feature analysis. We formulate probabilistic model of 

switching PSFA, and derive variational learning framework.

 

In Section IV, the proposed method is evaluated using 

simulated data.

 

Concluding remarks are given in Section V.  

 

II.

 

EXISTING METHODS

 

In this section, we first explain conventional frameworks 

of slow feature analysis (SFA): deterministic SFA and 

probabilistic SFA. Next, we describe parameter estimation 

method for probabilistic SFA using EM algorithm. 

A.

 

Deterministic SFA 

Deterministic SFA is an unsupervised algorithm for 

extracting slowly time-varying features from multi-

dimensional time series data [4], [20]. Schematic of SFA is 

shown in Fig. 1. Let 𝒙(𝑡)  be the given input observation 

multi-dimensional time-series data. The output 𝒚(𝑡)

 

extracted by the SFA consists of 𝑦𝑗(𝑡) = 𝑔𝑗(𝒙(𝑡))using the 

transformation 𝑔𝑗(⋅) . The transformation 𝑔𝑗(𝒙)  minimizes 

the square of the time derivative  
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𝛥(𝑦𝑗) ≔ ⟨𝑦𝑗
2̇ ⟩

𝑡
= ⟨(

𝑑

𝑑𝑡
𝑔𝑗(𝒙(𝑡)))

2

⟩

𝑡

 

where ⟨⋅⟩𝑡 represents the time average. An element of output 

𝑦𝑗(𝑡) = 𝑔𝑗(𝒙(𝑡)) that minimizes 𝛥(𝒚) is called slow feature. 

Besides, the following constraint conditions are added to the 

formula, 

 

⟨𝑦𝑗⟩
𝑡

= 0   (zero mean),  

 

⟨𝑦𝑗
2⟩

𝑡
= 1   (unit variance),  

 

⟨𝑦𝑖𝑦𝑗⟩
𝑡

= 0   (decorrelation).  

 

Here, (2) and (3) are used to normalize all outputs, and to 

avoid obvious solutions such as the output is zero. (4) is used 

to extract different information by making the outputs 

uncorrelated. In the following, we assume that the 

transformation 𝒈(⋅)  is a linear transformation and is 

expressed as 𝒚(𝑡) = 𝑾𝒙(𝑡) using the matrix 𝑾. 
 

Fig. 1. Schematic of SFA. 

Fig. 2. Graphical model of probabilistic SFA (conventional method). 

 

B. Probabilistic SFA 

In recent studies, SFA with probabilistic framework was 

proposed by adding constraints to the system model of linear 

Gaussian state space model [6]. We assume that 𝒚(𝑡) is the 

𝑁-dimensional hidden variables including the slow feature 

and 𝒙(𝑡)  is the 𝐷 -dimensional observable variable of the 

state space model. Fig. 2 shows the graphical model of 

probabilistic SFA. The state space model of PSFA is 

expressed by the following system model and observation 

model respectively, 

 

𝒚𝑡 = 𝝀𝒚𝑡−1 + 𝜼𝑡      𝜼𝑡 ∼ 𝒩(𝟎, 𝜮),  
 

𝒙𝑡 = 𝑾−1𝒚𝑡 + 𝝐𝑡      𝝐𝑡 ∼ 𝒩(𝟎, 𝜎𝑥
2𝑰).  

 

In the system model as (5), the latent variable 𝒚𝑡 depends 

on 𝒚𝑡−1 , and 𝝀  is a parameter matrix that determines the 

degree of dependence. 𝝀  is an 𝑁 × 𝑁  diagonal matrix 

consisting of values 𝜆𝑛 for each 𝑦𝑛,𝑡. For system noise, the 

covariance matrix 𝜮 is 𝑁 × 𝑁 diagonal matrix with diagonal 

elements 𝜎𝑛
2. In the observation model as (6), 𝑾−1 is 𝐷 × 𝑁 

matrix and 𝑰 is 𝐷 × 𝐷 unit matrix.  

Here, the following restrictions are assumed in order to 

incorporate the properties of SFA, 
 

𝜆𝑛
2 + 𝜎𝑛

2 = 1.  
 

If 𝜆𝑛  is large, corresponding latent variable 𝑦𝑛,𝑡  depends 

strongly on the value of the previous time, and noise 𝜂𝑛,𝑡 

becomes small, thus 𝑦𝑛,𝑡 changes slowly. On the other hand, 

if 𝜆𝑛 is small, it becomes less dependent on the value of the 

previous time, and noise 𝜂𝑛,𝑡  becomes large, therefore 𝑦𝑛,𝑡 

changes quickly.  

