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Abstract—The problem of handling a class imbalanced 

problem by modifying decision tree algorithm has received 

widespread attention in recent years. A new splitting measure, 

called class overlapping-balancing entropy (OBE), is 

introduced in this paper that essentially pay attentions to all 

classes equally. Each step, the proportion of each class is 

balanced via the assigned weighted values. They not only 

depend on equalizing each class, but they also take into account 

the overlapping region between classes. The proportion of 

weighted values corresponding to each class is used as the 

component of Shannon's entropy for splitting the current 

dataset. From the experimental results, OBE significantly 

outperforms the conventional splitting measures like Gini 

index, gain ratio and DCSM, which are used in the well-known 

decision tree algorithms. It also exhibits superior performance 

compared to AE and ME that are designed for handling the 

class imbalanced problem specifically. 

 
Index Terms—Classification problem, class imbalanced 

learning, class overlapping-balancing entropy, decision tree 

algorithm. 

 

I. INTRODUCTION 

A decision tree is recognized as one of the top 10 

classification models [1]. The success of using the decision 

tree can be explained by three characteristics. First, a 

decision tree algorithm consumes small computational time 

for constructing the model, especially during the predicting 

step. Second, a decision tree has the easy interpretation for 

humans that it has been used for ranking variable importance. 

Third, a decision tree is robust with respect to anomalies and 

missing values. However, like most well-known classifiers, a 

decision tree algorithm must face the hassle of classifying a 

dataset with extremely unequal class distribution [2]. This 

problem plays an important role in knowledge discovery and 

data mining for the past several years, which is known as a 

class imbalanced problem. It widely appears in several 

real-world situations such as fraud detection [3], [4], disease 

diagnosis [5], [6], network intrusion detection [7], industrial 

systems monitoring [8] and sentiment analysis [9]. To 

minimize the accuracy of classification, the decision tree 

algorithm often build a tree that predicts most unknown 

instances to be the class containing a large number of 

instances, called the majority class. Hence, instances from 
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the class containing a tiny number of instances, called the 

minority class, tend to be incorrectly classified. In the 

real-world problem, the smaller class is frequently more 

important and receives much attention to correctly classify. 

For example, in fraud detection, there is a small number of 

fraudulent transactions, but they are significant and must be 

discovered. In the same way as disease diagnosis, the 

prediction of disease patients is more critical than normal 

people. 

Many methods have been presented to deal with the class 

imbalanced problem using various techniques [10], [11]. The 

idea of developing the algorithm to build the decision tree 

classifier that is suitable for classifying an imbalanced 

dataset is one of the methods that have received wide 

attention. Normally, the improvement of decision tree 

algorithm usually focuses on modifying the splitting 

measures to separate dataset in each node. Traditional 

splitting measures, especially Gini index [12] and Shannon's 

entropy [13], have been improved using many concepts in 

recent years. Asymmetric entropy (AE) [14], off-centered 

entropy (OCE) [15], [16] and AECID [17] apply the concept 

of non-symmetry instead of the symmetric one. They shift the 

maximum value of entropy from the middle of extreme 

proportions as the symmetric entropy, to be biased toward the 

minority class. In addition, the skew-insensitive splitting 

measures are suggested for dealing with the class imbalanced 

problem, such as DKM [18], [19] and HDDT [20], [21]. They 

can condone a considerable difference between the number of 

instances in the minority class and the majority class. Lastly 

and most importantly, the concept of modifying the 

components of the Gini index and the Shannon's entropy 

calculation to be inclined towards minority class are 

introduced in CART+Resampling [22] and minority entropy 

(ME) [23], respectively. They discard majority instances that 

do not affect the split decision of minority instances. 

CART+Resampling applies the sampling method directly, 

while ME ignores majority instances outside the minority 

range which has the similar effect as the sampling method. 

This paper suggests the modification of Shannon's entropy 

components like ME for continuous attribute. The splitting 

measure designed to handle the class imbalanced problem is 

proposed, called class overlapping-balancing entropy (OBE). 

