

Abstract—Usage of multiple unmanned aerial vehicles (UAV)

in a certain mission makes flight route planning more

complicated and slower. In order to obtain better performance,

in the literature, most of the researchers propose using

evolutionary algorithms and artificial intelligence approaches

based on heuristics as optimization techniques. In addition to

this, parallel programming approaches increase the

computation performance. Therefore, this study focuses to

discuss and solve the route planning problem for multi-UAV

systems by using optimization techniques based on an

evolutionary algorithm: simulated annealing. The travel cost

and execution time are downsized in this work by optimization

on algorithm and code. We implemented CPU based parallel

solution to compare results with the GPU-accelerated one. The

efficiency and the effectiveness of our parallelized and

optimized solution is demonstrated through simulations under

different scenarios. The results show that our optimized GPU

based parallel solution for route planning problem is up to 1.6

times faster than serial and parallel CPU solutions. Moreover,

our optimized GPU solution is better on cost than other

solutions. It is shown that our GPU based approach is the

fastest one and increases performance thanks to the massive

parallelization capabilities of GPUs.

Index Terms—GPU programming, parallel programming,

route planning, simulated annealing.

I. INTRODUCTION

Unmanned aerial vehicles (UAV) have various usage

areas from delivery of goods to battlefield use. As the UAVs’

cost decreased with current technological developments,

multiple minimized UAVs can be used for better

performance instead of using a single large UAV. This kind

of multiple usage of UAVs makes the flight route planning

problem for these systems more complicated.

In multi-UAV systems, total travel distance should be

divided wisely among UAVs. Each UAV have to travel at

minimum cost and their cost have to close each other if they

have equal resources. In literature, Simulated Annealing (SA)

algorithm is used many times for shortest path problem. In

Manuscript received February 8, 2019; revised January 11, 2020.

Seval Capraz is with Ante Grup Bilisim Ticaret A.S., Ankara, Turkey. She

is also with the Department of Computer Engineering, Hacettepe University,

Ankara, Turkey (e-mail: seval.capraz@antegrup.com.tr).

Halil Azyikmis and Adnan Ozsoy are with the Department of Computer

Engineering, Hacettepe University, Ankara, Turkey (e-mail:

hazyikmis@hacettepe.edu.tr, adnan.ozsoy@hacettepe.edu.tr).

our case, multiple UAVs are traversing the predefined target

locations -waypoints- with total minimum cost which means

total distance traversed by each UAV required to be

minimum. It is a kind of NP-hard problem. This kind of

problems are hard to solve and take a lot of time and energy.

The problem is to find an acceptable solution that is

near-optimal solution rather than the best solution.

In order to simulate the problem in best way we have used

Traveling Salesman Problem Library (TSPLIB [1]) which is

created and presented by University of Heidelberg, Germany.

We used this library as a dataset because it is used in many

study in literature as well as in Turker et al.(2016) [2].

Therefore we compare our results with other studies.

Dealing with these kind of complex algorithms is hard.

The SA algorithm is difficult to implement and very slow. It

is one of the best algorithms to find best route with best cost

among other algorithms for many UAVs. For this reason, we

focus on this algorithm and how to implement it faster. The

modern supercomputing shows that GPUs (Graphics

Processing Units) are very good accelerators speeding up all

sorts of tasks from very hard problems to these kind of

algorithms. Why is CPU not enough for it? Because GPUs

offer many benefits. Architecturally, the CPU is composed of

just a few cores with lots of cache memory. This cache

memory can handle a few software threads at a time. In

contrast, a GPU is composed of hundreds of cores that can

handle thousands of threads simultaneously. It is ideal for

algorithms which do a lot of little jobs like comparison.

GPU-based route planning of multi-UAV system speeds the

overall calculation.