From (5) and (6), the state space model can be expressed 

by using the probability density function as follows: 
 

𝑝(𝒚𝑡|𝒚𝑡−1, 𝝀, 𝜮) = 𝒩(𝒚𝒕|𝝀𝒚𝑡−1, 𝜮),  
 

𝑝(𝒙𝑡|𝒚𝑡 , 𝑾, 𝜎𝑥
2) = 𝒩(𝒙𝑡|𝑾−1𝒚𝑡 , 𝜎𝑥

2𝑰).  
 

The likelihood function for estimating the parameters 𝜽 =
{𝝀, 𝑾−1, 𝜮, 𝜎𝑥

2} of PSFA is expressed as follows: 

𝑝(𝒙1:𝑇|𝜽) = ∫ d𝒚1:𝑇 (∏ 𝑝(𝒙𝑡|𝒚𝑡 , 𝑾, 𝜎𝑥
2)

𝑇

𝑡=1

) 

× ∏ ∏ 𝑝(𝑦𝑛,𝑡|𝑦𝑛,𝑡−1, 𝜆𝑛 , 𝜎𝑛
2)

𝑇

𝑡=1

𝑝(𝑦𝑛,1|𝜎𝑛,1
2 )

𝑁

𝑛=1

.
(10)

 

 

C. Parameter Estimation Using EM Algorithm 

In the PSFA proposed by Turner and Sahani [6], 

parameters are estimated assuming that the observation noise 

is zero. However, recent research has shown that observation 

noise affects the accuracy of slow feature estimation. In this 

section, we describe a PSFA proposed by Takeuchi and 

Omori [21]. It introduces an EM algorithm so that all 

parameters including observation noise can be estimated. The 

EM algorithm is a maximum likelihood estimation algorithm 

devised by Dempster et al. [22]. When it is difficult to apply 

the maximum likelihood estimation, the estimated maximum 

likelihood is calculated for incomplete data using the 

likelihood assuming that complete data is obtained [23]. The 

EM algorithm guarantees that a local optimal solution can be 

obtained by alternately repeating the E (Expectation) step and 

the M (Maximization) step. In the E step, the expected value 

of the log likelihood of the complete data 𝑝(𝒙1:𝑇 , 𝒚1:𝑇|𝜽) is 

calculated based on the distribution of latent variables 

currently estimated using the Kalman smoother, 
 

𝑄(𝜽|𝜽(𝑘)) = 𝐸𝒚|𝒙,𝜽(𝑘)[log 𝑝 (𝒙1:𝑇 , 𝒚1:𝑇|𝜽)].  
 

Here, 𝑄 is the expected value of the log likelihood of the 

complete data in the PSFA model, 𝑘 is the number of steps 

in the EM algorithm, and the log likelihood is represented as  

log 𝑝 (𝒙1:𝑇 , 𝒚1:𝑇|𝜽) = ∑ log 𝑝 (𝒙𝑡|𝒚𝑡 , 𝑾, 𝜎𝑥
2)

𝑇

𝑡=1

 

+ log 𝑝 (𝒚1|𝜮1) + ∑ log

𝑇

𝑡=2

𝑝(𝒚𝑡|𝒚𝑡−1, 𝛌).  

 

In the M step, the expected value of the log likelihood 
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obtained in the E step is maximized for the parameter 𝜽, 

 

𝜽(𝑘+1) = argmax𝜽𝑄(𝜽|𝜽(𝑘)).  

 

The EM algorithm repeats the E and M steps up to a 

predetermined number of times or until the log likelihood 

converges. However, since the parameter estimated by the 

EM algorithm is a local optimal solution, it may differ from 

the true value depending on the initial parameter 𝜽(1). 
 

 
Fig. 3. Graphical model of the switching probabilistic slow feature analysis 

(proposed method). 

 

III. PROPOSED METHOD: SWITCHING PROBABILISTIC SLOW 

FEATURE ANALYSIS 

In this section, we formulate switching PSFA by applying 

the concept of switching state space model to the PSFA. In 

order to extract slowly time-varying features even for time 

series data including change points, we estimate latent 

variables and parameters using the variational Bayesian 

method. We derive variational Bayesian learning framework 

for switching PSFA.  

