

Abstract—Ethereum smart contracts based on blockchain

technology are powerful and promising applications that

provide a global platform for exchanging cryptocurrencies and

public services. This technology are garnering a huge impact

and is widely adopted in the current times as it can transform

the way we transfer and exchange value by passing the need for

a middleman and reducing cost. These smart contracts also

represent a basis for true ownership of digital assets and a wide

range of decentralized applications. Besides this, since

Ethereum and its smart contracts are a publicly accessible,

unchangeable and distributed platform, they are extremely

vulnerable to various forms of attack, with their security

becoming a top priority. However, current security-verifying

programs tend to provide many technical details which are

pretty hard for normal people to understand briefly. To tackle

this problem, we designed a process aiming to mitigate these

limitations, with our key insight being a combination of

semantic structure analysis and symbolic execution on

control-flow graphs (CFG for short). This article proposes a

new approach for auditing Ethereum smart contracts, applying

this technique would benefit both average users without any

technical knowledge and security experts as well.

Index Terms—Ethereum smart contracts, semantic structure

analysis, symbolic execution, control-flow graph.

I. INTRODUCTION

In recent years, technologies and computer ecosystems

have evolved tremendously, which cause many positive

impacts on modern societies. From the Internet of Things to

artificial intelligence and also blockchain technology, they

have shown to be applicable in many fields including

financial industries [1], cross-industry [2] and public sector

[3]. In addition to this, blockchain seems to be one of the

most disruptive technologies because its mechanics are likely

to have more influence on high-tech industries over the next

few years [4].

The blockchain is not a new technology; however, this

technology has gained a great effect in this decade. This is a

huge step forward in decentralized systems and distributed

applications. "It's about thinking about the current

architectural landscape and strategies to move immutable

distributed databases" [4]. To eliminate the need for trusted

Manuscript received October 11, 2019; revised March 5, 2020.

The authors are with the Faculty of Computer Science and Engineering, Ho

Chi Minh City University of Technology, Vietnam (e-mail: {bnbaotam,

nhhoang.sdh19, 1652119, 1652614, qttho}@hcmut.edu.vn).

third parties, blockchain was developed to work on a

peer-to-peer network that implements its peers to agree on

the trading transactions.

While the first generation of blockchain was designed only

to solve cryptocurrencies problems, Ethereum, one of the

most popular current systems, focuses on implementing

decentralized computing approaches [5]. One new

prominent of these reliable platforms is to enable smart

contracts, which can automatically execute on the

blockchain and enforced by the consensus protocol [6].

Accordingly, smart contracts are likely to apply in a wide

range of fields including ownership of copyrights, financial

instruments, document existence and asset tracking for the

Internet-of-Things [7].

The increased adoption of smart contracts demands strong

security guarantees. Unfortunately, it is challenging to create

smart contracts that are free of security bugs. As a

consequence, critical vulnerabilities in smart contracts are

discovered and exploited every few months [8], [9].

Moreover, we have to require not only the security but also

the correctness of executions, to keep smart contracts more

secure. In fact, adversaries may take advantage of

undocumented methods and exploit potential bugs as well as

vulnerabilities in the contracts, which can cause harm to

users. One of the most successful attacks is “The DAO” in

June 2016, which exploited the “call to unknown functions”

and “reentrancy” vulnerabilities and managed to steal from a

contract around $50M at the time of the attack [10]. More

precisely (in Fig. 1), an attacker identifies a victim contract

with a vulnerable function, i.e., transfer (function used to

send “Ether”) at step 1. He or she will deploy a contract to

exploit the vulnerability, which is the fallback function (step

2). Then the attacker call transfer. When executing the

money transfer operation at line 1 before updating the

balance at line 2, transfer calls the fallback function (Step 3).

The fallback function calls transfer again to still more money

(Step 4). [11]. More recently, $31M worth of ether was stolen

due to a critical security bug in a digital wallet contract [12].

