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Abstract—Forecasting accuracy significantly influences 

supply chain risk. Supply chain production forecasting is very 

difficult because it involves numerous upstream suppliers and 

the volatility caused by the bullwhip effect through the supply 

chain. The generalized autoregressive conditional 

heteroskedastic (GARCH) model can handle data with 

time-varying volatility. Consequently, this study is separated 

into two parts for the purpose of supply chain forecasting the 

production of Taiwan's TFT-LCD industry from the 

perspectives of the upstream and downstream supply chain. In 

the first part, three upstream components, including a 

backlight module, a glass substrate, and color filter 

productions were utilized to forecast TFT-LCD production 

combing recurrent neural networks and genetic algorithms. In 

the second part, the GARCH model was used for TFT-LCD 

production prediction. The forecasting results offer valuable 

references for the TFT-LCD industry. Managers can consult 

the results when engaging in supply chain forecasting. 

 

Index Terms—Forecasting, neural network, supply chain 

management, GARCH.  

 

I. INTRODUCTION 

Forecasting is a critical part of the planning process in 

supply-chain enterprises, and forecasting accuracy 

significantly impacts supply chain risk [1]. The decisions of 

managers are founded on the results of forecasting, and a 

lack of prediction accuracy can incur costs for the supply 

chain [2]. Accurate forecasts are crucial to increase evolution 

and allow the distribution of ample resources for planning 

operations, marketing, and finances, and poor forecasts 

result in redundant or deficient stock for the supply chain, [3] 

[4]. Enterprise production both upstream and downstream 

can influence that of other enterprises in the supply chain.  

As the TFT-LCD (Thin Film Transistor-Liquid Crystal 

Display) industry evolves in Taiwan, the TFT-LCD industry 

becomes increasingly important due to its economic 

contribution to Taiwan. Demand forecasting is especially 

difficult in this area, but is highly important. The TFT-LCD 

industry involves the entire supply chain in Taiwan. The 

upstream to downstream supply chain of the TFT-LCD 

industry can be generally considered to comprise several tiers: 

the material supply, component supply, TFT-LCD 

manufacturing, and consumer electronics firms [5]. The 

 
Manuscript received May 5, 2019; revised March 11, 2020. This work was 

supported in part by the ministry of Science and Technology, Taiwan R.O.C. 

under Grant no. 100-2410-H-214-006.  

Yi-Hui Liang is with the Department of Information Management, I-Shou 

University (ISU), Kaohsiung City, Taiwan (e-mail: german@isu.edu.tw).  

component supply tier mainly comprises the supply of 

backlight modules, glass substrates, color filters, etc. The 

production of backlight modules, glass substrates, and color 

filters in the upstream supply chain can influence the 

TFT-LCD production in the downstream supply chain and 

thus make TFT-LCD production forecasting difficult. 

Recurrent neural networks (RNN) can be utilized for 

nonlinear time series forecasting [6]. Genetic algorithms 

(GA) are extensively used in network configuration, learning 

parameters, and input data assortment optimization [7]. 

Principe et al. (2000) [6] introduced GA to optimize the 

learning parameters and the number of neurons in the hidden 

layer of RNN. 

The bullwhip effect mainly comes from customer demand 

uncertainty in the downstream supply chain. The effect 

causes that expanding variations as one moves upstream in 

the supply chain. Towill (2005) [8] indicated that the 

bullwhip effect can conceivably produce production 

shortages and surpluses, inactive operation capacities, and 

potential layoff costs. The bullwhip effect causes variances in 

the error terms over time and makes supply chain forecasting 

very arduous. The problem of production volatility is critical 

for enterprises engaged in managing their supply chain [9]. 

The generalized autoregressive conditional heteroskedastic 

(GARCH) model can handle data with time-varying 

volatility properties [10]. The GARCH model was employed 

by [11] to do a pilot study for supply chains, and also by [9] to 

study volatility in an industrial production context. 

Based on the above discussion, this study is divided into 

two sections of supply chain production forecasting of 

Taiwan's TFT-LCD industry from the perspectives of the 

upstream and downstream supply chain. In the first section, 

three upstream components, including backlight modules, 

glass substrates, and color filter production, were utilized to 

forecast TFT-LCD production using RNN with GA. In the 

second section, the volatility GARCH models for TFT-LCD 

production forecasting were used. The results offer a valuable 

intelligence and suggestions for managers in the related 

industry. 

