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Abstract—Accurate segmentation of brain tissues from 

magnetic resonance imaging (MRI) is of significant importance 

for clinical application and scientific research. Traditional 

strategies to handle the 2D images have the limitation of 3D data. 

In this paper, to overcome these issues, a tissue segmentation 

approach with supervoxel clustering and the novel 3D texture 

extraction method are proposed. At first, the simple linear 

iterative clustering in three-dimension is applied, to reduce the 

number of calculation objects. Then, a novel local binary 

pattern in three-dimension is proposed for better discriminate 

the supervoxels with different tissues. A clustering approach is 

also developed to classify supervoxels with features into 

different types of tissues. The labels of supervoxel are finally 

mapped back to original data to have the tissue type of voxels. 

The performance of the proposed method is evaluated on the 

commonly utilized Internet Brain Segmentation Repository 18 

dataset. The experiment showed promising results with 

insufficient trainset. 

 
Index Terms—Magnetic resonance imaging, brain tissue, 

supervoxel, clustering, texture extraction, k-nearest neighbor. 

 

I. INTRODUCTION 

Magnetic resonance images (MRI) provide abundant 

information associated to anatomical structures [1]. The 

powerful technique has been widely applied for examinations 

of human brain in clinical applications and scientific research 

[2]. Brain tissue segmentation is essential in the 

aforementioned applications [3]. Accurate tissue 

segmentation can be challenging due to partial volume effect, 

intensity non-uniformity and noise [4]. What’s worse, 

because of the privacy and collection cost, the training data 

for MRI is very limited. 

Plenty of methods have been proposed to obtain accurate 

tissue segmentation. Most of these methods utilize the 

voxel-wise strategy, which have a limitation of the relatively 

high computational burden for the high-resolution 3D MRI 

volume. Recently, the supervoxel technique has been 

employed to improve the efficiency with a sound 

performance [5]-[8]. This technique groups the similar voxel 

in the local region into a meaningful supervoxel, and the 

tissue segmentation is thus performed by processing a small 

number of supervoxel [6]. The supervoxel based strategy has 

 

 

 

Manuscript received September 24, 2019; revised February 15, 2020.  

Yongfan Liu is with Chien-shiung Wu College, Southeast University, 

Nanjing, China. He is now with the Division of Continuing Education, 

University of California, Irvine, P.O. Box 6050 USA (e-mail: 

yongfal@uci.edu).  

Sen Du and Youyong Kong are with School of Computer Science and 

Engineering, Southeast University, Nanjing, China (Corresponding author: 

Youyong Kong; e-mail: silentchord@163.com, kongyouyong@seu.edu.cn). 

two advantages. At the first, supervoxel representation has 

strong spatial adherence to the tissue boundaries, which can 

prevent distorting the important anatomical details in MR 

images [7]. Secondly, supervoxel can enable low complexity 

and significantly simplify the subsequent tasks.  

However, accurate tissue segmentation depends on 

developing discriminative features for describing the 

supervoxel. In the past two decades, great efforts have been 

made to develop a variety of descriptors [9]-[11]. Local 

binary pattern (LBP) is a commonly used texture feature 

extraction method [12]. However, these LBP and some of its 

improved algorithms are only suitable for 2D images. 

Therefore, it is very important to design an algorithm suitable 

for 3D data based on the LBP algorithm. 

In this paper, we proposed a brain tissue segmentation 

approach by clustering supervoxels with novel three- 

dimensional local binary pattern operator and discriptor. At 

first, 3D supervoxels were generated for each MRI volume. 

Secondly, a novel 3D local binary pattern operator was 

proposed to characterize the supervoxel. Then a clustering 

approach is developed to classify supervoxels with features 

into different types of tissues. The labels of supervoxel are 

finally mapped back to original data to have the tissue type of 

voxels. With the help of this system, LBP_3D will give full 

play to its advantages and make up for its shortcomings. The 

performance of the proposed method is evaluated on the 

commonly utilized Internet Brain Segmentation Repository 

18 dataset. The experimental results show that the 

MLBP-based algorithm system can train a good and robust 

kNN model with insufficient data. 