In this study, firstly, we implemented SA algorithm in

CPU. It works only on CPU and it is slow. There are many

proposed solutions in literature which uses only CPU and

they are all slow. We need to minimize the calculation time to

find best rouse plan for many UAVs. The best route plan

means less in cost. It is so difficult to find best solution so we

only want to find an acceptable one. There are also a few

studies which uses GPU to run SA. It helps to minimize the

run time of the algorithm. We realized the implemented

solutions have lack of optimization. GPU has its own

infrastructure. If we optimized the algorithm to fit well in

GPU, we can gain more time. The optimization is so

important and it improves both cost and run time in good

manner.

This paper is organized as follows. In the second section,

related works are discussed. In the third section, background

information of the proposed solution algorithm with

simulated annealing (SA) are defined and algorithms for

serial and parallel run are given. In the fourth section, serial

An Optimized GPU-Accelerated Route Planning of

Multi-UAV Systems Using Simulated Annealing

Seval Capraz, Halil Azyikmis, and Adnan Ozsoy

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

471doi: 10.18178/ijmlc.2020.10.3.959

mailto:hazyikmis@hacettepe.edu.tr

and parallel codes are reviewed in CPU platform. Also,

solution on GPU is given and optimization techniques are

described. In the fifth section, results obtained from the

experiments are presented and compared. In the last section,

the paper is concluded with brief information of what we did

and what we can do in future work.

II. RELATED WORK

Simulated Annealing (SA) algorithm is proposed in [3] in

1983. It is an old algorithm however it is very powerful for

Traveling Salesman Problem. There are many works which

use SA for route planning problem in literature. In 1999,

Pant Rajkumar et al. [4] proposed aircraft configuration and

flight profile optimization using SA. In 2002, Rostami S et al.

[5] proposed a SA for multi-route cluster tools. In 2012,

Taylor Christine et al. [6] proposed dynamically generating

operationally acceptable route alternatives using SA. S.

Zaghloul Soha [7] proposed a parallel solution with SA

algorithm for flight route planning problem in 2017. Alsafi

Eman [8] proposed comparison of parallel simulated

annealing on SMP and parallel clusters for same problem in

2018.

In 2014 Hossain Roksana et al. [9] proposed GPU

enhanced path finding for an UAV and they claim that GPU

code works 4.8 times faster than serially implemented code.

In 2016, Cekmez Ugur et al. [10] proposed multi-UAV path

planning with parallel genetic algorithms on GPU. In [10],

the area is partitioned with K-means clustering and then the

problem is solved in each cluster with parallel genetic

algorithm approach on CUDA architecture.

Turker et al. (2016) [2] proposed a solution in SA

algorithm by using a simple heuristic. In Turker's solution,

UAVs start at the same point which is center of the area.

Different UAVs visit different regions, therefore they try to

keep cost at minimum. The algorithm is run as serial on CPU

and as parallel on GPU.

There are other solutions based on different algorithms for

the same problem. For example, flight route planning

problem for a UAV can be approached using parallelized Ant

Colony Optimization (ACO) algorithm, a BAT algorithm,

A* algorithm, RRT algorithm or genetic algorithms on

CUDA platform. In TSP-type problems, finding the best

solution generally requires testing all the search space and

this seems to be impractical. In our case, with N waypoints,

search space consists of N! solutions. Adding one more

waypoint to the system has a considerable effect on the

overall system performance because of the increasing

number of elements in the search space from N! to (N+1)!.

When dealing with this kind of NP-hard problems, we can

use different optimization algorithms to search and find an

acceptable (near-optimal) solution rather than to find the best

solution.

In this study, first of all, we have optimized the existing

serial CPU solution proposed by Turker et al.(2016) [2] by

using optimization techniques and also created brand-new

parallel CPU solution to see its speed and compare it with

GPU solution.

III. BACKGROUND

For the problem of multiple UAVs’ flight route planning,

the algorithm of simulated annealing is given in detail in the

following subsections.

A. Simulated Annealing

SA is one of the most used optimization algorithms in

especially TSP-like problems. In SA, the objective function is

used instead of the energy of a material. The algorithm is a

simulation of decreasing temperature. It uses random move

to jump instead of best move. It always uses the selected move

if it improves the solution. There is a probability of making

moves which is between 0 and 1. This probability decreases

exponentially with the amount deltaE which is the amount of

worsening move. The probability is given in (1).