A. Switching Framework for Probabilistic Slow Feature 

Analysis 

The conventional PSFA assumes one system model, since 

it does not assume non-steady systems. In the proposed 

method, by introducing a switching state space model [24]-

[27] into PSFA, it was possible to analyze time series data 

including change points. As shown in Fig. 3, switching state 

space model (SSSM) prepares multiple state variables 

𝒚𝑡
(𝑚)

 (1 ≤ 𝑚 ≤ 𝑀)  and switch variables 𝒔𝑡 ∈ {0,1}𝑀 , and 

the observation value 𝒙𝑡 is generated from the latent variables 

of the model 𝑚 selected by the switch variables 𝒔𝑡. 𝒔𝑡 is an 

𝑀-dimensional vector having 1 in one element and 0 in the 

other elements. The latent variable 𝒚𝑡
(𝑚)

 and the switch 

variable 𝒔𝑡  have a Markov property that depends on the 

previous value (𝒚𝑡−1
(𝑚)

, 𝒔𝑡−1), and SSSM is a combination of a 

hidden Markov model (HMM) and a state space model (SSM). 

The system model and observation model of SSSM are 

expressed as follows: 

 

𝒚𝑡
(𝑚)

= 𝝀(𝑚)𝒚𝑡−1
(𝑚)

+ 𝜼𝑡
(𝑚)

  (𝑚 = 1, ⋯ , 𝑀),  

 

𝒙𝑡 = 𝑾−1(𝑚)
𝒚𝑡

(𝑚)
+ 𝝐𝑡

(𝑚)
  (𝑚 = 1, ⋯ , 𝑀).  

 

For (15), if the observation 𝒙𝑡 is output from the 𝒚𝑡
(𝑚)

, 𝒔𝑡 

is a one-hot vector with unity in the 𝑚-th element. The model 

for switch variables is as follows: 

 

𝑝 (𝑠𝑡
(𝑗)

= 1|𝑠𝑡−1
(𝑖)

= 1) = 𝜙𝑗,𝑖 .  

 

This is the probability of transition from state 𝑠𝑡−1
(𝑖) = 1 

at time (𝑡 − 1 ) to state 𝑠𝑡
(𝑗) = 1  at time 𝑡 . This is each 

element of the transition matrix of 𝑀 × 𝑀. 

The joint probability of the proposed switching PSFA is 

given by 
 

𝑝(𝒔1:𝑇 , 𝒚1:𝑇
(1)

, ⋯ , 𝒚1:𝑇
(𝑀)

, 𝒙1:𝑇)

=  𝑝(𝒔1) ∏ 𝑝(𝒔𝑡|𝒔𝑡−1) ∏ 𝑝(𝒚1
(𝑚)

)

𝑀

𝑚=1

𝑇

𝑡=2

∏ 𝑝(𝒚𝑡
(𝑚)

|𝒚𝑡−1
(𝑚)

)

𝑇

𝑡=2

× ∏ 𝑝(𝒙𝑡|𝒚𝑡
(1)

, ⋯ , 𝒚𝑡
(𝑀)

, 𝒔𝑡)

𝑇

𝑡=1

,                                         

 

where 𝑝(𝒚𝑡
(𝑚)

|𝒚𝑡−1
(𝑚)

) is derived from (14). The log-likelihood 

is expressed by 

 

log 𝑝(𝒙𝑡|𝒚𝑡
(1)

, ⋯ , 𝒚𝑡
(𝑀)

, 𝑠𝑡
(𝑚)

= 1) 

= −
𝐷

2
log(2𝜋) −

1

2
log|𝑹(𝑚)| 

−
1

2
(𝒙𝑡 − 𝑾−1(𝑚)

𝒚𝑡
(𝑚)

)
𝑇

𝑹(𝑚)−1
(𝒙𝑡 − 𝑾−1(𝑚)

𝒚𝑡
(𝑚)

) .  

 

Here, 𝐷  represents the number of dimensions of the 

observation and 𝑹(𝑚)  is the covariance matrix of the 

observation noise. As shown in (18), when the switch variable 

𝒔𝑡  has 1 in the 𝑚-th element (𝑠𝑡
(𝑚) = 1), the likelihood is 

expressed by an observation model for 𝑚-th SSM. 