 

II. METHODS 

The objective of our algorithm system is to classify brain 

tissues from MRI. We proposed LBP algorithms in 

three-dimension (LBP_3D) at first, then we use supervoxel 

segmentation, SLIC_3D, as pre-processing, kNN as the 

predictive model, and construct an algorithmic system to 

achieve goals. The reason we don't use some more complex 

predictive model is that we want LBP_3D to make as more 

contributions as possible in this system, to reflect the 

performance of itself. If the more complex algorithms are 

used, it may introduce unnecessary factors. What’s more, the 

SLIC_3D has finished the work of clustering, so it’s not 

necessary to involve the cluster function in the predictive 

model. kNN is qualified to accomplish the discrimination 

task. The main framework of the proposed method is 

illustrated as Fig. 1 [13]. 

A. Supervoxel Generation 

Supervoxel has been increasingly utilized for 3D brain 

MRI volumes. A large number of voxels can be transferred 
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for a small number of supervoxels, which can highly improve 

computational efficiency. Supervoxels essentially cluster 

voxels with similarities in features such as space and color. A 

number of supervoxel generation methods has been proposed 

in the past decade. Among these methods, simple linear 

iterative clustering (SLIC) algorithm is one of the most 

efficient and effective methods [7]. However, this algorithm 

is designed for 2D images, and it needs to be upgraded to 3D 

situation. 
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Fig. 1. The framework of the proposed brain tissue segmentation method. 

 

Since there is only one channel per voxel in the MRI image, 

the calculations in the SLIC need to be modified. dc is the 

distance between the voxels (vi, vj) in the color space, and we 

have made a simplification; ds is the distance between the 

voxels in the geometric space, and all three dimensions of it 

(xi, yi, zi or xj, yj, zj) need to be counted. m is to adjust the 

weight of two distances, and its value is determined 

according to the actual situation. D is the final distance. 

 
𝑑𝑐 = 𝑣𝑗 − 𝑣𝑖 

𝑑𝑠 = √(𝑥𝑗 − 𝑥𝑖)
2 + (𝑦𝑗 − 𝑦𝑖)

2 + (𝑧𝑗 − 𝑧𝑖)
2             (1) 

𝐷 = √𝑑𝑐
2 + (

𝑑𝑠

𝑆
)

2

𝑚2 

 

When we access the final distance D, the work about 

clustering will become easy. There is no much difference 

between 3D situation and 2D situation in the field of 

clustering method.  

B. Local Binary Pattern in Three-Dimension 

LBP (Local Binary Pattern) is a commonly used operator 

for extracting two-dimensional image features, which has 

excellent robustness in pattern recognition [12]. The original 

LBP operator is defined as a 3×3 window. In this window, the 

value of the center pixel is considered as the threshold, and 

the value of the adjacent 8 pixels need to compare with the 

threshold. If the value of a pixel is greater than the threshold, 

the position of this pixel is marked as 1, otherwise 0. In this 

way, 8 labels in the 3×3 window can produce an 8-bit binary 

number. Then it will be converted to a decimal number, 

called texture units, from 0 to 255. The texture units will be 

filled in the center pixel in the window, which is used to 

reflect the texture information for this area. Finally, a texture 

map is obtained, as the same size as the original image.  

To better capture the 3D supervoxels, this paper proposed 

a novel LBP operator in three-dimension (LBP_3D). In 

three- dimensional space, 1 voxel has 26 neighbors. If all 26 

neighbors are taken into consideration, there will be 226 

possible texture units, which is hard to process. Therefore, 

it’s better to only select a part of the neighbors for calculation. 

