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Abstract—Novelty detection represents the detection of 

anomalous data based on a training set consisting of only the 

normal data. In this study, we propose a new probabilistic 

approach for novelty detection to effectively detect anomalous 

data, particularly for the case of multimodal training dataset. 

Our method is inspired by the Least-Squares Probabilistic 

Classifier (LSPC), which is an efficient multi-class 

classification method. Numerical experimental results based on 

multimodal datasets show that the proposed method 

outperforms the related methods. 

 
Index Terms—Novelty detection, multimodal datasets, 

least-square probabilistic analysis.  

 

I.   INTRODUCTION 

Anomaly detection refers to the problem of finding 

patterns in data that do not conform to expected behavior [1]. 

These nonconforming data are most commonly referred to 

as anomalies or outliers [2], [3]. In anomaly detection, to 

detect anomalies without having any previous knowledge of 

their characteristics, the outlier detection and novelty 

detection are frequently employed. The difference between 

these two methods is that the outlier detection is employed 

when the anomalies are expected to be part of the training 

data, while the novelty detection is employed when all 

training data is normal. Thus, novelty detection is the 

process of identifying the observations that differ in some 

respect from the ones present in the training set [4]. 

One of the main obstacles in the field of anomaly 

detection is that it is difficult to collect sufficient anomalous 

data for training. In contrast, collecting sufficient normal 

data is an easy task. Consequently, novelty detection has 

been extensively applied in many research areas. Examples 

include medical diagnostic problems [5], failure detection in 

complex industrial problems [6], sensor networks [7], video 

surveillance [8], and detection of masses in mammograms 

[9]. Owing to its applicability and importance, various 

methods of novelty detection have been studied such as 

probabilistic, distance-based, domain-based, 

reconstruction-based, and information theoretic method [3].  

In this study, we focus on the probabilistic method due to 

its computational efficiency. Probabilistic approaches to 

novelty detection are divided into two steps. First, during 

training, the probabilistic density function of normal data is 

measured. Then, the test data is classified as an anomaly if 

its probabilistic density value is low. 
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There are two kinds of methods applied to estimate 

probabilistic density functions, namely parametric and 

non-parametric methods. The parametric method assumes 

that the data follows a certain distribution. In contrast, the 

non-parametric model does not expect that the data to follow 

a specific distribution. Since there are very few data follow a 

certain distribution, we apply the non-parametric method 

considering its multiplicity of use. 

A non-parametric method for the probability density 

estimation is the Kernel Density Estimation (KDE) [10]. 

KDE is a flexible approach used to estimate the densities of 

given data distribution, that contains no information on the 

underlying distribution [11]. However, when the training 

data is multimodal, using KDE for novelty detection will 

decrease the classification performance. The case where the 

normal data is multimodal means that there are two or more 

points with high density in normal data. In this study, 

multimodal data is defined as the case that the normal data 

includes two or more classes. 

Therefore, by applying KDE to multimodal data, 

probabilistic density function tends to classify the points 

with high density as the anomalous data. This is because 

data points in the middle of multiple classes, which do not 

belong to any of them, are influenced by each class, 

resulting in an unnecessarily high score, which leads to the 

misclassification of anomalous data as normal. 

In our study, we propose a novelty detection method 

based on least-square probabilistic analysis. The proposed 

method is inspired by Least-Squares Probabilistic Classifier 

(LSPC) [12], which is a machine learning algorithm that 

performs multi-class classification by focusing on the ratio 

of the data density of each class and the density of all data.  

Our method is an effective method for detecting 

anomalies when the normal data is multimodal because it 

calculates the novelty score only to the closest class, but also 

not influenced by each class. In the case when the training 

data does not have class information, we assign class 

information to preprocess the training data by using 

X-means [13], which is a clustering method used when there 

is no information on the number of classes by determining 

the number of classes and applying k-Means clustering.  

Our contributions of this study are summarized as 

follows.  

 We propose a novelty detection method based on 

least-squares probabilistic analysis, which is applicable 

for multimodal datasets. 