B. Variational Inference 

In this study, we derive learning algorithm for parameters 

of switching probabilistic slow feature analysis by 

generalizing the EM algorithm [22]. The log-likelihood of the 

observation data to be maximized is expressed by the 

following equation:  

 

log 𝑝(𝒙1:𝑇|𝜽) = log ∑ ∫ 𝑝(𝒔1:𝑇 , 𝒚1:𝑇 , 𝒙1:𝑇|𝜽)

𝒔1:𝑇

𝑑𝒚1:𝑇

= log ∑ ∫ 𝑄(𝒔1:𝑇 , 𝒚1:𝑇) [
𝑝(𝒔1:𝑇 , 𝒚1:𝑇 , 𝒙1:𝑇|𝜽)

𝑄(𝒔1:𝑇 , 𝒚1:𝑇)
]

𝒔1:𝑇

𝑑𝒚1:𝑇

≥ ∑ ∫ 𝑄(𝒔1:𝑇 , 𝒚1:𝑇)log [
𝑝(𝒔1:𝑇 , 𝒚1:𝑇 , 𝒙1:𝑇|𝜽)

𝑄(𝒔1:𝑇 , 𝒚1:𝑇)
]

𝒔1:𝑇

𝑑𝒚1:𝑇 ,       

 

where we used Jensen’s inequality. The purpose here is to 

maximize the lower bound of (19). In the E step, the posterior 

probability of 𝑄(𝒔1:𝑇 , 𝒚1:𝑇) = 𝑝(𝒔1:𝑇 , 𝒚1:𝑇|𝒙1:𝑇 , 𝜽)  is 

obtained using the current parameter estimates. However, it 

is quite difficult to find the exact posterior probability in 
SSSM. Therefore, we employ an estimation method using the 

variational Bayes method. 

Here we derive a method for estimating parameters in the 

switching PSFA by means of variational framework. In 

SSSM, it is difficult to obtain the posterior probability 

distribution 𝑝(𝒔1:𝑇 , 𝒚1:𝑇|𝒙1:𝑇)  precisely. Therefore, we 

approximate the posterior distribution by variational 

distribution 𝑄(𝒔1:𝑇 , 𝒚1:𝑇)  based on the mean field 
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(19)

(18)

(17)

(16)

(14)

15)(

(13)



  

approximation. In E-step, we estimate 𝑄(𝒔1:𝑇 , 𝒚1:𝑇)  that 

minimizes the Kullback-Leibler (KL) divergence: 

 

KL(𝑄||𝑃)

= ∑ ∫ 𝑄(𝒔1:𝑇 , 𝒚1:𝑇) log [
𝑄(𝒔1:𝑇 , 𝒚1:𝑇)

𝑝(𝒔1:𝑇 , 𝒚1:𝑇|𝒙1:𝑇)
] d𝒚1:𝑇

𝒔1:𝑇

 

 

Here, (20) is a metric of the distance between true 

distribution  𝑝(𝒔1:𝑇 , 𝒚1:𝑇|𝒙1:𝑇) and approximated distribution 

𝑄(𝒔1:𝑇 , 𝒚1:𝑇), and we aim to minimize (20) in E-step. The 

distribution 𝑄(𝒔1:𝑇 , 𝒚1:𝑇)  that approximates the posterior 

distribution is separated as follows: 
 

𝑄(𝒔1:𝑇 , 𝒚1:𝑇)

=
1

𝑍𝑄

[𝜓(𝒔1) ∏ 𝜓(𝒔𝑡−1, 𝒔𝑡)

𝑇

𝑡=2

] ∏ 𝜓(𝒚1
(𝑚)

) ∏ 𝜓(𝒚𝑡−1
(𝑚)

, 𝒚𝑡
(𝑚)

),

𝑇

𝑡=2

𝑀

𝑚=1

 

 
 

where 𝜓 is defined as 
 

𝜓(𝑠1
(𝑚) = 1) = 𝑝(𝑠1

(𝑚) = 1)𝑞1
(𝑚)

,  

 

𝜓(𝒔𝑡−1, 𝑠𝑡
(𝑚) = 1) = 𝑝(𝑠𝑡

(𝑚) = 1|𝒔𝑡−1)𝑞1
(𝑚)

,  

 

𝜓(𝒚1
(𝑚)

) = 𝑝(𝒚1
(𝑚)

)[𝑝(𝒙1|𝒚1
(𝑚)

, 𝑠1
(𝑚) = 1)]

ℎ1
(𝑚)

,  

 

𝜓(𝒚𝑡−1
(𝑚)

, 𝒚𝑡
(𝑚)

) = 𝑝(𝒚𝑡
(𝑚)

|𝒚𝑡−1
(𝑚)

)[𝑝(𝒙𝑡|𝒚𝑡
(𝑚)

, 𝑠𝑡
(𝑚) = 1)]

ℎ𝑡
(𝑚)

. 