Hence, verifying smart contract behaviors and solving

security issues are extremely crucial and challenging when

blockchain technologies evolve with much diversity across

their ecosystems.

The next sections of this paper are organized as follows.

Section II describes states of the art about smart contracts

audit procedures. Section III recalls some basic concepts of

smart contracts. Section IV proposes our works to verify

Ethereum smart contracts. Section V illustrates the

execution of our audit procedures. More extensive

experiments, knowledge about AST, CFG and symbolic

Verification of Ethereum Smart Contracts: A Model

Checking Approach

Tam Bang, Hoang H. Nguyen, Dung Nguyen, Toan Trieu, and Tho Quan

International Journal of Machine Learning and Computing, Vol. 10, No. 4, July 2020

588doi: 10.18178/ijmlc.2020.10.4.977

execution also report in this section. Section VI outlines

some challenges related to the application of blockchain and

smart contracts for auditing. Finally, Section VII concludes

the paper and proposing avenues for future research.

Fig. 1. A simplified scenario of DAO attack [11].

II. RELATED WORK

Smart contracts are how things get done in the Ethereum

ecosystem. When someone wants to get a particular task done

in Ethereum, they initiate a smart contract with one or more

people.

Smart contract security audits are fundamentally the same

as the regular code audit, which is meticulously investigating

code to explore security flaws and vulnerabilities before the

code is publicly deployed.

Many decentralized applications, which are centered

around Smart contracts, have implemented a variety of

software tools to aid in the auditing practice. These tools,

such as automated code-checking for vulnerabilities, may be

used as a supplement, but should not replace the formal

auditing process. One option, as mentioned previously, is

Mythril [13], which can be used for detecting uint overflows

and underflows. Another tool is Etherscrape[13], used here

to scrape live Ethereum contracts for reentrancy bugs when

send() is being used [13]. Or, Securify can analyses security

violations of contracts on a bytecode level through semantic

inference [14], whereas SmartCheck parses the contract

language for lexical and syntax analysis [15].

However, a simple smart contract with no business logic

costs around $4000. More complicated and advanced smart

contracts can go from 50,000$ all the way up to 100,000$.

Plus, if that’s not enough, there will usually last 4 weeks and

then it takes 8 weeks for the auditing process to be completed

[16]. Moreover, if the user are non-technical individuals,

they may not understand the results of smart contract audit

even if they read the report carefully.

Fig. 2. Szabo’s example [6].

III. PRELIMINARIES

In this section, we assume that the reader is familiarised

with the blockchain concept and how it operates.

A. First Declaration of Smart Contract

Szabo introduced smart contracts for the first time as a

"computerized transaction protocol that executes the terms of

a contract" [6]. He suggested translating contractual clauses

into code, and embedding them into a property that can

self-enforce them, so as to minimize the need for trusted

intermediaries between transacting parties [17]. Fig. 2 shows

an example of smart contracts using the Vending machine. A

kid has 5$ and tries to buy a bag of chips, so he puts his

money to the Vending machine. The Machine programmed

with some rules and it meets the requirement in this situation.

So he receives a bag of chips with his change.

B. Ethereum Smart Contracts

Although this was an innovation in the early 1990s, smart

contracts did not thrive during that period, as an authorized

trusting third party was necessary to monitor the terms and

the execution of the encoded contracts, which poses the risk

that a contracting party may not meet its contractual

obligations [18]. With blockchain technology, the

implementation of smart contracts becomes achievable and

responsibilities are distributed to the participating nodes [5].

A smart contract is a special form of programs at a specific

address on blockchain technology. They are self-executing

with specific instructions written on their code which gets

executed when a certion condition is made. In our framework,

we use Ethereum smart contracts written in Solidity

language due to Ethereum is the most popular blockchain

platform for creating smart contracts [19]. A contract

address also includes its own storage (i.e., state data) or an

amount of “Ether” balance (i.e., Ethereum cryptocurrency).

Moreover, Solidity supports a variety of APIs to implement

specific business logic for developers, e.g., transfer money to

some address or get the blockchain information. Fig. 3

illustrates a home buying between two people using

Ethereum smart contracts.