 Using X-means clustering, we enable the application of 

proposed methods when the training data has no class 

information. 

 Our method shows competitive results in both artificial 

dataset and benchmark datasets. In the experiments, the 
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proposed method achieves a very good result in the 

USPS dataset and even better results regarding 

mislabeled detection (more information on mislabeled 

detection is provided in Ref. [13]).  

 

II.   PRELIMINARIES 

A. Notation 

Suppose that we are given a training set of n ∈ ℕ 

samples 

{(𝒙𝑖 , 𝑦𝑖)}𝑖=1
𝑛  

drawn independently from a joint probability distribution 

with density 𝑝(𝒙, 𝑦), where 𝒙𝑖 ∈ ℝ
𝑑 is the 𝑑-dimensional 

feature vector,  

𝑦𝑖 ∈ {0,1,… , 𝑌} 

is a class label, and 𝑌 ∈  ℕ is the number of normal classes. 

Note that here, we define class label “0” as the “anomalous” 

class and the other as the “normal” class, while there are no 

data belong to class “0” in the training data. 

The objective of novelty detection is to distinguish 

whether test data 𝒙te ∈ ℝ𝑑  is normal or anomalous by 

using the training set.  

B. Kernel Density Estimation 

KDE estimates the density 𝑝(𝒙) from the training data 

𝒙𝑖 ∈ ℝ
𝑑(𝑖 = 1,2,… , 𝑛) by the function below. 

𝑝(𝒙) =
𝟏

𝒏𝝈
∑𝐞𝐱𝐩(−

‖𝒙 − 𝒙𝒊‖𝟐
𝟐

𝟐𝝈𝟐
)

𝒏

𝒊=𝟏

,  

where 𝜎 ∈ ℝ denotes the bandwidth. 

From Equation (1), the value of 𝑝(𝒙) increases if there is 

a large amount of training data distributed around the input 

data, whereas it assumes a low value if there are few 

training data in the vicinity. 

Since we only use normal data for training, the density 

𝑝(𝒙) can be defined as a normality score. This is because 

𝑝(𝒙) tends to provide high-density values for regions with a 

lot of normal data and low-density values for regions with 

few normal data. To transform the normality score to the 

novelty score, we define the novelty score 𝑤(𝒙te) as  

𝑤(𝒙te) = 𝑡 − 𝑝(𝒙te), 

where 𝑡 ∈ ℝ is the maximum value of 𝑝(𝒙te) for all test 

data 𝒙te ∈ ℝ𝑑. 

By using novelty score 𝑤(𝒙te), test data can be classified 

by a predetermined threshold 𝜏 ∈ ℝ, such that test data 𝒙𝑡𝑒 
is classified as normal if the novelty score 𝑤(𝒙te)  is 

“smaller” than 𝜏 , and anomalous if the novelty score 

𝑤(𝒙te) is “larger” than 𝜏. Note that here, we define data as 

anomalous if the novelty score is bigger than the threshold 

while Sugiyama [14] considers the opposite. 

 

III.   PROPOSED METHOD 

In this section, we propose a novelty detection method 

(ND-LSPA) in multimodal datasets based on least-square 

probabilistic analysis. 

Let 𝑝(𝑦|𝒙)  be the class-posterior probability. The 

objective of ND-LSPA is to learn the novelty score 𝑤(𝒙) 
by using the training set 

{(𝒙𝑖 , 𝑦𝑖)}𝑖=1 
𝑛 . 

Since class label “0” is the anomaly class, the novelty 

score 𝑤(𝒙) is represented as 

𝑤(𝒙) ≅ 𝑝(0|𝒙). 

Based on the idea of LSPC, we describe how to learn the 

class-posterior probability 𝑝(𝑦|𝒙) from the training set. 