Here, we have developed two types of operators. One is 

named Local Binary Pattern of Adjoin Voxel (LBPa), 

where 1 voxel has 6 adjoin neighbors. Another one is named 

Local Binary Pattern of Diagonal Voxel (LBPd), where 

the center has 8 diagonal neighbors. When we only consider 

the relationship between these specific neighbor voxels and 

the central voxel. LBPa only generates 26 possible texture 

units, while LBPd generates 28 possible texture units. The 

method of calculating the texture units by the LBPd operator 

is as following steps. The method of LBPa is similar. 

 

<1> Select Voxel: Select a 3×3×3 window in the original 

3D data. Take the voxel in the center of the window as the 

original point, and then take its eight diagonal voxels; 

<2>Thresholding: Take the value X of the central voxel as 

a threshold. Compare the value xi of the 8 voxels obtained in 

step (1) with the threshold value. The ci is the output result. 

𝑐𝑖 = {
1     𝑥𝑖 ≥ 𝑋
0     𝑥𝑖 < 𝑋

          (2) 

Taking the value in Fig. 2 as an example, the central voxel 
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value is 16, and its eight diagonal neighbor values are 7, 33, 

23, 24, 8, 11, 14, 12. If the value is greater than 16, take 1; or 

else take 0. The output result can be obtained: 0,1,1,1,0,0,0,0;  

<3> Coding: Change the output result ci to the binary 

serial, then convert to decimal number.  

texture = ∑ 2𝑐𝑖8
𝑖=1                                   (3) 

Continue the example in Fig. 2, the texture unit of the 

center pixel is 112, which convert from 01110000; 

<4>Move the 3×3×3 window, and the moving stride is 1 

voxel. Traverse the entire three-dimensional data, so that all 

voxels, except the voxels at the edge of the data, have texture 

units. If specific texture units are given to the edge-voxels, a 

texture map as the same size as the original 3D data can be 

obtained. The specific texture unit is determined by the actual 

situation and it’s 0 in this paper. 

 

 
Fig. 2. Example of LBPd operator. 

 

LBD_3D also faces a problem, that is, how to determine 

the order of the binary code. In the LBP algorithm, the binary 

codes are arranged in a clockwise order, so that the texture 

difference between two pixels, who have smaller texture 

value differences, is also small. That is to say, the texture 

units of LBP have a metric meaning. In the step <3>, the 

voxels around the central voxel are in 3D space, and there are 

no such concepts as "clockwise", "sequential", etc., therefore 

it’s hard to confirm how to arrange the binary code. Still in 

the step <3>, if the binary serial is 00000111, it’s totally fine.  

C. kNN and Data Set Division 

kNN (k-Nearest Neighbor) is a classic training-predictive 

model [14], which is a non-parametric method used for 

classification and regression. The input consists of the k 

closest training examples in feature space, and the output is 

the prediction of the label to the test set. As mentioned above, 

the characteristics of the MRI data can be summarized as 

follows: the amount of voxel in a single data is large, while 

the amount of data in the training set is small. The 

combination of supervoxel and kNN can make up for these 

two problems and finally solve them. This is why the kNN 

algorithm is chosen. 

In the case of limited data sets, the composition of the 

training set needs to be carefully considered. If one 

three-dimensional data is used as one sample, as shown in (4), 

and DATAi is each MRI 3D data in the data set. It will be 

obviously not enough to train any machine learning model.  

TrainSet1 = {DATAk}                                   (4) 

Fortunately, because the 3D data contains tens of 

thousands of voxels, the number of supervoxels in a set of 

data is also very abundant (usually an MRI data can generate 

thousands of supervoxels). If one supervoxel can be used as 

one training sample, as shown in (5), and SV is supervoxel, k 

is the number of MRI data in the data set, l is the number 
of supervoxels in one MRI data. It will become a very large 

training set. 

TrainSet2 = {SVkl}                                 (5) 

Now a new problem comes out. DATAi is similar to each 

other, but SVkl is not. When k is a constant, SVkl represents all 

supervoxels of a certain MRI data; when l is a constant, there 

aren’t many correlations between every SVkl. Therefore, if we 

want to use SVkl as an element of the training set, we need to 

do some identification to prevent the prediction model from 

being confused with these supervoxels. 

