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Abstract—The traveling salesman problem (TSP) plays an 

important role in theoretical computer science. It can be used 

to solve different route planning problems in the real world 

and has been proved to be NP-hard. Plenty of researchers tried 

to solve the TSP by the population-based algorithms. However, 

as a real-world problem, the TSP has two major differences 

with the benchmark functions. One is the visiting order of the 

TSP is a combination of integers and the other one is each city 

in the problem has to be exactly visited once. To cross the two 

problems, the standardized bare bones particle swarm 

optimization (SBBPSO) algorithm is proposed in this work. 

The Gaussian distribution is used to select the positions of 

particles in the next generation. A standardized converter is 

used to ensure the dimensions of each particle are integers and 

each city has been visited exactly once. To test the performance 

of the SBBPSO, several famous instances are used in the 

experiments. Also, the standard bare bones particle swarm 

optimizations algorithm is used as the control group. The 

experimental results confirm that the SBBPSO is able to solve 

the TSP. 

 

Index Terms—Bare bones, particle swarm optimization, 

standardized, traveling salesman problem.  

 

I. INTRODUCTION 

The particle swarm optimization (PSO) algorithm is first 

proposed by Kennedy and Eberhart in 1995 [1]. Particles are 

designed to have memories to record the best position they 

have ever been. Also, the swarm can record the best position 

from all particles. The next position of a particle is calculated 

from the current position and the velocity. The velocity is 

affected by the personal best position and the global best 

position. The bare bones particle swarm optimization 

(BBPSO) algorithm [2] is a simple version of the PSO 

algorithm. The next position of each particle is selected from 

the Gaussian distribution. With the cancel of the velocity 

item, the algorithm becomes parameter free. No human 

iterative is needed during the iteration. The BBPSO based 

algorithms are used in data clustering [3], feature selection 

[4], image classification [5] and so on. 

The traveling salesman problem (TSP) is a classic route 

planning problem. In the TSP, a salesman needs to visit 

several cities. He or she has to set up from one city, traverses 

every city only once, then return to the starting point. Our 

mission is finding the shortest route in all traveling plans. 
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The description of the TSP is simple and it is able to be solved 

by the enumeration when the number of the city is small. 

However, researchers noticed that the total routes increase 

crazily when the number of the city goes up. It can be 

calculated that the total number of routes is n!, where n  is the 

number of cities. It is obviously unable to list all the routes 

then find the best one. Researchers begin to try different 

methods on the TSP. However, to the best of the writer's 

knowledge, most of the researches try to solve the TSP by ant 

clone optimization (ACO) [6], [7], bee colony algorithms [8] 

and the genetic algorithm (GA) [9]. These methods need a lot 

of preliminary work and parameter debugging, which makes 

them difficult to apply to different problems. 

To solve this problem, a standardized bare bones particle 

swarm optimization algorithm is proposed in this rest of this 

paper. Section Ⅱ gives a brief review of the history of the TSP 

and the BBPSO based methods. Section Ⅲ gives an 

introduction of the proposed methods. Section Ⅳ introduces 

the experimental methods and results. Section Ⅴ gives the 

conclusion of this paper. Also, since all test functions used in 

this paper are minimal problems, a better position means a 

position has a smaller function value. 

 

II. RELATE WORKS 

A. The History of the Traveling Salesman Problem 

The TSP has been studied over years. Researchers tried to 

solve it by different methods. For instances, an ant colony 

algorithm based method which is called pattern reduction 

enhanced ant colony optimization (PREACO) is used to 

solve the TSP in [10]. The PREACO is motivated by the 

observation that many of the computations of ACO on its 

convergence process are essentially redundant and thus can 

be eliminated to reduce its computation time. Also, Arshad 

proposed a genetic algorithm for the TSP in [11]. A 

two-phase hybrid approach for the TSP is proposed in this 

research. The first phase of the proposed method is based on 

a sequence based genetic algorithm (SBGA) with an 

embedded local search scheme. Within the SBGA, a memory 

is introduced to store good sequences (sub-tours) extracted 

from previous good solutions and the stored sequences are 

used to guide the generation of offspring via local search 

during the evolution of the population. Additionally, some 

techniques are also applied to adapt the key parameters based 

on whether the best individual of the population improves or 

not and maintain the diversity. After SBGA finishes, the 

hybrid approach enters the second phase, where the inver 

over (IO) operator, which is a state-of-the-art algorithm for 
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the TSP, is used to further improve the solution quality of the 

population. 