 
 

Here, 𝑍𝑄 is a normalization factor. The KL divergence of 

the posterior distribution  𝑝(𝒔1:𝑇 , 𝒚1:𝑇|𝒙1:𝑇)  and its 

approximate 𝑄(𝒔1:𝑇 , 𝒚1:𝑇)  is minimized by repeatedly 

updating the following equations for ℎ𝑡
(𝑚)

 and 𝑞𝑡
(𝑚)

: 
 

ℎ𝑡
(𝑚)

= 〈𝑠𝑡
(𝑚)〉,  

 

log 𝑞𝑡
(𝑚)

= −
1

2
⟨(𝒙𝑡 − 𝑾−1(𝑚)

𝒚𝑡
(𝑚)

)
𝑇

𝑹(𝑚)−1
(𝒙𝑡

− 𝑾−1(𝑚)
𝒚𝑡

(𝑚)
)⟩ ,  

 

where brackets ⟨⋅⟩  represent an expectation. 〈𝑠𝑡
(𝑚)〉  is the 

probability that the 𝑚-th element of the switch variable 𝒔𝑡 is 

1 and is calculated by the forward-backward algorithm [28] 

using 𝑞𝑡
(𝑚)

. Here, 𝑞𝑡
(𝑚)

 is obtained from the value obtained by 

using Kalman smoother [29]-[31] on the data weighted by 

ℎ𝑡
(𝑚)

. In this way, the E-step aims to minimize the KL 

divergence.  

In M step, the expected value of log likelihood is partially 

differentiated for each parameter and the parameter is 

updated. The update formula derived for parameters in the 

proposed switching PSFA is as follows: 
 

𝑾−1(𝑚)
=

∑ ⟨𝑠𝑡
(𝑚)⟩𝒙𝑡 ⟨𝒚𝑡

(𝑚)𝑇
⟩𝑇

𝑡=1

∑ ⟨𝑠𝑡
(𝑚)⟩ ⟨𝒚𝑡

(𝑚)𝒚𝑡
(𝑚)𝑇

⟩𝑇
𝑡=1

,  

 

𝑹 =
1

𝑀𝑇
∑ ∑⟨𝑠𝑡

(𝑚)⟩

𝑇

𝑡=1

𝑀

𝑚=1

(⟨𝒚𝑡
(𝑚)𝒚𝑡

(𝑚)𝑇
⟩ − 𝑾−1(𝑚)

𝒙𝑡 ⟨𝒚𝑡
(𝑚)𝑇

⟩) ,  

𝒯(𝜆𝑛
(𝑚))

3
− ∑⟨𝑦𝑛,𝑡

(𝑚)𝑦𝑛,𝑡−1
(𝑚)⟩(𝜆𝑛

(𝑚))
2

𝑡

+ ∑ (⟨𝑦𝑛,𝑡
(𝑚)2

⟩ + ⟨𝑦𝑛,𝑡−1
(𝑚)2

⟩

𝑡

− 1) 𝜆𝑛
(𝑚)

− ∑⟨𝑦𝑛,𝑡
(𝑚)𝑦𝑛,𝑡−1

(𝑚)⟩

𝑡

= 0. 

 

As for (30), it satisfies the condition 0 < 𝜆𝑛
(𝑚)

< 1 in the 

solution of the cubic equation. Note that covariance matrix of 

the observation noise for each 𝑚  can also be derived by 

differentiation of the expected log-likelihood. Algorithm 1 

summarizes the algorithm of the proposed method. 

 
Algorithm 1: Switching probabilistic SFA  

Input: Observation data 𝒙, Iteration limit of EM algorithm 𝐾, Initial values 

of  parameters for each model 𝜽(𝑚) =   {𝝀(𝑚), 𝑾−1(𝑚)
, 𝑹(𝑚)}, and Initial 

value of transition probability 𝝓  
Output: Estimated parameters 𝜽(𝑚), 𝝓 

 

1: while Repeat until the lower log likelihood converges.  