Thanks to the object we are dealing with is brain MRI data, 

which means most of the data are similar. In other words, in 

different MRI data, the data performances of the same area 

are approximately the same. So, in the first step of training, 

the spatial characteristic of supervoxel clustering center is 

very important. The machine will use spatial features to 

determine which super voxels should have similar 

characteristics and avoid global confusion. 

The SLIC_3D has finished the work of clustering, so it’s 

not necessary to involve the cluster function in the predictive 

model. kNN is qualified to accomplish the discrimination 

task. 

Only spatial features are not enough. We need more 

features to help the machine judge. It should be noted that 

kNN accepts only one vector for one training data. Thus, the 

next task is to characterize each supervoxel feature as a 

one-dimensional vector. 

D. Texture Descriptor and Feature Matching 

When it comes to feature matching, the most easily 

thought of is the grayscale feature of each supervoxel. The 

grayscale histogram is used as one-dimensional data and is 

suitable for being sent to the kNN model for training. The 

method is: selecting supervoxels one by one, counting gray 

information of all voxels in supervoxels, and listing statistical 

histograms. After the grayscales of all supervoxels are 

counted, combine them with the spatial information of each 

supervoxel, as (6), and send it to the kNN model for training. 

Finally, the prediction result can be obtained. 

𝒗𝑇 = [ 𝑥, 𝑦, 𝑧, 𝑯𝑇]                                  (6) 

v is the eigenvector provided to kNN, H is the grayscale 

histogram of the voxel contained in the current supervoxel, 

and x, y, z are the spatial coordinates of this supervoxel. The 

same symbol has the same meaning in (7). 

If a better predictive model is wanted, LBP_3D will be 

involved. As we know, the data returned by LBP_3D is a 

texture map, which is as the same size as the original 3D data. 

The texture map cannot be provided as a vector to kNN, so it 

needs to be converted into the eigenvector. Our approach is to 

measure the grayscale of the texture units in supervoxel range, 

called Texture Descriptor. Supervoxel range means the 

range of current supervoxel, the supervoxel segmentation is 

based on the original image. We combine the texture 

descriptor with the spatial information to get a new 

eigenvector, as (7). T is texture descriptor, the grayscale 

histogram of texture map. 
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TABLE I: PERFORMANCE OF BRAIN TISSUE SEGMENTATION ON IBSR18 DATASETS 

THE UNITS OF ALL DATA IN THE TABLE ARE %, THE VAR (SA) ARE 10-4 

 

 

DSC 
Avg (SA) Var (SA) 

CSF WM GM Avg (DSC) 

HIST 51.35 78.02 58.27 62.55 71.46 7.69 

LBPa 39.25 83.12 64.13 62.17 78.55 2.96 

LBPd 39.37 83.79 79.45 67.54 79.57 1.24 

MLBP 41.39 84.10 79.66 68.38 79.94 3.62 

HIS_LBPa 50.98 79.49 61.86 64.11 73.26 2.67 

HIS_LBPd 51.41 80.04 63.74 65.07 74.06 7.19 

HIS_MLBP 49.67 80.58 65.24 65.15 74.68 4.34 

 

𝒗 =  [[
𝑥
𝑦
𝑧

] × 𝑤 

𝑻

]                                (7) 

w is the weight of the spatial information. Because the 

spatial information only occupies three dimensions, it’s weak 

for them to express themselves, the parameter w can solve it. 

w can be in the range [1, 10]. 

Since the data required by kNN is the texture descriptor, 

it’s no longer important whether the texture units have the 

metric meaning. The texture descriptor counts the number of 

texture states in the current supervoxel. Thus, it’s quite 

enough for the texture units have the ability to tell the 

difference from different texture states by their value. 