Li [12] described the colored traveling salesman problem 

(CTSP). The multiple traveling salesman problem (MTSP) is 

an important combinatorial optimization problem. Meng [13] 

presented a variable neighborhood search for the CTSP. A 

colored traveling salesman problem (CTSP) is a 

generalization of the well-known multiple traveling 

salesman problem. A variable neighborhood search (VNS) 

approach was proposed in this work. Extensive simulation 

was conducted and the results shown that the proposed VNS 

is able to solve CTSP. 

The particle swarm optimization is combined with the 

k-means algorithm to solve the TSP in [14]. The K-means 

algorithm is employed to find the city clustering and then 

solve a sequence of sub-city in a given order by the PSO. The 

performance of the proposed method is tested against a 

number of instances from the TSPLIB. Results demonstrate 

the effectiveness of the proposed method. Moreover, the 

novel method gives better results in the standard TSP 

problem than the exist algorithms.  

B. The Bare Bones Particle Swarm Based Methods 

With the canceling of the velocity term, the BBPSO 

becomes much easier to apply to applications. The next 

position of each particle is selected by the Gaussian 

distribution. On the foundation of the BBPSO, Guo [15] 

proposed a pair-wise bare bones particle swarm optimization 

algorithm (PBBPSO). Particles are designed to be members 

in a society. The big society is consist by sever small units. 

Two particles are designed in one unit. The two particles will 

evolve with different rules. This method delays the diversity 

losing of the particle swarm. Besides the Gaussian 

distribution, the Cauchy jumps is combined with the BBPSO 

in [16]. 

 

 
Fig. 1. The possible situation of DNS. 

 

In 2017, Guo [17] proposed a bare bones particle swarm 

optimization algorithm with dynamic local search 

(DLS-BBPSO). The swarm in the DLS-BBPSO will be 

spilled to several local groups. Each local group has one 

leader and several teammates. It is possible that no teammate 

exists in a local group. It is also possible that all particles are 

in one local group. The algorithm is called dynamic is 

because the number of local groups and the number of 

particles in each group are not certain. Also, no parameter is 

needed during the dynamic splitting process. One of the 

possible local structures of DLS-BBPSO is shown in Fig. 1. 

In the other direction, a dynamic update rule is formulated 

for the BBPSO [18].  In 2019, Guo [19] combined a fission 

and fusion strategy with the bare bones particle swarm 

optimization (FHBBPSO). In the FHBBPSO, local groups 

get better positions by competing with each other. The fission 

strategy aims at splitting the search space. Particles are 

assigned to different local groups to sample the 

corresponding regions. The fusion strategy aims at 

narrowing the search space. Marginal groups will be 

gradually merged by the central groups until there is only one 

group left. The two strategies work together for the 

theoretical optimal value. Moreover, the FHBBPSO is able to 

apply to different problems without parameter adjustment 

because no parameter is used during the iteration process. To 

verify the optimization ability of the FHBBPSO, the 

algorithm runs over the CEC2014 benchmark functions. The 

test functions are composed of four parts: the unimodal 

functions, the simple multimodal functions, the hybrid 

functions, and the composition functions. The experimental 

results confirmed the optimization ability of FHBBPSO. 

On the other hand, a Scale Matrix Adaptation is used to 

improve the search ability of the BBPSO [20]. Guo [21] also 

implemented a dynamic allocation strategy to the BBPSO 

(DABBPSO). In the DABBPSO, particles with different 

personal best values are considered to have different 

capacities. To be specific, the particles which have a higher 

position in the personal best value ranking will be good at 

finding more accurately global best position while the rest are 

good at escaping from the current local optimum. The top 

particles are assigned to the main group while others are 

allotted into the ancillary group. The two groups working in 

different ways and their cooperation helps the algorithm to 

find the global best position. The proposed method increases 

the search ability by appointing suitable works to suitable 

particles. 

However, most of the above researches aim at benchmark 

functions. There are sever inevitable differences between 

benchmark functions and the real world problems. One of 

them is that most problems in the real world need to 

implement binary choice. For example in the TSP, the 

traveling plan is an order of visiting the city. Each city has to 

appear exactly once. This feature makes it difficult to use the 

BBPSO to the TSP. Hence, to solve these problems, a 

standardized bare bones particle swarm optimization 

algorithm will be presented in the next section. 