Fig. 3. How smart contracts work [16].

IV. PROPOSED METHOD

Investigating security issues underlying the design and

International Journal of Machine Learning and Computing, Vol. 10, No. 4, July 2020

589

implementation of such decentralized smart contracts is our

primary goal. We also focus on providing a clear

understanding of audit information for even non-tech users.

As shown in Section I, our formal approach consists mainly

of four primary steps:

1) We first define several states which are understandable

by common logic to express semantics in implementation

processes. After executing a processing call, the states

representing core implementations of smart contracts are

able to be gained through traversing abstract syntax tree

(AST).

2) For code scripts of Ethereum smart contracts, we

organize relevant Solidity contract classes involved and

construct call graphs of all these classes and the CFG for

particular methods.

3) Next, through CFG information, we identify potentially

suitable methods by using symbolic execution techniques and

slice these graphs to store relevant statements while

maintaining their connectivity in those sliced graphs. Then,

data-flow and control-flow analysis of the methods based on

these graphs is performed to produce likely dependence

relations among the objects and function calls needed for

invoking each of these methods.

4) Finally, we compare directly the states achieved from

step 1 and other states gained by invoking symbolic

execution on the CFGs from step 3. If these states are fully

compatible, this contract is more liable to be trusted. If not, it

could be considered an unreliable contract and should not be

deployed on any blockchain.

Fig. 4. Flowchart of formal verification of Ethereum smart contracts.

V. FORMAL VERIFICATION OF ETHEREUM SMART CONTRACTS

In this section, we attempt to further clarify four steps of

verifying Ethereum smart contracts were mentioned in Fig. 4.

Besides, some useful libraries such as Antlr4 [20], [21] are

also utilized for our detailed implementation

A. Context-Free Grammar & AST Traversal

First of all, we define the internal structures of a program

which includes various syntaxes. Based on these kinds of

structures, we generate parse trees representing syntactic

structures of a string according to some Context-Free

Grammar. Then, abstract syntax trees of the parse trees,

which are removed some tokens for faster compilation time,

are able to be built.

Secondly, we attempt to scan all addresses appearing in

the contract and store temporarily the initial states before

traversing to generate any new state. In addition to this,

some Depth First Search algorithms can be applied to

traverse the abstract syntax trees

(program→functions→parameters) and a new state could be

generated through any change of each statement of a

corresponding address. Our final result is a set of all states of

a structure, and this result is able to be used for comparison in

the following steps.

Fig. 5. Context-Free Grammar of two structures: sendeth & sendtoken.

For instance, we develop a system to trade tokens and ether.

Accordingly, we first define some syntaxes as AMOUNT,

which only have numerical value, or a string begin with “0x”

and follow that is another string include number, characters

from “a” to “f” (also capital character) is called ADDRESS.

Based on that, we specify two structures of our system, the

first structure is called sendtoken(<sender>,

<receiver >,<amount>); and the second one is

sendeth(<sender>, <receiver>, <amount>); Each structure of

parameters can describe as follows:

● Sender and receiver are addresses of senders or receivers

on Blockchain.

● An amount is a number of token or ether.

● Sendtoken send an amount of token from sender to

receiver.

● Sendeth send an amount of ether from sender to receiver.

Fig. 6. Executing process for generating states by traversing AST.

In this example, we have two initial states:

1) 0xAAAA(100,1): 0xAAAA has 100 ether and 1 token.

2) 0xBBBB(100,1): 0xBBBB has 100 ether and 1 token.

After executing sendeth(0xAAAA, 0xBBBB, 30), the

0xAAAA’s balance decrease 70 ether while the amount of

ether of 0xBBBB address increase from 100 to 130. Then, the

final state indicate that 0xBBBB transfer 1 token to

0xAAAA’s account by invoking sendtoken(0xBBBB,

0xAAAA, 1).