For each 𝑦 ∈ {0,1,… , 𝑌}, we model 𝑝(𝑦|𝒙) by 

𝑞(𝑦|𝒙;𝜶𝑦) ∶= 𝜶𝑦
Τ𝝓(𝒙), 

where  

𝜶𝑦 = (𝛼𝑦,0, 𝛼𝑦,1, … , 𝛼𝑦,𝑛)
Τ ∈ ℝ𝑛 , 

is the weight vector for each class, 

𝝓(𝒙) = (𝒌(𝒙, 𝒙𝟏),… , 𝒌(𝒙, 𝒙𝒏))
𝚻 ∈ ℝ𝒏,                 (2) 

is the basis function vector, and 𝑘(𝒙, 𝒙′) is the kernel 

function. 

Using the model 𝑞(𝑦|𝒙; 𝜶𝑦), we determine the weight 

vector 𝜶𝑦 which minimize squared loss 𝐽 defined below.  

𝐽(𝜶𝑦) ≔
1

2
∫(𝑞(𝑦|𝒙; 𝜶𝑦) − 𝑝(𝑦|𝒙))

2 𝑝(𝒙)d𝒙 , 

where 𝑝(𝒙) is the marginal density of 𝒙 and assume that 

𝑝(𝒙) is positive for all 𝒙 ∈ ℝ𝑑 . Expanding the squared 

term, we can express 𝐽 as  

𝐽(𝜶𝑦) =
1

2
∫𝜶𝑦

Τ𝝓(𝒙)𝝓(𝒙)Τ𝜶𝑦𝑝(𝒙)d𝒙            

         −∫𝜶𝑦
Τ𝝓(𝒙)𝑝(𝒙, 𝑦)d𝒙 + Const , 

where 𝑝(𝑦|𝒙) = 𝑝(𝒙|𝑦)𝑝(𝑦)/𝑝(𝒙) is used. 

By taking the sample mean for class 𝑦 ∈ {1, … , 𝑌}, the 

first and second terms can be approximated as  

∫𝜶𝑦
Τ𝝓(𝒙)𝝓(𝒙)Τ𝜶𝑦𝑝(𝒙)d𝒙 ≈  

1

𝑛
∑𝜶𝑦

Τ𝝓(𝒙𝑖)𝝓(𝒙𝑖)
Τ𝜶𝑦 ,

𝑛

𝑖=1

  

∫𝜶𝑦
Τ𝝓(𝒙)𝑝(𝒙, 𝑦)d𝒙 ≈ 

1

𝑛
∑ 𝜶𝑦

Τ𝝓(𝒙𝑖) 
𝑖:𝑦𝑖=𝑦

. 

Thus, to compute the weight vector 𝜶𝑦, by ignoring the 

constant, we minimize the approximated squared loss with 

regularization term  

1

2𝑛
∑𝜶𝑦

Τ𝝓(𝒙𝑖)𝝓(𝒙𝑖)
Τ𝜶𝑦

𝑛

𝑖=1

−
1

𝑛
∑ 𝜶𝑦

Τ𝝓(𝒙𝑖) +
𝜆

2
‖𝜶𝑦‖

2
,

𝑖:𝑦𝑖=𝑦

 

where 𝜆 ∈ ℝ  is the regularization parameter. Taking the 

derivative, the weight vector 𝜶𝑦 can be obtained by solving 

the following linear system 

(𝚽Τ𝚽+ 𝜆𝑛𝐼𝑛)𝜶𝑦 = 𝚽
Τ[𝛿𝑦,𝑦1 , … , 𝛿𝑦,𝑦𝑛]

Τ,                (3) 

where   

𝚽 = [𝝓(𝒙1),… , 𝝓(𝒙𝑛)]
Τ ∈ ℝ𝑛×𝑛 ,          (4) 

𝐼𝑛  is the identity matrix and 𝛿𝑦,𝑦𝑖 ∈ {0,1}  is the 

Kronecker’s delta defined as                                 
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 𝛿𝑦,𝑦𝑖 = {
1   (𝑦𝑖 = 𝑦),

0   (𝑦𝑖 ≠ 𝑦).
                                 (5) 