It assigns a larger weight to an instance that lies outside the 

overlapping region between two classes than the weights of 

other instances. Moreover, the sum of weights among all 

classes are set equal to one to make them balance. Then, the 

proportion of weights corresponding to each class is 
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employed as the component of computing Shannon's 

entropy. 

The remaining of this paper is outlined as follows. In 

Section II, a brief review of the decision tree classifier is 

shown. Next, Section III demonstrates the detail of the 

proposed splitting measure, OBE, along with its properties. 

Then, the discussion of experimental results is presented in 

Section IV. Finally, Section V concludes this research. 

 

  

Background knowledge regarding the proposed method is 

demonstrated in this section. It begins with formulating the 

classification problem, then explaining the construction of 

the decision tree classifier. 

Initially, the problem formulation relating to this paper is 

defined. Given {( , ) | 1,2, , } n

i ix y i m CD      be a 

labeled dataset of binary classification problem, where C  is 

a set of binary classes { 1, 1}C    . Then, D  can be 

separated into 2 partitions, i.e.,   D D D  where 

{( , ) | 1 for 1, 2, , }i i ix y y i m     D D  and 

{( , ) | 1 for 1, 2, , }i i ix y y i m     D D  having size m  

and m  respectively, such that m m m   . 
 

 
         (a)                                                         (b)  

Fig. 1. An example of using the decision tree to classify a dataset. Decision tree 

classification model (a). Data partitioning with the decision tree algorithm (b). 

 

A decision tree is a tree-based classification model 

consisting of multiple connected nodes. Each non-leaf node, 

including the root node and the internal node, presents a 

splitting condition. For each leaf node, it indicates a specific 

predicted class of instances. Graphically, for example, the 

decision tree presented in Fig. 1(a) consists of the root node 

at the top, one internal node, and three leaf nodes. 

For the procedure of inducing a decision tree, at each 

non-leaf node, the set of instances is divided into two 

partitions using the selected splitting condition represented 

by the particular value of a specific continuous attribute. 

Then, the process is recursively continued until all instances 

in a child node have the same class labels or meeting the 

stopping criteria. 

To select the splitting value, a greedy approach is applied. 

It considers all values along a variable between all instances 

indicated by dash lines in Fig. 1(b). The best one providing 

the optimal splitting measure is chosen indicated by solid 

lines in Fig. 1(b). Various splitting measures have been 

proposed based on the impurity of each partition such as the 

Gini index [12] and Shannon’s entropy [13] which are used 

in the well-known decision tree algorithm like CART [24] 

and ID3 [25], respectively. The formulation of Shannon’s 

Entropy, which is considered in this study, is defined by (1). 

Its minimum value is equal to zero appearing when all 

instances in the partition are in the same class. For the 

maximum value, it is equal to one appearing when there is a 

similar number of instances from each class in the partition. 

In addition, the most famous decision tree algorithm like 

C4.5 [26] applies the normalization of Information Gain, 

Shannon's entropy reduction after splitting, called Gain 

Ratio to be the splitting measure. Another interesting 

splitting measure is the distinct class based splitting measure 

(DCSM) [27]. It improves the performance of building a 

decision tree by considering the number of distinct classes. 

The partition with the smaller number of distinct classes 

means the purer partition. 

 

2 2

| | | | | | | |
( ) log log

| | | | | | | |
Entropy      

D D D D
D

D D D D
           (1) 

 

III. CLASS OVERLAPPING-BALANCING ENTROPY 

In this section, an enhanced splitting measure designed for 

handling the class imbalanced problem is introduced, called 

class overlapping-balancing entropy (OBE). It balances the 

dataset together with the concept of overlapping region 

between two classes. 

 

 
(a) 

 
(b) 

Fig. 2. Two scenarios for partially and fully covered instances via the range of 

minority class. 