2:  (E-step) 

3:        while Repeat until KL divergence converges. 

4: Calculate the expected value 𝐸[𝒔𝑡] using forward- backward 

algorithm, and update ℎ𝑡
(𝑚)

. 

5:   Calculate 𝐸[𝒚𝑡
(𝑚)

], 𝐸 [𝒚𝑡
(𝑚)𝒚𝑡

(𝑚)𝑇
], 

                 𝐸 [𝒚𝑡
(𝑚)𝒚𝑡−1

(𝑚)𝑇
] using Kalman smoother, and 

               update 𝑞𝑡
(𝑚)

 

6:       end while 

7:  (M-step) 

8:      Update parameters 𝜽(𝑚) 

9: end while 

IV. EXPERIMENT 

A. Experimental Settings 

In this section, in order to show the effectiveness of the 

proposed switching PSFA, we estimate parameters using 

simulated data and evaluate latent variables compared to 

conventional PSFA. The observation data including the 

change points were synthesized from three different PSFA 

models. The number of data points is 𝑇 = 1500; we assume 

that the entire data consists of 500 data points generated from 

each model (𝑚 =  1, 2 and 3). The latent variable was set to 

3 dimensions, and the observation data was set to 6 

dimensions. The parameter 𝝀(𝑚)  of switching PSFA has a 

different value in each dimension, 𝑾(𝑚) was set to different 

values for different 𝑚. Covariance matrix of the observation 

noise 𝑹  is common. We use switching PSFA to estimate 

latent variable 𝒚𝑡  and switch variable 𝒔𝑡  with Kalman 

smoother and forward-backward algorithm in E step. We 

estimate the parameters such as  𝜽(𝑚) = {𝝀(𝑚), 𝑾−1(𝑚)
, 𝑹} 

and state transition rates with M-step. State transition rates 

are estimated as conventional switching state space model 

framework [24]. We repeat E-step and M-step alternately 

until log likelihood has converged. 

 
TABLE I: MEAN SQUARE ERROR BETWEEN TRUE AND ESTIMATED VALUES 

OF LATENT VARIABLES 

Proposed method Conventional method 

0.03407 0.13226 
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Fig. 4. Estimation of switch variables. Upper: one dimension 𝒙𝑛,𝑡 of the six-

dimensional observation data xt. Middle: true switch variable st. Lower: 

estimated switch variable st. 

 

 
Fig. 5. A comparison of estimated latent variables yt between proposed 

method and conventional method. True and estimated latent variables 𝒚𝑡 are 

represented by black dotted line and red solid lines, respectively. Upper: 

Slow feature estimated by conventional PSFA. Lower: Slow feature 

estimated by switching PSFA. 

 

B. Result 

Here, we perform estimation of hidden variables yt using 

the proposed switching PSFA. Fig. 4 shows the result for 

estimating the switch variable 𝒔𝑡  by the forward-backward 

algorithms. It was shown that the switching of observation 

data model could be estimated by using switching PSFA from 

the state even when no information on change points or true 

parameters was given. 

Fig. 5 shows a comparison between the latent value yt 

obtained from the same observation data xt using the 

conventional PSFA and switching PSFA and the true value. 

Here, latent variables yt are calculated in E-step using a 

Kalman smoother. In Fig. 5, we find that the proposed method 

extracts the slow feature more accurately; the discrepancy 

between true and estimated slow feature is large in the 

existing PSFA compared with the proposed switching PSFA. 

Estimation accuracy is compared quantitatively between 

conventional PSFA and proposed switching PSFA by using 

mean squared error between true and estimated values of 

latent variables. Table I shows that our proposed switching 

PSFA extract latent variables more accurately compared with 

conventional PSFA. Since the conventional PSFA does not 

assume that the model is switched, it is impossible to estimate 

latent variables from observation data including change 

points. However, switching PSFA was able to estimate the 

latent variables well. It was also confirmed that the estimated 

value converged to the true value as each parameter was 

updated. 

 

V. CONCLUSION 

In this paper, the framework of the switching state space 

model is introduced to the probabilistic SFA, and the 

parameter update formula is derived using the EM algorithm 

and variational Bayesian method. It was also shown that 

latent variables, switch variables, and parameters can be 

estimated for time-series data including change points. 
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