Probability= 1− e(deltaE /kT)

. (1)

The algorithm start with high temperature and gradually

decreased temperature according to an “annealing schedule”.

T is temperature and if it is higher, the probability is close to

1. This means that the algorithm more likely to accept uphill

move if the temperature is high. If the temperature is low, the

algorithm accept less likely uphill move. This simulation is

taken from annealing system of thermodynamics. The

parameter k in (1) is Boltzmann’s constant.

Greedy algorithms gets stuck at local minima. Simulated

Annealing algorithms are usually better than greedy

algorithms, when it comes to problems that have numerous

locally optimum solutions. To escape from local optima,

Metropolis acceptance function based on the Metropolis

Algorithm [11] is used. The global minima and local minima

is represented in Fig. 1.

Simulated annealing is very suitable for Traveling

Salesman Problem if there are many waypoints to visit.

Consequently, it is an ideal solution for flight route planning

problem of multiple UAVs.

Algorithm 1. Simulated Annealing in CPU Proposed in

[2].

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

472

Fig. 1. The local minima vs. global minima.

B. Implementation of Simulated Annealing using Serial

and Parallel Algorithms

The simulated annealing algorithm given in Algorithm 1

can be implemented with two nested loops. The temperature

starts with a higher degree and gets lower gradually. This is

done in cooling loop. In this loop, there is another loop which

name is equilibrium state loop (ESL). This loop tries to reach

the equilibrium state. For serial implementation all the

iterations run sequentially. The SA algorithm uses a random

waypoint and calculates the cost and time in order to decide

to use this waypoint. We need to escape from local minimum

and local maximum waypoints. SA distinguishes between

different local optima. We used Metropolis acceptance

function in our SA implementation.

In our dataset Traveling Salesman Problem Library

(TSPLIB [1]), there are numerous examples on cities on

Germany with X and Y coordinates. All waypoints have 2

decimal numbers: X and Y axis values. Here are the datasets

tested/used in this work:

 berlin52.tsp : 2D, 52 waypoints, integer

 berli52_3D.tsp: 3D, 52 waypoints, integer

 pr1002.tsp : 2D, 1002 waypoints, integer

 tsp225.tsp : 2D, 225 waypoints, decimal

In this dataset, cooling is done at least 100000 times. ESL

runs 1000 times for each outer cooling iteration. This means

the program runs many loops like 100000 × 1000 times in

total. ESL is a good candidate for GPU parallelization

because it does very little job with immense iteration. The

comparison of CPU and GPU algorithms are given in Fig. 2.

We highlighted the differences.

Fig. 2. The comparison of algorithms implemented on CPU and GPU. Solution on GPU is done by running Equilibrium State Loop in GPU.

We can open 1000 threads and give the jobs these threads

in GPU. On the other hand, if we try to give the cooling job to

GPU, each cooling job calls 1000 ESL and this exceeds the

limits of a thread can do. We have to keep jobs minimum in

GPU threads. We tried giving whole cooling loop function to

the GPU. This method makes slower because there are a lot of

iterations in nested loops. Running sufficiently large number

of iterations guarantees a convergence. We need to find an

acceptable solution which means we need to reach at least

cost of CPU solutions.

The GPU solution slows when there are a lot of data

migration between CPU and GPU. In each iteration, cooling

loop needs the results of equilibrium state kernel, so that

there are a lot of copy jobs between CPU and GPU. These

copy jobs take a lot of time. Therefore we tried to optimize the

algorithm by adding asynchronous methods instead of

synchronous for transferring data. The data transfer job can

be asynchronous because the used waypoints are not used

again. We can copy some results while calculation is still

running. This optimization provide us more speed. We also

tried host-parallel option like running kernel on GPU at least

number of CPU cores. It does not give us better results,

therefore we did not use host parallelism.

Reference [2] uses 128 threads on GPU. We increased the

number of threads from 128 to 1024. So 1 is enough for inner

loop count when there are 1024 threads if the dataset has

1024 node to visit. Threads per block was 32 in previous

work, we increased it to 256. So 4 blocks and 256 threads per

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

473

block is used in this study. It helps to gain performance.