 

A. Motivation 

The motivation of this paper comes from the success of 

using the decision tree classifier based on minority entropy 

(ME) [20] to handle the class imbalanced problem. It fixed 

the problem of Shannon's entropy that biased towards the 

majority class by keeping the majority instances within the 

minority range. For an attribute of each internal node, ME 

considers only a subset of instances within the range between 

the smallest and the largest values of minority instances, 

displaying in Fig. 2 which changes the proportion of 

calculating the entropy. It does not change the number of 

minority instances (represented by positive class) but the 

number of majority instances (represented by negative class) 

decreases, see Fig. 2(a). This inevitably will split the dataset 
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in the region of the minority distribution. However, having 

exceedingly focus on the minority class causes the built 

decision tree to be biased. Additionally, ME does not 

guarantee that the effect of majority class will be reduced. It 

depends on the boundary of minority range. If the minority 

range covers all majority instances which is shown in Fig. 

2(b), ME gives the same value as Shannon's entropy. 

The concept of ME determining which majority instances 

will be dropped for the entropy calculation, is extended in 

this paper. OBE assigns weight to each majority instance 

instead of 0 or 1 assignment as ME. The weight of each 

instance will be assigned the value in the range (0,1] 

depending on the instance's position and its class. For ME, 

only the instances locating in the overlapping region are 

considered, while the rest are abandoned. On the contrary, 

this paper has a different notion: an instance locating in the 

region of a single class should be more important than an 

instance appearing in the region of multiple classes. That is 

because it represents the region of its class clearly, not an 

area that is shared with other classes. Then, a set of weights 

with respect to the instances from each class is normalized to 

have a total equal to one for balancing between two classes. It 

is used to be the calculation components of Shannon's 

entropy for selecting the splitting condition at each internal 

node. From the above reasons, it can be concluded that the 

weight assignment in this work is based on the following two 

assumptions: 

1) The instances locating in the overlapping regions must 

be assigned smaller weight than other instances outside the 

overlapping regions from the same class. 

2) The summation of weights corresponding to the 

instances belonging in one class must be equal to one. 

Consequently, it is ensured that the effect of majority class 

will be the same as the minority class. Also, OBE does not 

abandon the majority instances like ME causing the built 

decision tree to be biased toward the minority class. 

B. Class Overlapping-Balancing Entropy (OBE) 

Originally, the components of Shannon's entropy 

comprise the proportion of instances in each class. It is 

defined by the number of instances in each class divided by 

the total number of instances in a dataset, as shown in (1). 

Shannon's entropy treats all instances equally counting each 

instance as one. ME preserves the entropy formula but it uses 

the subset of instances within the minority range to be 

computed. In this paper, an adjusted proportion in each class 

is defined to be consistent with the set of weights 

corresponding to the dataset D , i.e. 

( ) { | ( , ) where ( , )

for 1,2, , },

W D D
   

 

i i i i i iw w x y x y

i m
 

where   is the weighting function. The number of instances 

in each class divided by the total number of instances which 

is used to compute Shannon's entropy is changed to the 

summation of the weights corresponding to all instances in 

each class divided by the total weights. The original formula 

of Shannon's entropy applying the proposed components is 

defined in (2) as follows: 

( ) ( )

2

( ) ( )

( ) ( )

2

( ) ( )

( ( )) log

log

W D W D

W D W D

W D W D

W D W D

W D
 

 

 

 

  

 

 

 

 

 

 



 

 

 

 

i i

i i

i i

i i

i i

w w

i i

w w

i i

w w

i i

w w

w w

Entropy
w w

w w

w w

              (2) 

where, ( ) { ( ) | 1 for 1,2, , }W D W D
 

      i iw y i m  and 

( ) { ( ) | 1 for 1,2, , }W D W D
 

      i iw y i m . 

OBE retains the main structure of the original formula of 

Shannon's entropy. Progressively, using the weighted values 

as a component is more general and versatile. For dealing 

with the class imbalanced problem, the weighting function 

  has been proposed based on two assumptions. 