Let 𝜶̂𝑦  be the solution of Equation (3), the 

class-posterior probabilities 𝑞(𝑦|𝒙; 𝜶𝑦) can be estimated as  

𝑞̂(𝑦|𝒙) = 𝑞(𝑦|𝑥;𝜶̂𝑦) = 𝜶̂𝑦
Τ
𝝓(𝒙)                    (6) 

for 𝑦 ∈ {1,… , 𝑌}. 
For 𝑦 =  0, i.e., the anomalous class, since there is no 

training data ,  we cannot use the same model as 𝑦 ∈
{1, … , 𝑌}. Here, from the definition of the class-posterior 

probability 𝑝(0|𝒙), we have 

 
Algorithm 1  Novelty Detection based on Least Square Probabilistic 

Analysis 

 
Input: Training samples  {(𝒙𝑖, 𝑦𝑖)}𝑖=1

𝑛 , test sample 𝒙te, bandwidth 𝜎 for 

the kernel function, and regularization parameter 𝜆. 

Output: Novelty score 𝑤(𝒙te) 
1: Set the matrix 𝚽 (4)   

2: Solve the linear systems (3) for y = 1, …, Y 

3: Set class posterior probability 𝑞(𝑦|𝒙) = 𝜶𝑦
Τ𝝓(𝒙)  

for y = 1, …, Y 

4: Calculate  𝑞(𝑦|𝒙) by Eq. (8)    

5: Calculate 𝑤(𝒙te) =  𝑞(0|𝒙te) by Eq. (7)  

 

𝑝(0|𝒙) = 1 −∑𝑝(𝑦|𝒙)

𝑌

𝑦=1

 . 

Then, we model 𝑞̂(0|𝒙) as  

𝑞̂(0|𝒙) ∶= 1 −∑ 𝑞̃(𝑦|𝒙),

𝑌

𝑦=1

 

where 

𝑞̃(𝑦|𝒙) =

{
 

 
max(0, 𝑞̂(𝑦|𝒙))

𝜌
   (

𝑞̂(𝑦|𝒙) ≥ 𝑞̂(𝑦𝑖|𝒙) 

for all 𝑦𝑖 ∈ {1, … , 𝑌}
) 

           0                     (otherwise)                  

,     

and 

𝜌 = max
𝒙∈{𝒙te,𝒙𝑖(𝑖=1,…,𝑛)},

  𝑦𝑖∈{1,…,𝑌}

𝑞̂(𝑦|𝒙) . 

Finally, we obtain the novelty score 𝑤(𝒙) as 

𝑤(𝒙) = 𝑞̂(0|𝒙), 

that satisfies 0 ≤ 𝑤(𝒙) = 𝑞̂(0|𝒙) ≤ 1.We summarize the 

procedure of the proposed method in Algorithm 1. 

Note that here, this algorithm assumes that there is a class 

label information associated with each training data. In the 

case when there is no class information associated, we 

employ X-means to training data in order to assign class 

information. 

 

IV.   EXPERIMENTAL RESULTS 

In this section, the proposed method (ND-LSPA) is 

evaluated on an artificial dataset and several benchmark 

datasets. The performance of the ND-LSPA is compared 

with KDE and the Kullback-Liebler Importance Estimation 

Procedure (KLIEP) [15] proposed by Sugiyama. 

In this study, we employed the kernel function  

𝑘(𝒙, 𝒙′) = exp (−
‖𝒙 − 𝒙′‖2

2

2𝜎2
), 

as the base function written in Equation (2), where 𝜎 ∈ ℝ 

is the bandwidth of the kernel function. 

To determine the bandwidth 𝜎 ∈ ℝ for KDE, we applied 

the Silverman’s rule [16]. For ND-LSPA, to determine  

bandwidth 𝜎 ∈ ℝ, we replicated the procedure from the 

Zelnik-Manor and Perona [17]. More information is 

provided in their work. Furthermore, the regularization 

parameter 𝜆 ∈ ℝ is set as 0.01. 

We used Area Under ROC Curve (AUC) [18] to evaluate 

the classification performance, which enables to calculate 

the performance without the predetermined threshold 𝜏 ∈ ℝ. 