The two methods LBPa and LBPd are independent of each 

other. They can work independently, or collaborate to extract 

features of MRI data, called MLBP (Multi-Local Binary 

Pattern). MLBP is still a type of LBP_3D algorithm.  

 

III. RESULTS AND DISCUSSION  

A. Experimental Setup 

The goal of this paper is to distinguish between tissues in 

the brain and segment them. The tissues can be divided into 

three parts, cerebrospinal fluid (CSF), white matter (WM), 

and gray matter (GM). All the proposed approaches have 

been evaluated on the widely utilized datasets: the internet 

brain segmentation repository 18 (IBSR18) dataset [15]. The 

IBSR dataset consists of 18 real MRI volumes derived from 

healthy subjects. Each volume consists of 256 × 256 × 128 

voxels with 2 mm3. 15 of the volumes form the training set, 

while 3 of them form the test set. The division is completely 

random. In order to ensure the certainty of the variables, all 

experiments are based on these division sets. 

We have prepared 7 sets of experiments. As mentioned 

above, the LBPa, LBPd and the gray scale method are 

depending with each other. These 7 sets of experiments are 

the result of different combinations. 

HIST: Only the grayscale features in each super voxel are 

used as training objects; 

LBPa: Only the LBPa texture features and descriptor in 

each super voxel are used as training objects; 

LBPd: Only the LBPd texture features and descriptor in 

each super voxel are used as training objects; 

MLBP: Combine LBPa texture features and LBPd texture 

features in super voxels for training; 

HIS_LBPa: Combine LBPa texture features and gray 

features in super voxels for training; 

HIS_LBPd: Combine LBPd texture features and gray 

features in super voxels for training; 

HIS_MLBP: Combine MLBP texture features and gray 

features in super voxels for training. 

The number of partitions of SLIC_3D is 30000, m is 2; w is 

2.5; the number of nearest neighbors in kNN is 5.  

B. Comparison  

We bring into two evaluation indexes for an objective 

evaluate of the segmentation results. One is the segmentation 

accuracy (SA) another is dice similarity coefficient (DSC). 

They are calculated as follow, 

SA =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 × 100%                               (8) 

 

           𝐷𝑆𝐶 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
 × 100%                          (9) 

where TP, FP and FN are true positive, false positive and 

false negative voxel. The DSC value reflects the similarity 

between the segmentation result and the ground truth while 

SA only record the proportion of the voxel with the correct 

label in the segmentation result to the corresponding voxel in 

ground truth. 

 

 
(a) Brain Image             (b) Ground-truth              (c)LBPd                      (d)LBPa                   (e)MLBP 

Fig. 3. The performance of our proposed segmentation algorithm on IBSR18. The color of red, green and blue represents CSF, GM and WM respectively. 

Column (a) and (b) are the original image and the ground truth of the segmentation. Column (c-e) are the segmentation results of the LBPd, LBPa and MLBP. 
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As three sets of data were selected as test sets, it is more 

objective to use the average of the three prediction results. In 

addition, the variance of the three prediction results should 

also be considered, as (10) shows, which is an important 

indicator to reflect the robustness of the algorithm system.  

𝜎2(𝑆𝐴) =  
∑ (𝜇(𝑆𝐴)− 𝑆𝐴𝑖)23

𝑖=1

3
                         (10) 

C. Result Analysis 

Table I shows the result of the experiment, MLBP obtains 

better performance compared to other six methods. MLBP 

consists of LBPa and LBPd, so it’s not surprises that MLBP 

obtains more precise segmentation result. The eigenvector of 

MLBP has more dimensions than LBPa and LBPd, which 

make more information be provided to the kNN for training 

and prediction. 

The result in Table I suggests that the variance of LBPd is 

the least, which means LBPd is the most robust in this 

experiment. The truth is LBPd indeed has good performance 

as well. When the w is 1, LBPd will be the best algorithm in 

these 7 algorithm systems, both average and variance. Also, 

when the w more than 1, the MLBP has more advantages, and 

most of its parameters are better than others.  