Firstly, the overlapping weighting function with respect to 

attribute j  (denoted by  j ) is introduced in accordance with 

the first assumption, which is defined by (3). The weight 

assigning to an instance  ( , ) Di ix y  is inversely 

proportional to the summation of the number of instances in 

the classes having a range covering its position, which has 

been scaled down by the logarithmic function. The property 

of determining the weighted values to the instances in D  

using the overlapping weighting function is presented in 

Theorem 1, which corresponds to the first assumption. 

 

2 ( )

1

( ) 2 ( )

( , ) (log (| |) ( ( )

( )) log (| |))

D 1

D D

 



 

  



i

i i

j i i sign y j i

j sign y sign y

x y x

range
            (3) 

where, 

 ( )1  is the indicator function. It obtains the value 1 if the 

condition  is true. Otherwise, it is set to 0. 

 ( ) j ix is the projection of ix  onto attribute j . 

 ( ) min ( ),max ( )
D D

D  
 

 
  i k i k

j k j i j i
x x

range x x . 

 

Theorem 1. For a binary class dataset 

{( , ) | 1, 2,..., }D  i ix y i m , define 

( ) ( ) ( )D D D  j j jOverlap range range  as the overlapping 

region of two class corresponding to attribute j . If two 

instances ( , ) Da ax y  and ( , ) Db bx y  come from the 

same class, i.e. a by y , which ( ) ( )D j a jx Overlap  and 

( ) ( )D j b jx Overlap  respectively, then 

( , ) ( , ) j a a j b bx y x y . 

 

Proof. Since ( ) ( )D j a jx Overlap , so 

( )( ) ( )D 
aj a j sign yx range . While ( ) ( )D j b jx Overlap , 

so ( )( ) ( )D 
bj b j sign yx range . Hence, 

   

( ) (

)

2 2

2 2 2

1

2 2 2

)

( ) ( ) (

1

( ) ( ) ( )

)

l (| |) (| |)

(| |) (| |) (| |)

(| |) (| |) (| |)

( , )

og log

log log log

log log log

.

.

,

.

(.

D D

D D D

D D D

 



















a b

a a b

a a b

sign y sign y

sign y sign y sign y

sign y sign y sign y

j a a j b bx y x y

 

Secondly, the balancing weighting function (denoted by 
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 ) is introduced in accordance with the second assumption, 

which is defined by (4). A weight value iw  of an arbitrary set 

of weights corresponding to dataset D, 

{ | ( , )  and 1, 2,..., }D  i i iW w x y i m , is normalized by its 

class. The total weights with respect to each class is balanced 

(equal to 1) as shown in Theorem 2, corresponding to the 

second assumption. 

( )

( )






l sign yi

i

l

i

w W

w
w

w
                               (4) 

where, { |  for 1,2, , }   k i iW w W y k i m . 
 

Theorem 2. For an arbitrary set of weights corresponding to 

dataset D  with ( )W D
 , the summation of the weights 

values from instances of the same class assigning by the 

balancing weighting function is equal to one. 
 

Proof. For { , }  k , the summation of the weights values 

assigning by the balancing weighting function with respect to 

the instances of k  is equal to 

( ) ( )

( )

( )

( )

( )

1
1

W D W D

W D

W D

W D

 









 









 

 





i

i

k

l

k i

l k

k

k

i
i

lw w

l

w

w

i

w

w
w

w

w
w

 

For attribute j , the class overlapping-balancing entropy 

(OBE) of a dataset D  is defined in (5) according to the 

composite function between the overlapping weighting 

function and the balancing weighting function as follows: 

o
( ) ( ( ))D W D

 
 j

jOBE Entropy                       (5) 

C. Workflow and Example 

The workflow of assigning weight values to all instances 

in the dataset on a specific attribute is illustrated by Fig. 3. It 

starts with partitioning the dataset D  of size m  into two 

subsets that are the set of minority instances D  of size m  

and the set of majority instances D  of size m . Each subset 

is also divided into two parts by considering the position of 

each instance with respect to the overlapping region. So, 

there are four groups of instances which are partitioned from 

D , i.e. 1) the set of minority instances outside the 

overlapping region out
D  of size out

m , 2) the set of minority 

instances inside the overlapping region in
D  of size in

m , 3) 

the set of majority instances outside the overlapping region 

D
out  of size out

m , and 4) the set of majority instances inside 

the overlapping region in
D  of size in

m . Then, all instances 

in each group are assigned the overlapping weight equally, 

see (3). Finally, the balancing weight is used to make the total 

weights in each class equals to one from (4). 