These optimizations provide us better performance on GPU.

Our optimized method is the fastest one if we compare it with

[2]. The overview of proposed solution is given in Fig. 3.

To sum up, SA algorithm can be optimized in several ways.

Firstly, we made the data transfer jobs asynchronous.

Secondly, we increased the number of threads which works

on GPU to run the algorithm and use whole capacity of GPU

card. These optimizations improved the performance. The

results are given in next section.

Fig. 3. Overview of proposed solution.

IV. EXPERIMENTAL EVALUATION AND RESULTS

A. Configuration Settings

The solution is implemented both in sequential and

parallel mode on CPU and only parallel mode on GPU. We

needed to compare the CPU parallel solution with GPU

solution. Sometimes CPU parallelization is enough for

problems. So we need to be sure GPU-accelerated solution is

the best solution. The hardware and operating system

specifications are presented in Table I. Both of the serial and

parallel algorithms are implemented, built and tested on

Ubuntu 64bit environment (version 16.04) using with

NVIDIA CUDA COMPILER (CUDA Version 9.1.85) in

order to keep the chance of making comparisons for GPU

implementation.

TABLE I: SYSTEM SPECIFICATIONS

Operating System Ubuntu 16.04 LTS x86_64

Processor
AMD Phenom(tm) II X6 1090T Processor

x 6 Cores

RAM 16GB DDR3 1333 MHz

Compiler
NVCC (Nvidia Cuda Compiler CUDA

Version 8.0.61) and g++ 5.4.0

NVIDIA Graphics Card GeForce GTX 750 Ti

NVIDIA Driver Version 375.26

CUDA Runtime version 8.0.61

CUDA Capability 5.0

B. Results of Serial Algorithm

The results are taken for serial run on CPU when there are

5 experiments. 3 UAVs are used and pr1002 is selected as a

test data in dataset. Average cost is 384,634. Average time is

25,356.5 milliseconds. This means it generates results in

25.5 seconds.

In serial test, the second experiment produced the best

result according to execution time. The dataset is cached

before first run, so that the second experiment produce result

on lower time. The computation time in this specific run is

the lowest one and required 25,206.9 milliseconds to

calculate this result. The last execution produces the best

computation cost and its execution time is 25,341.7

milliseconds. However, because of serial implementation,

there were nearly 100 seconds elapsed for previous runs

(there are four runs before last execution to find the optimum

solution at the last run. Please note that, this solution might

not be the global optimum. Average acceptance rate is 1.4,

average worsening move acceptance rate is 0.8. Graphical

representation of the solution is shown in Fig. 4.

Fig. 4. Best solution for the dataset pr1002.tsp with 3 UAVs in serial algorithm.

C. Results of Parallel Algorithm

Results are taken for parallel run on CPU when there are 5

experiments and 6 threads. Average cost is 358,648. Average

time is 24,135 milliseconds.

In the parallel test, the best execution time is 23,719

milliseconds. The longest execution time is 25,198.9

milliseconds. Average acceptance rate is 0.8, average

worsening move acceptance rate is 0.2. It diminishes the cost

from ~384K to ~358K. The results shows that 6-threaded

parallel solution gives a little bit better results than serial

solution because increasing number of threads from 1 to 6

does not effect on execution time but travel cost. We call ESL

function 6 times rather than 1 and it tries to find better travel

route 6000 times rather than 1000 times.

D. Results of GPU Based Solution

In GPU based solution, each experiment takes nearly 15

seconds. These results are better than both serial and parallel

implementation in CPU, which takes nearly 25 seconds for

each run. After running parallel code on GPU, the total

distance traversed cost and computation time is calculated on

5 experiments. Average cost is 344,681. Average time is

15,949.9 milliseconds.

In the parallel test on GPU, the best cost is 341,429 and

best time is 15,755.8 milliseconds. The last execution is

produced the best result according to total distance traversed

cost. The longest execution time is 16,698.3 milliseconds.