AUC assumes values from 0 to 1, and a higher classification 

performance brings the value closer to 1. 

 
TABLE I: BREAKDOWN OF ARTIFICIAL DATASETS 

Dataset 
Normal Data (Training Data) 

Anomalies 
Class 1 Class 2 

1 0~0.3 0.7~1.0 0.3~0.7 

2 0~0.4 0.6~1.0 0.4~0.6 

Fig. 1. Result for artificial dataset 1.  
 

A.  Artificial Data 

We conduct an experiment using a one-dimensional 

artificial dataset to examine the effects of the different 

methods. The goal of this experiment is to verify if 

ND-LSPA performs better than KDE when the training 

datasets are composed of two normal classes and the interval 

between them is small. We highlight that data in these 

intervals is considered to be anomalous.  

We compare the results by visualizing the novelty score 

function values for each method and we also evaluate the 

classification performance using AUC values.  

1) Datasets 

We used two artificial datasets consisting of 20 training 

examples and 30 test samples. To achieve multimodality in 

the training datasets, the training datasets are composed of 

two classes with completely different intervals. 

For the first artificial dataset used for training, the data for 

class 1 is obtained by dividing the [0, 0.3] interval equally 

into 10 data points. The data for class 2 uses the interval of 

[0.7 1.0]. For the second artificial dataset used for training, 
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the data for class 1 is obtained by dividing the [0, 0.4] 

interval into equally 10 data points. The data for class 2 

involves the interval of [0.6, 1.0].  

Here, we divide the [0, 1] interval equally into 30 data 

points for the test data. We consider that examples in the 

interval [0.3, 0.7] are anomalies for the first test data. For 

the second test data, we apply the same method, but we limit 

the interval to [0.4, 0.6]. The breakdown of the artificial 

dataset is shown in Table I. 

2) Results of artificial data  

Using the datasets shown in Table I, we visualized the 

function of the novelty score 𝑤(𝑥) for each method and 

compared its performance using AUC values. Notice that 

here, we applied min-max transformation to rescale the 

novelty score of KDE to [0,1] in order to compare easily. 

From the results in Fig. 1, we can see that the novelty scores 

of ND-LSPA and KDE are higher values for the anomalies. 

 

Fig. 2. Result for artificial dataset 2. 
 

The AUC value was 0.97 for the KDE, and 0.99 for the 

ND-LSPA. Thus, both methods were able to detect 

anomalies with high accuracy even if the training data has 

multimodality.  

In contrast, the results in Fig. 2 indicate that the novelty 

score of KDE gives a low value in the anomalous points, 

while ND-LSPA maintains a high value. Furthermore, the 

AUC values for the second dataset was 0.69 for KDE and 

0.99 for ND-LSPA. Therefore, from the results of this 

experiment, the classification performance of the KDE 

decreases while the ND-LSPA maintains high performance 

when the interval of anomalies becomes smaller in our 

artificial multimodal datasets.  

B.  MNIST Datasets 

In this section, we compare the proposed method with 

KDE and KLIEP using the MNIST datasets especially when 

the multimodality, in other words, the number of classes in 

training dataset increases. 

1)  Datasets 

MNIST [19] is a dataset of handwritten numeric images 

from “0” to “9,” consisting of a training set consisting of 

60,000 examples and a test set of 10,000 examples. Each 

example is a 28×28 pixel grayscale image, associated with a 

label from 10 classes. 

2)  Setup 

To confirm the effectiveness of the proposed method for 

multimodal data, we recombine the classes of the MNIST 

dataset into two groups, namely a normal group and an 

anomalous group. We repeat this recombination nine times. 