 

 
Fig. 3. The workflow of proposed weighted assignment. 

 

 
Fig. 4. An example of a binary class imbalanced dataset which is partitioned by 

the splitting value at 0.3 of attribute j . 

For the time complexity analysis of assigning weight 

values to all instances in the dataset on a specific attribute, 

there are six main parts to consider. First, separating the 

dataset D into two subsets takes O(m)  time complexity. 

Second, computing the overlapping region uses O(m)  

running time. Third, spending O(m)  for partitioning each 

subset. Fourth and fifth, calculating the overlapping weight 

for each group takes 1O( )  same as calculating the balancing 

weight. Sixth, assigning the weight to each instance based on 

its position uses O(m) . Hence, the overall time complexity is 

( ) ( ) 2 ( ) 4 (1) 4 (1) ( ) ( )O m +O m + O m + O + O +O m = O m   . 
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For example, in Fig. 4, the dataset D  consists of 5 

minority instances and 15 majority instances. The range of 

each class with respect to attribute j  including the 

overlapping region are displayed below the figure. The 

calculation of the weighted values of instances a , b , c  and 

d  locating in different positions are demonstrated. It begins 

with calculating the overlapping weights. 

 For instance a , it is labeled as the minority class locating 

outside the overlapping region. Thus, 

2

1 1
( , 1)

log (4) 2
   j a . 

 For instance b , it is labeled as the minority class locating 

inside the overlapping region. Thus, 

2 2

1 1 1
( , 1)

log (4) log (16) 62 4
    

 
j b . 

 For instance c , it is labeled as the majority class locating 

inside the overlapping region. Thus, 

2 2

1 1 1
( , 1)

log (4) log (16) 62 4
    

 
j c . 

 For instance d , it is labeled as the majority class locating 

outside the overlapping region. Thus, 

2

1 1
( , 1)

l 4og (16)
   j d . 

Then, they are normalized to balance the class weights. 

Initially, the total overlapping weights corresponding to each 

class is computed. It is equal to 
1 1 4

2 2
2 6 3
     for the 

minority class and equal to 
1 1 7

6 10
6 4 2
     for the majority 

class. Consequently, by applying the balancing weight, the 

weighted values of instance a , b , c  and d  are 

1 3
0.375

2 4
  , 

1 3
0.125

6 4
  , 

1 2
0.048

6 7
  , and 

1 2
0.071

4 7
  , respectively. 

Moreover, the calculation of class overlapping-balancing 

entropy of the subset of instances having the value lower than 

0.3 of attribute j  (left partition) is demonstrated. There are 

two minority instances outside the overlapping region and 

one minority instance inside the overlapping region, so the 

total weight corresponding to the minority class is equal to 

2 0.375 0.125 0.875   . While there are two majority 

instances inside the overlapping region, so the total weight 

corresponding to the majority class is equal to 

2 0.048 0.096  . Therefore, the total weight is equal to 

0.875 0.096 0.971  . Hence, 

2 2

0.875 0.875 0.096 0.096
( ) log log 0.465.

0.971 0.971 0.971 0.971
D    jOBE  

 

IV. EXPERIMENTS AND RESULTS 

There are two collections of experiments to evaluate the 

effectiveness of the proposed class overlapping-balancing 

entropy (OBE). The first collection uses synthetic datasets 

via F-measure and G-measure comparing with Shannon's 

entropy. The second collection composes of twelve 

real-world datasets from UCI repository via precision, recall, 

F-measure and G-measure comparing with Gini index, gain 

ratio, DCSM, AE, and ME. Moreover, the Wilcoxon 

signed-rank test is performed. 