The cost is better than the result of CPU based solutions.

Average cost is 344,681 on GPU while average cost is

358,648 on CPU parallel solution. The average time is 15,9

seconds which is the best time because average time is 25.3

seconds in serial and 24.1 seconds in parallel run on CPU.

The comparison of the results is given in next section.

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

474

V. COMPARISON OF RESULTS

According to the results given previous section, we can

calculate speedup rate of tests according to (2). Ts is time of

serial run and Tp is time of parallel run.

Speedup Rate = Ts / Tp . (2)

In order to compare the results of both serial and parallel

implementations against different number of experiments,

we have presented the Fig. 5. Based on the statistical data,

parallel implementation on GPU executes 1.6 times faster

than the serial implementation as given in Fig. 6. It shows

that GPU based solution is faster than CPU based solutions.

Fig. 5. Comparison of total execution times of all implementations.

Fig. 6. Comparison of speeds and speedup of Ts/Tp_GPU.

The algorithm is run on CPU with different number of

waypoints and different number of UAVs to see its

performance. The tests for different number of UAVs give

approximately same results. There are minor differences.

However it becomes more difficult to process as the number

of waypoints increases. Number of waypoints affects the

process time exponentially. So, the time is very important

factor for systems which have more than 1000 waypoints.

Genetic algorithm used for this task in Cekmez Ugur et

al.(2016) [10] finds the paths in 32 seconds for 4 UAVs and

1002 waypoints on GPU. Our solution finds the route in 15

seconds in our environment. Therefore our parallel solution

of SA on GPU is far faster than genetic algorithm on GPU. Of

course, in [10], they used different GPU card and different

environment. We should implement the same solution on

same GPU card to compare and get actual run time. This may

be the future work.

If we compare the results of CPU and GPU solutions, the

speedup is approximately 1.6 according to (2) as given in Fig.

6. To sum up, we can say that GPU solution is up to 1.5 times

faster than the serial and parallel solution on CPU.

VI. CONCLUSION

In conclusion, route planning for multiple UAVs needs a

lot of execution time and resources. We can decrease the time

and travel cost by using parallel solutions. GPU is the latest

technology to run many parallel threads. GPU accelerated

route planning for multi-UAVs provides better solutions as

compared to serial and parallel implementation in CPU. We

can also optimize the solutions on GPU by some optimization

techniques. The optimization of increasing number of

threads and transferring data asynchronously can make the

algorithm faster. In this study, simulated annealing (SA)

algorithm is used on CUDA architecture. SA is a good choice

for search algorithm because it escapes from local minima.

SA is also fast and one of the best search algorithm for

travelling salesman problem. It calculates the cost in order to

find the shortest path. We use SA algorithm for three UAVs

and more than one thousand waypoints. We inspected results

of parallelization on both CPU and GPU. The statistical

results provide that our optimized GPU based parallelized

approach of route planning problem for multiple UAVs is

nearly 1.6 times faster than CPU solutions. In addition to this,

our GPU based parallel solution for SA algorithm using

NVIDIA CUDA platform is the fastest solution so far thanks

to the massive parallelization capabilities of GPUs and

optimization techniques on GPU programming. It is the

expected result that GPU solution makes algorithm faster

than both the recent serial and parallel CPU-based ones. Not

only the execution time diminishes but also the travel cost

decreases. In future works, alternative traveling salesman

problem algorithms proposed in the literature can be

considered for this problem and compared with each other in

order to obtain better computation performance in the

context of route planning problem.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

This research is done with all authors’ contributions. The

CUDA scripts are written by first and second authors. The

scripts are run by all authors on different GPU cards. We

selected the best GPU card. We also optimized the CUDA

C++ scripts by working on it and trying many different

solutions. The last author is our mentor at university and

advised us the optimization techniques of GPU programming.

He helped to finalize the research on each step. This paper is

written mainly by first author. Some parts are mainly written

by second author and edited by first author. All authors had

approved the final version.