International Journal of Machine Learning and Computing, Vol. 10, No. 4, July 2020

590

B. Generating CFG of Smart Contracts

In computer science, a control-flow graph is a

representation of all paths which might be traversed of a

program during its execution. Many static analysis

techniques approach to optimize and verify the semantics of

programs through these graphs.

In detail, Slither is the first open-source framework written

in Python 3, and it supports static analysis for Solidity and

visualizes detail information of smart contracts. Furthermore,

it also provides APIs to write custom analyses easily. Thus,

we aim to use this framework to generate control-flow graphs

of Solidity smart contracts in DOT format, which is able to

visualize via GraphViz [22] or to convert to PNG image files.

Considering the example in Section V.A, in this step, we

build smart contracts describing a way to exchange Ether

and token through Ethereum smart contracst. However, to

simplify the problem, we suppose to initialize two objects A

and B with 100 ether and 1 token each account. The sendeth

and sendtoken methods perform to switch the amount of

ether from A to B, and the amount of token from B to A.

Fig. 7. SimpleContract performs sendeth and sendtoken functions.

After scanning through the source code, we generate

corresponding control-flow graphs of every vital method of

this smart contract, for instance:

For more details, the sendeth function first checks the

condition. If it passes, the process will move to excute the

following expressions, and then return “Success” when it is

done. On the other hand, this process will stop after returning

“Fail”.

C. Symbolic Execution

Symbolic execution is a means of analyzing a program to

determine what inputs cause each part of a program to

execute. An interpreter follows the program, assuming

symbolic values for inputs rather than obtaining actual inputs

as normal execution of the program would, a case of abstract

interpretation. It thus arrives at expressions in terms of those

symbols for expressions and variables in the program, and

constraints in terms of those symbols for the possible

outcomes of each conditional branch.

Fig. 8. CFG of sendeth method.

To give a clear example, in SimpleContract, the CFG of

“sendeth” function (similar to “sendtoken”) corresponding to

it in Fig. 3, reads in values and returns Fail if the amountE is

greater than etherA.

Fig. 9. Symbolic execution with sendeth function based on CFG.

International Journal of Machine Learning and Computing, Vol. 10, No. 4, July 2020

591

During symbolic execution, symbolic state maps variables

to symbolic values (e.g., amountE assigned to α, etherA to β

and etherB to θ). When reaching the if statement, α, β could

take any value, and symbolic execution can, therefore,

proceed along both branches, by “forking” two paths. Each

path gets assigned a copy of the program state at the branch

instruction as well as a path constraint. In this example, the

path constraint is β > α for the then branch and β ≤ α for the

else branch. Both paths can be symbolically executed

independently. When paths terminate (e.g., as a result of

return Fail or simply existing), symbolic execution computes

a concrete value for α, β by solving the accumulated path

constraints on each path.

In this example, the constraint solver would determine that

in order to reach the statement: return “Fail”, α would need to

be smaller than β. In addition, all of the above procedures can

be followed through CFG. Conclusively, after performing

symbolic execution on CFG with amountE = 30 and

amountT = 1, we have some of the following states:

Fig. 10. “Then” branch.

Fig. 11. “Else” branch.

D. Comparing States

We compare the results from step 1 and step 3 (all states

that can be achieved by the CFGs, which help us do not skip

any cases). Assuming a token’s price is 30 ether and just

focus on the “then” branch because the states of the “else”

branch are similar to the initial states (Fig. 6 and Fig. 11).

Thus, there are two possibilities:

● User of 0xAAAA want to buy 1 token from user of

0xBBBB, so 0xAAAA address pays 30 ether and then

receive 1 token. Following that, this smart contract

executed exactly the same as the formal logic, so it is

reliable and deployable on a public blockchain.

● On the other hand, considering a new situation, the smart

contract is modified by erasing line 25 of its source code.

Then, the results of the symbolic execution are

completely different, especially in the second and the

third state (Fig. 6 and Fig. 12). In this case, even if

0xAAAA sent 30 ether to 0xBBBB, the smart contract

would not return any token, and the owner of address

0xAAAA would also receive nothing. Thus, this smart

contract is more likely to be unreliable and should not be

deployed on any blockchain.