 

II. LITERATURE OVERVIEW  

Enterprise production both upstream and downstream can 

influence that of other enterprises in the supply chain. The 

TFT-LCD industry is a capital and technology intensive, 

rapid technology migration delineated by long production 

lead times and short product life cycles [12]. The demand 

changes rapidly and is highly volatile [4], [12]. The 

generation of innovative merchandise have been led by the 
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development of the industry in Taiwan, thus augmenting the 

respectability as a region in which to obtain lower costs and 

elevated quality. 

The upstream components mainly cover backlight 

modules, glass substrates, and color filters, etc. There are 

numerous manufacturers of backlight modules, glass 

substrates, and color filters, and the detailed available 

statistics on production are collected by Taiwanese 

professional organizations. Numerous studies have 

researched the TFT-LCD supply chain industry in Taiwan. 

For instance, Chu et al. (2016) [13] developed a framework 

that used the Kruskal-Wallis test and a decision tree to 

investigate a large amount of TFT-LCD manufacturing data 

to explore the manufacturing process issues. 

Fig. 1 illustrates the TFT-LCD industry supply chain. 
 

  
Fig. 1. The TFT-LCD industry supply chain. 

 

Several approaches can be used for forecasting, including 

time series approaches and artificial neural networks. 

There are several time series approaches, including 

exponential smoothing, the ARIMA models [14], the 

GARCH model, among others. In response to the GARCH 

model, the ARCH model was developed by [15] to take into 

account the potentiality of correlation over time on volatility 

[15]. Bollerslev (1986) [10] further modified the model by 

organizing an ARMA processes on the variances of errors. 

The GARCH model have been used in service demand in the 

airline industry [16], semiconductor demand [17], and 

electricity price prediction [18].  

A  qpGARCH ,  model is showed as below: 
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where 
tZ  is the observed value, B is the backward shift, s is 

the seasonal cycle, and 
t  is the error term, at time t. 

Artificial neural networks are typically used as forecasting 

approaches. RNN is more new among neural networks 

approaches. RNN is also widely used in deep learning. Tino 

et al. (2001) [19] suggested that RNN can forecast time series 

data with volatility.   

In addition, hybrid approaches combining neural networks 

with different forecasting approaches to solve issues have 

become common, such as Jaipuria and Mahapatra (2014) 

[20]. Employing neural networks with a discrete wavelet 

transform for supply chain forecasting [20]. 

Many studies have recently been published in scholarly 

journals on the topic of forecasting for the Taiwanese 

TFT-LCD industry. Chou et al. (2010) [21] utilized 

numerous approaches including neural networks to forecast 

the costs of TFT-LCD equipment. Lin et al. (2014) [22] 

proposed a hybrid approach that combined linear and 

nonlinear approaches to forecast changes in the regional 

market demand in the TFT-LCD display markets. Lee and 

Chiang (2016) [12] developed a framework to explore the 

capacity-demand problem in the TFT-LCD industry.   

 

III. RESEARCH METHOD 

The research method in this study comprises two sections. 

In the first section, supply chain production forecasting is 

examined from the perspective of the upstream supply chain. 

Three upstream components are adopted for TFT-LCD 

production forecasting, including backlight modules, glass 

substrates, and color filter production. In the second section, 

supply chain production forecasting is explored from the 

perspective of the downstream supply chain, where GARCH 

models are proposed for TFT-LCD production forecasting. 

Fig. 2 illustrates the proposed model. 
  

  
Fig. 2. The proposed model 

 

In the first section, backlight modules, glass substrates, 

and color filter production data are used to forecast 

TFT-LCD production using RNN with GA. Backlight 

modules, glass substrates, and color filter production data are 

used to forecast TFT-LCD production using RNN with GA.  

First, the necessary backlight module, glass substrate, 

color filter, and TFT-LCD production data for the supply 

chain in Taiwan were collected for further analysis. 