A. Evaluation Metrics and Statistical Test 

In the experiments, various evaluation metrics [28] are 

used to measure the performance of each method consisting 

of Precision (6), Recall (7), F-measure (8) and G-measure (9). 

They are defined from the confusion matrix as shown in 

Table I. 
 

TABLE I: CONFUSION MATRIX 

 Predicted positive Predicted negative 

Actual positive True positive ( TP ) False negative ( FN ) 

Actual negative False positive ( FP ) True negative ( TN ) 

 

Precision
TP

TP FP



                               (6) 

Recall
TP

TP FN



                                 (7) 

Precision Recall
measure 2

Precision+Recall
F


                      (8) 

measure= Precision RecallG                     (9) 

where 

 TP is the number of minority instances that are correctly 

classified. 

 FP is the number of majority instances that are 

incorrectly classified. 

 TN is the number of majority instances that are correctly 

classified. 

 FN is the number of minority instances that are 

incorrectly classified. 

Precision presents the percentage of predicted minority 

instances that are correctly classified while recall presents 

the percentage of actual minority instances that are correctly 

classified. For F-measure and G-measure, they indicate the 

harmonic mean and geometric mean of the two metrics above, 

respectively. 

Statistically, Wilcoxon signed-rank test with 0.1, 0.05 and 

0.01 significance level (  ) [29] is evaluated to show 

significant difference between other splitting measures and 

OBE. The null hypothesis ( 0H ) states that there is no 

difference between the performance of OBE and another 

method, while the alternative hypothesis ( 1H ) indicates that 

there is a difference between them. 

B. Experiments on Synthetic Datasets 

An improvement of classifying instances for the 

imbalanced datasets is shown between Shannon's entropy 

and OBE on the synthetic datasets. Each synthetic dataset 

used in this section is the set of 1000 instances having 10 

attributes. For each attribute, the uniform sampling was 
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performed within specified ranges of minority class and 

majority class that overlap. There are five groups of 

experiments having different percentages of minority 

instances from 5% to 25%, then repeating for 50 times for 

each experiment. 

 

 
(a) 

 

 
(b) 

Fig. 5. The experimental results on synthetic datasets varying percentage of 

minority instances comparing with Shannon's entropy via F-measure (a) and 

G-measure (b). 

 

The average results of F-measure and G-measure are 

shown in Fig. 5. They present the similar results that the 

values of both OBE and Shannon's entropy increase when the 

percentage of minority instances increase. Evidently, OBE 

significantly outperforms Shannon's entropy when the 

number of minority instances is tiny whereas their values will 

approach to 1 when a dataset is more balanced. This confirms 

that Shannon's entropy may not be suitable to deal with the 

class imbalanced problem. 

C. Experiments on Real-World Datasets 

The performance of classifying the real-world datasets of 

OBE is evaluated in this section comparing with five 

splitting measures. The first two traditional splitting 

measures are Gini index [21] used in CART algorithm [22], 

gain ratio used in C4.5 algorithm [11], and DCSM [23]. 

Importantly, two splitting measures which are proposed to 

handle with the class imbalanced problem like AE [12] and 

ME [20] are considered in the experiments. They have been 

shown in [20] as the best two measures for dealing with that 

problem. 

1) Real-world datasets 

The experiments were performed on twelve real-world 

datasets from the UCI repository [30], which are summarized 

in Table II. It is sorted in descending order by the percentage 

of instances in the minority class (%Min.) equivalent with 

the ascending order sort of the percentage of instances in the 

majority class (%Maj.). The first two columns indicate the 

number and the name of each dataset. For the number of 

instances (#Inst.) and the number of attributes (#Att.), they 

are shown in the third column and the fourth column, 

respectively. Particularly, the classes determining to be the 

minority class and the majority class are presented in the fifth 

column. In order to evaluate the performance of each method, 

the five-fold cross-validation is employed repeating 20 times. 