The success of MLBP doesn’t mean that more information 

is more effective, cause the HIS-MLBP gives out the 

counter-example. According to the experiment, we can draw 

a conclusion, that is, grayscale histogram of the voxel is not 

an ideal method to extract the feature of MRIs and segment 

them. The average result of HIST is the lowest, and the 

variance of it is the highest. There must be some error 

information in HIST. When combining HIST and LBP_3D, 

the accuracy comes down totally, comparing with LBP_3D 

working alone. 

D. Reliability 

According to the results in Table I and the analysis in 

Section III.C, LBPd and MLBP have a sound performance. 

To further illustrate the reliability of the two methods in the 

prediction process, cross-validation is performed.  

In the previous experiment, the calculated variances were 

just rough verification. It’s reasonable to suspect that the 

variances will fluctuate as the training set changes. As 

mentioned above, the proposed algorithm is aimed at the 

general shortage of medical image data, and the experiment is 

also carried out with only 18 sets of data. For this situation, 

leave-one-out cross-validation is the best option [16]. 

In practice, leave-one-out cross-validation means 18 

groups of experiments will be conducted for each algorithm. 

In each experiment, 17 sets of data will be taken as the train 

set and the rest one set of data will become the test set. 18 

groups of experiments are to make sure that every data set has 

the chance to be the test set. Referring to the settings in III.B, 

each set of experiments will produce 4 results, they are SA, 

CSF, WM and GM. According to the output of the four types 

of results, draw grouping diagrams and calculate their 

variance, as shown in (11). res is the 4 types results and μ(•) 

is the average  of each type of the result. 

𝜎2(𝑟𝑒𝑠) =  
∑ (𝜇(𝑟𝑒𝑠)− 𝑟𝑒𝑠𝑖)218

𝑖=1

18
                         (11) 

The performance of the two algorithm is shown as Fig. 4, 

and the statistical results are shown in Table II. As it can be 

seen, the averages of LBPd and MLBP are almost the same, 

the difference between them is nuance as well in Fig. 4. 

While the variances of MLBP are totally less than LBPd’s, 

which means MLBP is more reliable. According to the Fig. 5, 

both algorithms have smooth circle, so they are both stable 

prediction models. The only flaw is the division of the CSF. 

Because cerebrospinal fluid is liquid and has a narrow 

distribution in the brain, its segmentation effect is relatively 

poor. 

 
TABLE II: THE STATISTICAL RESULTS OF VALIDATION 

THE UNITS OF ALL AVG DATA IN THE TABLE ARE %, THE VAR ARE 10-4 

  LPBd MLBP 

SA 
Avg 86.99 87.12 

Var 12.11 10.12 

CSF 
Avg 65.09 65.27 

Var 57.41 53.06 

WM 
Avg 89.40 89.54 

Var 9.38 7.75 

GM 
Avg 87.66 87.68 

Var 12.82 12.16 

 

 
(a)                                                                          (b) 

Fig. 4. The result of 18 groups of experiments, for each algorithm. Diagram 

(a) is for LBPd, and diagram (b) is for MLPB. 

 

IV. CONCLUSIONS 

In this paper, we have proposed a novel LBP_3D operator 

and texture descriptor, which bring us a new idea to handle 

with 3D MRI data. Moreover, we introduced a brain MRI 

image segmentation method to make good use of them, based 

on supervoxel and kNN. The proposed MLBP algorithm 

system performed better in the same series of algorithms. 

On a regular computer, this method can process, train, and 

predict all data in less than five minutes, which means it has 

good universality and can be used on most computers. We are 

confident that when the number of training sets is larger, 

more accurate results can be achieved. In addition, the 

LBP_3D descriptor in this paper is a kind of compensation 

for which the coding order of LBP_3D is not fixed. In fact, 

most organs are symmetrical. If the coding order can 

correspond with these symmetries, or other novel method to 

handle the coding order is proposed, its ability to extract the 

feature of MRI data will be stronger. 
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