Secondarily, recurrent neural networks with genetic 

algorithms were utilized using the previous backlight module, 

glass substrate, and color filter production data to forecast 
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TFT-LCD production. The optimization procedures for the 

GA in the RNN are presented below [6]: 

Step 1: The number of neuron nodes in the hidden layer 

and numerous learning parameters of the RNN are denoted 

using chromosomes. 

Step 2: The initial population is generated.  

Step 3: Cycles training. 

Start with the training cycles, and nest them within cycles 

of evolution in populations. While the evolution cycles, 

choose RMSE to assess the fitness so as to progress with the 

RNN optimization. The RNN are ranked based on the fitness. 

RNN with poorer fitness scores are pulled out of the 

population, and the fitted ones are passed on to the next 

generation. Next, network reproduction, crossover and 

mutation processes are conducted to produce the next 

generation of RNN. Crossover denotes mating between 

individuals, and mutation indicates random modifications. 

Step 4: Back to the front step, and sustain training the next 

generation until the results meet the predetermined 

termination conditions. 

Fig. 3 shows the procedures for the GA. 

 

 
Fig. 3. The procedures for GA. 

 

For the second section, the GARCH model is used for 

TFT-LCD forecasting. 

First, the necessary production data is collected for further 

analysis. 

Secondarily, the GARCH model is utilized for TFT-LCD 

production forecasting using the previous TFT-LCD 

production information. The analytical procedures are shown 

below: 

Step 1: Input data 

Step 2: Model identification 

After obtaining the ACF and PACF, identify multiple 

ARMA (Autoregressive moving average) models that fit the 

data for next analysis.  

Step 2: ARCH effect check  

Check the ARCH effect. If no ARCH effect, adopt the 

ARMA model. If the ARCH effect exists, adopt the GARCH 

model. 

Step 4: GARCH model estimation and validation 

Following identifying a possible GARCH model, and 

estimate the model parameters. The model with the smallest 

AIC value is chosen as the most proper one.  

Step 5: Forecast. 

Fig. 4 shows the GARCH model procedures. 

 

  
Fig. 4. The GARCH model procedures. 

 

Forecasting accuracy was determined using the mean 

absolute deviation (MAD), the root mean squared error 

(RMSE) and the mean absolute percent error (MAPE) as 

measures of forecasting accuracy. MAPE is used to measure 

the prediction accuracy because it can standardize the errors 

to ameliorate comparisons among variables with diverse 

scales in this study. 

 

IV. RESULTS 

Initially, the monthly production data sets for backlight 

modules, glass substrates, color filters, and TFT-LCD panels 

(10-inches and above) in Taiwan were adopted to verify the 

model. The available data from ChemNET and the Industrial 

Technology Research Institute (ITRI), Taiwan were used. 

However, ChemNET only collected monthly production data 

from October 1999 until September 2011 for backlight 

modules, monthly production data from January 2002 until 

September 2011 for glass substrates, monthly production 

data from April 2002 until September 2011 for color filters, 

and monthly production data from January 2000 until 

September 2011 for TFT-LCD panels (10-inches and above), 

and ChemNET wound up its operation and didn’t offer data 

after September 2011, so the monthly production data for 

backlight modules, glass substrates, color filters, and 

TFT-LCD panels (10-inches and above) were used in this 

study. Fig. 5-Fig. 8 illustrate the data for backlight modules, 

glass substrates, color filters, and TFT-LCD panels 

(10-inches and above). Fig. 5 shows the monthly production 

data from October 1999 until September 2011 for backlight 

modules. Fig. 6 shows the monthly production data from 

January 2002 until September 2011 for glass substrates. Fig. 

7 shows the monthly production data from April 2002 until 
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September 2011 for color filters. Fig. 8 shows the monthly 

production data from January 2000 until September 2011 for 

TFT-LCD panels (10-inches and above). 

 

  
Fig. 5. Backlight module data. 

 

  
Fig. 6. Glass substrate data. 

 

 
Fig. 7. Color filter data. 

 

 
Fig. 8. TFT-LCD panel (10-inches and above) data. 

 

The research method in this study separates into two 

sections. In the first section, supply chain production 

forecasting is examined from the perspective of the upstream 

supply chain. Three upstream components are adopted for 

TFT-LCD production forecasting, including backlight 

modules, glass substrates, and color filter production. The 

training set adopted a dataset comprising 6 years and 9 

months from April 2002 to December 2008 to construct the 

model, and the test set adopted a dataset comprising 2 years 

and 9 months from January 2009 to September 2011 to verify 

the proposed model. 