REFERENCES

[1] G. T. Turker, G. Yilmaz, and O. K. Sahingoz, “GPU-accelerated flight

route planning for multi-UAV systems using simulated annealing,” in

Proc. International Conference on Artificial Intelligence: Methodology,

Systems, and Applications, Springer International Publishing, 2016, pp.

279-288.

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by

simulated annealing,” Science, vol. 220, pp. 671–680, 1983.

[3] R. Pant and J. P. Fielding, “Aircraft configuration and flight profile

optimization using simulated annealing,” Aircraft Design, vol. 2, no. 4,

Dec. 1999.

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

475

[4] S. Rostami and B. Hamidzadeh, “A simulated annealing technique for

multi-route cluster tools,” in Proc. IEEE International Conference on

Systems, Man and Cybernetics, 2002, vol. 7, p. 6.

[5] C. Taylor and C. Wanke, “Dynamically generating operationally

acceptable route alternatives using simulated annealing,” Air Traffic

Control Quarterly, vol. 20, no. 1, pp. 97-121, Jan. 2012.

[6] S. S. Zaghloul, “Drone route planning for military image acquisition

using parallel simulated annealing,” International Journal of New

Computer Architectures and Their Applications, vol. 7, no. 3, pp. 77-89,

2017.

[7] E. Alsafi and S. S. Zaghloul, “Comparison of parallel simulated annealing

on smp and parallel clusters for planning a drone’s route for military

image acquisition,” International Journal of New Computer

Architectures and Their Applications, vol. 8, no. 1, pp. 21-33, 2018.

[8] R. Hossain, S. Magierowski, and G. G. Messier, “GPU enhanced path

finding for an unmanned aerial vehicle,” in Proc. 2014 IEEE

International Parallel & Distributed Processing Symposium

Workshops, 2014, pp. 1285-1293.

[9] U. Cekmez, M. Ozsiginan, and O. K. Sahingoz, “Multi-UAV path

planning with parallel genetic algorithms on CUDA architecture,” in

Proc. the 2016 on Genetic and Evolutionary Computation Conference

Companion - GECCO ’16 Companion, 2016, pp. 1079-1086.

[10] G. Reinelt, “TSPLIB—a traveling salesman problem library,” ORSA

Journal on Computing, vol. 3, no. 4, Nov. 1991.

[11] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.

Teller, “Equation of state calculations by fast computing machines,” The

Journal of Chemical Physics, vol. 21, no. 6, pp. 1087-1092, Mar. 1953.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is

properly cited (CC BY 4.0).

Seval Capraz worked at Ante Grup Bilisim Tic. A.S. in

Ankara, Turkey as a software engineer and researcher

during this study. She is also a Ph.D. student at

Hacettepe University, Department of Computer

Engineering, Ankara, Turkey. She has a B.Sc. degree at

TOBB University of Economics and Technology,

Ankara, Turkey in 2012 and M.Sc. degree at Middle

East Technical University, Ankara, Turkey in Computer

Science in 2016. Her research areas are distributed and

parallel computing, high performance computing with GPUs, big data,

blockchain and cryptocurrencies.

Halil Azyikmis is a Ph.D. student at Hacettepe

University, Department of Computer Engineering,

Ankara, Turkey. He has B.Sc. degree at Bogazici

University, Department of Computer Engineering in

1997, and M.Sc. degree at Selcuk University in 2006.

His current research interests are big data analytics,

blockchain technology and smart contracts on ethereum

blockchain.

Adnan Ozsoy is an assistant professor at Department of

Computer Engineering, Hacettepe University, Ankara,

Turkey. He received his Ph.D. degree from School of

Informatics and Computing of Indiana University,

Bloomington, USA in 2014. He did his M.Sc. degree in

Computer Science from University of Texas at Austin,

USA in 2007, and his B.Sc. degree from Virginia

Polytechnic Institute and State University, USA in 2005.

His research interests include parallel programming,

high performance computing with GPUs, string matching algorithms, big data

problems, distributed systems, application parallelism, blockchain applications

and cryptocurrencies.

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

476

https://creativecommons.org/licenses/by/4.0/