At first, the normal group only has one class, whereas the 

anomalous group has nine classes. We call this “dataset-1” 

(because there is one class in the normal group). Then, for 

“dataset-2,” we have two classes in the normal group 

(amounting to eight in the anomalous group). For “dataset-3” 

through “dataset-9” we maintain this process of increasing 

the normal group with one class and correspondingly 

decreasing the anomalous group by one class. For example, 

“dataset-9” has nine classes in the normal group (i.e., one 

class in the anomalous group). We randomly choose which 

class is to be normal (and anomalous) among “0” to “9” 

digits (classes). Each dataset consists of a training set of 

1,000 examples and a test set of 500 examples. The test set 

includes 475 normal data and 25 anomalous data. Since the 

performance changes using different digits (classes) for 

training, we repeat the experiment 100 times. In addition, 

we preprocess all images with a min-max transformation to 

rescale the data to [0,1]. Subsequently, we reduce the 

dimensionality of the data via PCA and we chose the 

minimum number of eigenvectors, such that at least 80% of 

the variance is retained. 

 
Fig. 3. AUC results vs. number of classes. 

 
Fig. 4. Relation between clustering accuracy and AUC. 

 

3)  Results of MNIST datasets 

As shown in Fig. 3, the classification performance of 

KDE and KLIEP decreases as the number of normal classes, 

hence the multimodality of training data increases. In 

contrast, the proposed method maintains higher 
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classification performance when the multimodality of 

training datasets increases. Therefore, our method 

demonstrates better classification performance for 

multimodal datasets.  

C.  Clustering Accuracy and AUC 

We show the relationship between clustering accuracy 

and AUC using ND-LSPA, in case there is no class label 

information associated with the training data. In this study, 

we used NMI [20] to calculate the clustering accuracy.  

1)  Setup 

To conduct the experiments, we arbitrarily chose 

“dataset-5”, described in Section 4.2.2. Since we wish to 

verify the relationship between AUC values and clustering 

accuracy, we methodologically changed some class labels 

leading to a mislabel situation. Hence, with no changes, the 

labels match the features perfectly, indicating that the 

clustering accuracy is 100%. With changes, the clustering 

accuracy decreases.  

We report the results when the label changes lead to a 

clustering accuracy decrease of about 5%. Thus, we show 

the AUC values when the clustering accuracy reaches 

approximately [5%, 10%, …, 95%, 100%]. For each 

accuracy level, we repeat the experiments 100 times and 

calculate the mean value of AUC. 

  
TABLE II: AVERAGE AUCS WITH STANDARD DEVIATIONS BY DIFFERENT 

METHODS FOR BENCHMARK DATASETS 

Dataset KDE KLIEP ND-LSPA 
ND-LSPA 

X-Means 

MNIST 
0.826 

± 0.08 

0.549 

± 0.10 

0.879 

± 0.05 

0.780 

± 0.08 

Fashion-MNIST 
0.734 

± 0.07 

0.619 

± 0.12 

0.736 

± 0.09 

0.756 

± 0.08 

EMNIST 
0.918 

± 0.03 

0.665 

± 0.07 

0.803 

± 0.05 

0.694 

± 0.05 

USPS 
0.835 

± 0.10 

0.591 

± 0.13 

0.901 

± 0.03 
0.822 

± 0.06 

 

2)  Results of clustering accuracy and AUC 

Fig. 4 shows that the AUC value tends to increase with 

increasing the clustering accuracy. Furthermore, the 

correlation coefficient was 0.73, indicating a positive 

correlation between two indicators. 

D.  Benchmark Dataset  

In this section, we compare the proposed method with 

other related methods by using benchmark datasets in two 

conditions, including the use of class information and no use 

of the class information for training. For the training 

datasets with no class information, we employed X-means to 

obtain class information. 

1)  Datasets 

Fashion-MNIST [21]: The Fashion-MNIST dataset shares 

the same image size, class size and the structure of training 

and testing splits with the MNIST dataset. The difference is 

that the images are consist of 10 types of clothes. 

EMNIST [22]: EMNIST is a dataset of handwritten digits 

“0” to “9” and handwritten alphabetical letters, which 

consists of a training set of 60,000 examples and test set of 

10,000 examples for handwritten digits and 124,800 

examples of handwritten letters. The images’ size is the 

same as that of MNIST and Fashion-MNIST datasets. 