In the first section, RNN with GA using the previous 

backlight module, glass substrate, and color filter production 

data were utilized to forecast TFT-LCD production and 

Neurosolutions neural network software. RNN with GA use 

one hidden layer and DBD learning rule. The MAPE value 

for the previous third period is the lowest. 

Table I lists the results. 

 
TABLE I: RECURRENT NEURAL NETWORKS WITH GENETIC ALGORITHMS 

 Previous first 

period  

Previous second 

period  

Previous third 

period  

MAPE 0.2169 0.2436 0.1920 

 Previous fourth 

period  

Previous fifth 

period 

Previous sixth 

period 

MAPE 0.2299 0.2318 0.3021 

 

In the second section, supply chain production forecasting 

is explored from the perspective of the downstream supply 

chain, where GARCH models are proposed for TFT-LCD 

production forecasting.  

The GARCH model was used for TFT-LCD production 

forecasting using previous monthly TFT-LCD production 

data for TFT-LCD panels (10-inches and above). The 

training set adopted a dataset comprising 9-year data from 

January 2000 to December 2008 to construct the model, and 

the test set adopted a dataset comprising 2 years and 9 

months from January 2009 to September 2011 to verify the 

proposed model. 
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Fig. 9. The results of the GARCH model. 

 

First, the original production data was altered through the 

logarithm function. Then, several ARMA models were 

developed after acquiring the ACF and PACF, and the 
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candidate models were selected. If the ARCH effect occurred, 

the GARCH model was used to estimate and validate the 

model.  

The results are demonstrated in Fig. 9.  

In addition, this also employed other approaches to 

forecast production of the TFT-LCD. Through Eviews 

statistical software calculations, Table 2 illustrates the results. 

The MAPE value for the GARCH model is the lowest than 

other approaches.  

Table II shows the results. 
  

TABLE II: THE FORECASTING RESULTS USING DIFFERENT APPROACHES 

 MAPE 

Exponential smoothing 0.084644 

Holt-winter exponential smoothing 0.081257 

SARIMA 0.084983 

Regression 0.212781 

GARCH 0.079815 

 

V. CONCLUSIONS 

The following conclusions can be drawn for supply chain 

production forecasting:  

First, the supply chain is a complex network that consists 

of suppliers, manufacturers, and other facilities, and the 

facilities interact each other. Therefore, supply chain 

strategies cannot be determined in isolation [1]. Three 

upstream components, including a backlight module, a glass 

substrate, and color filter productions were utilized to 

forecast TFT-LCD production using recurrent neural 

networks with genetic algorithms. The results show that 

using the previous third period backlight module, glass 

substrate, and color filter production data to forecast 

TFT-LCD production is better. Managers can consult the 

information when engaging in forecasting. 

Second, the bullwhip effect from the downstream supply 

chain causes volatility in the supply chain as well as 

amplification of the demand volatility up the supply chain. 

Datta et al. (2008) [11] suggested that extracting values from 

large amounts of data and resolving the meaning of implicit 

volatility could benefit business intelligence and prediction. 

The results indicate that the volatility effect in the area of 

TFT-LCD production actually exists. The results also show 

that the prediction ability of the GARCH model is a better 

than that of an exponential smoothing, Holt-Winter’s 

exponential smoothing, regression analysis, and SARIMA 

models. The results also suggest that taking volatility into 

consideration could lead to improvements in the prediction 

accuracy of forecasting models. Managers can benefit from 

the information when engaging in forecasting. 

Third, this study proposed a forecasting model for supply 

chain production for the TFT-LCD industry from the 

perspective of both the upstream and downstream supply 

chain. It is suggested that decision makers concerned about 

forecasting results in the TFT-LCD industry could make 

more accurate forecasts, thus decreasing the degree of risk in 

the supply chain from both the demand and supply sides. 

There are some limitations in this study, including 

requiring a large amount of data and solely applying to the 

Taiwanese TFT-LCD industry.  

Future studies can expand the model to a wider range to 

obtain more robust generalizations. 
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