 

III. THE STANDARDIZED BARE BONES PARTICLE SWARM 

OPTIMIZATION ALGORITHM FOR THE TRAVELING SALESMAN 

PROBLEM 

A. The Dynamic Neighbor Selection 

The performance of the original BBPSO is limited by its 

iterative pattern. Every particle is searching around the 
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global best particle makes the swarm losing diversity very 

fast. This feature makes the BBPSO performances very weak 

when facing the multimodal problems. To cross this shortage, 

the dynamic neighbor selection (DNS) strategy is proposed.  

At the beginning of the DNS, we will select a particle k and a 

random neighbor of it. Then we will compare the fitness 

value of the k and its neighbor. Since we are talking about the 

shortest problems in this paper, we will define that a particle 

with a smaller fitness value is a better particle. If the particle 

is better than its neighbor, it will ignore this neighbor and 

moving to the global best particle. In this situation, the next 

position of this particle is selected by the equation (1): 
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where the       1 , 2 ,...,pbest pbest pbest pbest n  is a 

matrix used for recording the best position each particle has 

ever reached; the ( (1), (2),..., ( ))X x x x n   is a matrix used to 

record the next position of particles; the ( )x k new   is the next 

position of the particle k  ; the gbest  is the best position that 

all particles has ever reached; the ( , )N    is a Gaussian 

distribution with a mean value   and standard deviation 

 . 

On the other side, if the particle k  is worse than the 

selected neighbor, it will search around the neighbor. The 

next position of the particle k   is selected by the equation 

(2): 
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where the ( (1), (2),..., ( ))pbest pbest pbest pbest n  is a 

matrix used for recording the best position each particle has 

ever reached; the ( (1), (2),..., ( ))X x x x n   is a matrix used to 

record the next position of particles; the ( )x k new  is the next 

position of the particle k ; the ( , )N    is a Gaussian 

distribution with a mean value   and standard deviation   . 

After that, the next particle will find a random neighbor and 

select a new position using the same logic. The DNS ends 

when every particle finds a new position. Obviously, there is 

no grantee that the new position of a particle is better than the 

old one. If the new position is worse than the current personal 

best position, the personal best position will still be used in 

the next generation.  

In the DNS method, we will not expect every particle can 

find a better position in every iteration. On the other hand, 

sometimes we are more willing to see some particles stay far 

from the central area. Compare with the BBPSO, particles in 

the SBBPSO are given an additional chance. This strategy 

keeps the diversity of the swarm. Since the selection of the 

neighbor is random, it is possible that one particle is very 

from the selected neighbor. This article will implement a 

global search in the next generation. Conversely, if the 

particle and the neighbor stay close, the particle will 

implement a local search. The schematic diagram of global 

and local search are shown in Fig. 2. The Fig. 2 consists of 

three parts. In the left part, the selected particle moves to its 

neighbor while the global best particle is in the middle of 

them. This search pattern is called the global search because 

the moment is region-crossed. In the middle of the figure, the 

global best particle has a long distance from the region that 

the selected particle and its neighbor belong to. The search in 

this pattern will implement near the selected particle. Hence 

we named its local search. At the right part of the figure, both 

the selected particle and its neighbor are moving to the global 

best particle. This pattern is the same as the BBPSO. 
 

 
Fig. 2. The possible situation of DNS. 

 

B. The Standardized Method 

On the mathematic side, the TSP can be described by the 

equations (3): 
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where the City  is a matrix to record all cities, the n  is the 

number of cities, the D is a matrix to record the distances 

between all cities, the X  is a matrix used to record the 

visiting order of the cities, the Total  is the total distance 

after a round trip. The aim of the TSP is find a suitable X 

which can minimize theTotal . 

 

 
Fig. 3. An example of the standardized method. 
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Fig. 4. The pseudo-code of the SBBPSO. 

 

It can be seen that the TSP has two major differences from 

the normal benchmark functions. First is the solution X  is a 

combination of integers. After all, we are unable to visit a 

half city. Second is every solution starts and ends in the same 

city, other cities have to appear exactly once. These features 

make the normal methods are unable to use on the TSP 

directly. To ensure the position of every particle is legal, a 

standardized method is proposed in this part. The 

standardized method can be described by the equation (4): 

( , ,..., )
1 2

( ) [1, ]

X x x x
n

new x Rank x i n
i i



 
                       (4) 

where       1 , 2 ,...,  X x x x n  is a matrix used to record the 

next position of particles and the ( )Rank x   is a rank function. 