USPS [23]: USPS is a dataset of handwritten numeric 

images from “0” to “9” that comprised a training set of 

7,291 examples and a test set of 2,007 examples. Each 

example is a 16×16 grayscale image, associated with a label 

from 10 classes.  

2)  Setup 

For MNIST, Fashion-MNIST, USPS, we randomly chose 

five classes among 10 to be normal, and the other five 

classes to be anomalous. For EMNIST, we assume that all 

handwritten digits “0” through “9” are normal, and all the 

alphabet handwritten alphabetical letters are anomalous 

data.  

The other settings such as the number of samples for 

training data and test data, repetition time, and the number 

of features are the same as in Section IV.B.2.  

3)  Results of benchmark datasets 

The results shown in Table II indicate that ND-LSPA 

with using clustering information shows higher AUC values 

of MNIST, Fashion-MNIST, and USPS. In contrast, the 

EMNIST dataset demonstrates higher AUC values with 

KDE than ND-LSPA. The reason for this result might due to 

the difference in the number of classes included in the 

training data. While other datasets include five classes in the 

training data, the EMNIST dataset includes 10 classes in the 

training data with the same number of examples as the other 

datasets. This made it difficult to sufficiently train for each 

class due to the lack of each class samples, and led to lower 

classification performance. 

 
TABLE III: AVERAGE AUCS WITH STANDARD DEVIATIONS BY 

DIFFERENT METHODS FOR MISLABELED DATASETS 

Dataset KDE KLIEP ND-LSPA 

MNIST 0.828 ± 0.04 0.705 ± 0.14 0.936 ± 0.02 

Fashion-MNIST 0.899 ± 0.03 0.781 ± 0.13 0.938 ± 0.03 

EMNIST 0.859 ± 0.03 0.669 ± 0.07 0.875 ± 0.03 

USPS 0.877 ± 0.03 0.491 ± 0.07 0.954 ± 0.02 

 

Regarding the result of the proposed method with no class 

information, although the AUC value increased for the 

Fashion-MNIST dataset, it decreased for the other dataset. 

However, as we show in Fig. 4 in Section IV.D, these results 

can be improved by using a better clustering method.     

E.  Mislabeled Detection 

We compare the performance with the proposed method 

and related methods for mislabeled detection. To this end, 

we define the mislabeled detection as a method to find the 

incorrect class label in the test data.  

1)  Setup 

The number of samples for training data, test data, and 

repetition time are the same as in Section IV.2. For MNIST, 

Fashion-MNIST, and USPS datasets, we used all 10 class 

labels for training data and test data. For the EMNIST 

dataset, we used 26 classes that refer to the handwritten 

alphabet. 

To generate mislabeled data, we randomly selected 25 

data from the test data and changed the class label. 
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Furthermore, we add 10 extra dimensions for MNIST, 

Fashion-MNIST, USPS and 26 extra dimensions to 

EMNIST corresponding to the class label. In the extra 

dimension, we add dummy variables with the size of the 

feature dimension instead of 1. 

2) Results of mislabeled detection 

Table III shows that the proposed method exhibits higher 

classification performance, especially for MNIST and USPS 

datasets. Comparing the AUC values of Fashion-MNIST 

and EMNIST datasets, ND-LSPA performs slightly better 

than KDE. However, since the standard deviation is small, it 

can be said that our proposed method can be considered 

better suited for mislabeled detection. 

 

V.   CONCLUSIONS 

In this study, we proposed a novelty detection method in 

multimodal datasets based on least-square probabilistic 

analysis. Performing numerical experiments, we confirmed 

that the classification performance was higher than that in 

related methods, especially for MNIST and USPS. 

Furthermore, the proposed method provides a higher 

classification performance for mislabeled detection.  

Future studies will consider improving the performance 

of our method by adjusting parameters such as the 

regularization parameter 𝜆 ∈ ℝ and the bandwidth 𝜎 ∈ ℝ. 

Furthermore, we aim to extend this study by conducting 

experiments on real-world data.  
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