Fig. 12. “Then” branch states after modifying SimpleContract.

VI. CHALLENGES

“There will be further bugs, and we will learn further

lessons; there will not be a single magic technology that

solves everything”. - Vitalik Buterin [5]. So, there are many

challenges to overcome in the adoption of the auditing

methods, such particular problems are:

● A set of special mechanisms which should be taken into

account in the Ethereum network, for instance, gas &

data storage, identify flow sensitivity, and exception

handling.
● The privacy and security of blockchain technologies.

● The scalability of the blockchain and the flexibility of

audit procedures.

● The impact of verifying processes on the user's decisions.

We believe that the continued integration of blockchains

could bring new business models and assist us in improving

the existing audit systems. Furthermore, a prominent

mechanism could also be implemented for handling most of

the above challenges.

VII. CONCLUSION AND FUTURE WORKS

In this research, we propose a new process for auditing

Ethereum smart contracts. First, our process generates states

by using AST traversing with some syntaxes to describe

formal logic that everyone can understand easily. Then we

create CFGs and perform symbolic execution on them. After

that, we get some other new states and start comparing it with

the first ones to give conclusions. Certainly, applying this

technique would benefit both average users without any

technical knowledge and security experts as well. For the

case of average users, they can scan new contracts before

transferring to ensure that their cryptocurrencies are not

diverted to any adversary address. In contrast, security

experts exploit our study to quickly investigate the suspicious

breaches inside smart contracts of the Ethereum platform.

Further work could be conducted on discovering unknown

vulnerabilities or integrating them with dynamic analysis.

Furthermore, we can build applications based on blockchain

technology and apply our approach to verify smart contracts

before users agree to use them.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Prof. Tho Quan developed the theoretical formalism, Prof.

Tho Quan and Nguyen H. Hoang supervised the work. Tam

Bang worked out almost all of the technical details. Tam

Bang, Hoang H. Nguyen processed the experiment data,

performed the analysis and wrote the paper with input from

all authors. Tam Bang, Dung Nguyen, Toan Trieu

contributed to the design and implementation of the research

to the analysis of the results. All authors had approved the

final version.

ACKNOWLEDGMENT

This research is funded by Ho Chi Minh University of

Technology (HCMUT) under Grant To-KHMT-2019-07 and

supported by Vietnam Blockchain Corporation. We also

International Journal of Machine Learning and Computing, Vol. 10, No. 4, July 2020

592

thank Prof. Huynh Tuong Nguyen at the Ho Chi Minh City

University of Technology for providing valuable feedback on

this paper.

 REFERENCES

[1] K. Wang and A. Safavi. (2017). Blockchain is empowering the future of

insurance. [Online]. Available:

https://techcrunch.com/2016/10/29/blockchain-is-empowering-the-futur

e-of-insurance/

[2] Ethlance. (2017). [Online]. Available: http://ethlance.com/

[3] A. Irrera, “Northern trust uses blockchain for private equity

record-keeping,” Reuters, 2017.

[4] R. Modi, Solidity Programming Essentials: A Beginner’s Guide to

Build Smart Contracts for Ethereum and Blockchain, Birmingham:

Packt Publishing, 2018.

[5] B. V. Ethereum, “A next generation smart contract & decentralized

application platform,” White Paper, 2014.

[6] N. Szabo, Smart Contracts, 1994.

[7] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for

the internet of things,” IEEE Access, vol. 4, p. 1, 2016.

[8] L. Breidenbach, P. Daian, A. Juels, and E. G. Sirer, “An in-depth look at

the parity multisig bug,” Ethereum Parity Wallet Security, 2017.

[9] P. Bylica. (2017). How to find $10M just by reading the blockchain.

[Online]. Available:

https://medium.com/golem-project/how-to-find-10m-by-just-reading-blo

ckchain-6ae9d39fcd95

[10] D. Siegel, Understanding the DAO hack for journalists ,” CoinDesk,

2016.