The ( )Rank x  will rank each dimension of X , then replace 

the original value. The process of the standardized method is 

shown in Fig. 3. 

C. The Process of the SBBPSO 

Before iteration, a set of combination of integers from 1 to 

n is used to initialize the particles. Then the SBBPSO will 

calculate the first personal best of each particle, the first 

global best of the swarm. The pseudo-code of the SBBPSO is 

shown in Fig. 4. 

IV. EXPERIMENTS 

A. Experimental Methods and Results 

To verify the performance of the SBBPSO, four famous 

instances are used in experiments. Instance1 and Instance2 

are selected form the National TSP Problem, Instance3 and 

Instance4 are selected from the TSBLIB. In the control group, 

the BBPSO is implemented under the same conditions. The 

standard BBPSO is combined with the DNS method in 

experiments. All of the experiments are implemented on a 

computer with an Intel Core i7-6700 CPU and a 16G RAM. 

The operating system is Windows 10 and all codes are 

written in the Matlab R2016. The experimental results are 

shown in Table I. The Best and Worst in the table means the 

best and the worst result from the 30 independent runs, the 

Mean means the average result from the 30 runs. The number 

of particles is 100, the max iteration time is 5000. The 

empirical error (EE) is defined as |result-solution| where the 

result is the current output of an algorithm, and the solution 

is the theoretical optimal solution of the test instance. 

It can be seen that the SBBPSO gives better results in three 

of the four test instances. In Instances1, the mean EE of 

SBBPSO is 19.23\% smaller than the EE of BBPSO. In 

Instances2, the mean EE of SBBPSO is 6.07\% smaller than 

the EE of BBPSO. In Instances3, the mean EE of SBBPSO is 

12.99\% smaller than the EE of BBPSO. In Instances4, the 

mean EE of SBBPSO is 7.33\% larger than the EE of 

BBPSO. 

B. Discussion 

According to the experimental results, the SBBPSO 

performances better than the BBPSO. It can be attributed to 

the dynamic neighbor searching method. In the BBPSO, the 

next position of every particle is connected with the global 

best particle. The overusing of the information makes the 

swarm losing diversity very fats. Also, the swarm is easy to be 

trapped in a local minimum when every particle evolving in 

the same direction. Obviously, the DNS method made up for 

this defect. Some particles will do the local search and some 

will do the global search at the same time. The global search 

gives the swarm more chances to escape from a local 

minimum. The local search enhances a more precise search 

in a local area.  

TABLE I: EXPERIMENTAL RESULTS 

Test 

Instances 

The number 

 of cities 

BBPSO/EE SBBPSO/EE 

Best Worst Mean Best Worst Mean 

Instance1 = wi29 29 5082 16798 1.04E+04 3546 19207 8.40E+03 

Instance2 = dj38 38 3236 6884 4944 2571 6864 4644 

Instance3 = pr124 124 188295 291868 2.31E+05 162220 262222 2.01E+05 

Instance4 = rat195 195 6362 10502 8.18E+03 6880 10553 8.78E+03 

 

V. CONCLUSIONS 

A standardized bare bones particle swarm optimization 

(SBBPSO) algorithm, which aims at solving the traveling 

salesman problem (TSP), is proposed in this paper. A 

coordinate transformation (CT) method is used to convert the 

coordinate of cities to weights. Then, a Gaussian distribution 

is used to select the next generation of the routing plan. After 

that the CT method will convert the weights to coordinates 

for counting the fitness value. Also, different from the 
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BBPSO, a new particle evolution model is implemented in 

the SBBPSO. Each particle will search a random neighbor 

and make a comparison with it. If the neighbor wins the 

particle will search around the neighbor, otherwise, the 

particle will search around the global best particle. To verify 

the search ability of the SBBPSO, four famous instances are 

used in the experiments. Finally, the experimental results 

and the statistical analysis confirmed the ability of the 

SBBPSO on the TSP. 

Although SBBPSO shows good performance on the tested 

problems, we will not stop here. We will improve the 

accuracy of the algorithm in future works. Also, we are 

planning to use the SBBPSO on more complete problems like 

colored TSP, vehicle routing problem and dynamic planning 

for traffic lights. 
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