[11] H. Liu, C. Liu, W. Zhao et al., “Towards semantic-aware security

auditing for Ethereum smart contracts,” in Proc. the 33rd ACM/IEEE

International Conference on Automated Software Engineering, 2018,

pp. 814–819.

[12] H. Qureshi, “A hacker stole $31m of ether - how it happened, and what it

means for Ethereum,” Free Code Camp, 2017.

[13] ConsenSys, “Security tools,” Ethereum Smart Contract Best Practices,

2018.

[14] P. Tsankov, A. Dan, D.-C. Dana et al., “Securify: Practical security

analysis of smart contracts,” in Proc. the ACM SIGSAC Conference on

Computer and Communications Security, 2018, pp. 67–82.

[15] S. Tikhomirov, E. Voskresenskaya, et al., “Smartcheck: Static analysis of

Ethereum smart contracts,” in Proc. 2018 IEEE/ACM 1st International

Workshop on Emerging Trends in Software Engineering for

Blockchain, 2018, pp. 9–16.

[16] Blockgeeks. (2018). Why are smart contract security audits so important?

[Online]. Available:

https://blockgeeks.com/smart-contract-security-audits/

[17] N. Szabo. (1997). The idea of smart contracts. [Online]. Available:

http://szabo.best.vwh.net/smart_contracts_idea.html

[18] T. I. Kiviat, “Beyond bitcoin: Issues in regulating blockchain

transactions,” DukeLaw Journal, vol. 65, pp. 569–569, 2015.

[19] Ethereum Foundation. (2018). The solidity contract-oriented

programming language. [Online]. Available:

https://github.com/Ethereum/solidity

[20] Terence Parr. (2018). ANTLR 4 (Another Tool for Language

Recognition). [Online]. Available: https://github.com/antlr/antlr4

[21] Crytic. (2018). Slither, the solidity source analyzer. [Online]. Available:

https://github.com/crytic/slither

[22] AT&T Labs Research. (1991). Graphviz - graph visualization software.

[Online]. Available: https://www.graphviz.org/7

Copyright © 2019 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is

properly cited (CC BY 4.0).

Tam Bang received the B.E. in computer science in

2018 from Ho Chi Minh City University of Technology.

He became a master student in computer science at Ho

Chi Minh City University of Technology (HCMUT),

Vietnam in 2018. His current research interests include

blockchain and big data. He also has experience in AI.

Hoang H. Nguyen received his bachelor's degree in

electronics and telecommunications from Ho Chi Minh

City University of Science (HCMUS), Vietnam in 2013.

He became a master student in computer science at Ho

Chi Minh City University of Technology (HCMUT),

Vietnam in 2014. He was a visiting student for one year

in the School of Information Systems, Singapore

Management University. His current research interests

include programming languages, program analysis, and mobile security. He

also has experience in blockchain security development.

Tho Quan is an associate professor in the Faculty of

Computer Science and Engineering, Ho Chi Minh City

University of Technology (HCMUT), Vietnam. He

received his B.Eng. degree in information technology

from HCMUT in 1998 and received Ph.D. degree in

2006 from Nanyang Technological University,

Singapore. His current research interests include formal

methods, program analysis/verification, the Semantic

Web, machine learning/data mining and intelligent

systems. Currently, he heads the Department of Software Engineering of the

Faculty. He is also serving as the vice dean of Faculty of Computer Science and

Engineering, Ho Chi Minh City University of Technology.

Dung Nguyen is currently studying for the B.E in

computer science in Ho Chi Minh City University of

Technology. His current research interests are

blockchain and software development.

Toan Trieu is currently studying for the B.E in computer

science in Ho Chi Minh City University of Technology.

His current research interests are security and software

development.

International Journal of Machine Learning and Computing, Vol. 10, No. 4, July 2020

593

“

https://www.graphviz.org/7
https://creativecommons.org/licenses/by/4.0/