That is, there are up to one hundred experiments performed 

on each dataset. 

 
TABLE II: REAL-WORLD DATASETS FROM UCI REPOSITORY 

No Datasets #Inst #Att 
Min/Maj 

Class 
%Min %Maj 

1 Pima 768 8 1/0 34.90 65.10 

2 Wine 178 13 3/the rest 26.97 73.03 

3 Haberman 306 3 2/1 26.47 73.53 

4 Vehicle 846 18 bus/the rest 25.77 74.23 

5 Shuttle 58000 9 the rest/1 21.40 78.60 

6 Thyroid 215 5 2/the rest 16.28 83.72 

7 Image 2310 19 5/the rest 14.29 85.71 

8 Ecoli 336 7 
imU/the 

rest 
10.42 89.58 

9 OpticDigits 5620 64 4/the rest 10.11 89.89 

10 PenDigits 10992 16 5/the rest 9.60 90.40 

11 Libras 360 90 15/the rest 6.67 93.33 

12 PageBlocks 5473 10 2/the rest 6.01 93.99 

 

2) Results and discussions 

The experimental results are demonstrated in Fig. 6. The 

comparison of the average performance corresponding to 

each evaluation metric is shown in Fig. 6(a) where the higher 

value indicates the better performance. While Fig. 6(b) 

represents the comparison results by the average rank of 

performance corresponding to each evaluation metric where 

the lower value indicates the better rank. Moreover, the 

results of comparing the performance of OBE with other 

splitting measures based on Wilcoxon signed-rank test are 

shown in Table III. For each row, it represents testing results 

including the p-value when comparing OBE with each 

splitting measure via the specific evaluation metric. The 

symbol check mark denotes that OBE is significantly better 

than that splitting measure with the (1 )100% confidence 

level. 

For comparing by precision, OBE yields the similar 

average performance to DCSM, AE and ME, which is better 

than Gini index and gain ratio. However, it offers the best 

result over the others for the average rank. From the 

statistical testing, it shows that OBE significantly 

outperforms Gini index and gain ratio with a 95% and 99% 

confidence level respectively. Nonetheless, it is not 

significantly different comparing with DCSM, AE and ME. 

For comparing by recall, OBE yields the highest average 

performance better than other splitting measures. It also 

offers the best result over the others when comparing with the 

average rank. From the statistical testing, it shows that OBE 

significantly outperforms Gini index and DCSM with a 95% 

confidence level. It also provides a significant improvement 

over gain ratio and AE with a confidence level up to 99%. 

Nonetheless, it is not significantly different comparing with 

ME. 
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(a) 

 

 
(b) 

Fig. 6. The experimental results on real-world datasets comparing by the 

average performance (a) and the average rank (b). 

 

TABLE III: THE STATISTICAL RESULTS BASED ON THE WILCOXON 

SIGNED-RANK TEST COMPARING OBE WITH OTHER SPLITTING MEASURES 

Evaluation 

Metric 

Splitting 

Measure 

  
p-value 

0.1 0.05 0.01 

Precision 

Gini index    0.018603 

Gain ratio    0.002218 

DCSM    0.346522 

AE    0.476907 

ME    0.722108 

Recall 

Gini index    0.028056 

Gain ratio    0.003702 

DCSM    0.041389 

AE    0.003346 

ME    0.272095 

F-measure 

Gini index    0.002209 

Gain ratio    0.002218 

DCSM    0.028056 

AE    0.007649 

ME    0.065154 

G-measure 

Gini index    0.004742 

Gain ratio    0.002218 

DCSM    0.028056 

AE    0.007649 

ME    0.065154 

 

For comparing by F-measure and G-measure, they exhibit 

the same results. OBE yields the highest average 

performance better than other splitting measures. It also 

offers the best result over the others when comparing with the 

average rank. From the statistical testing, it shows that OBE 

significantly outperforms Gini index, gain ratio and AE with 

a 99% confidence level. It also provides a significant 

improvement over DCSM and ME at 0.05 and 0.1 significant 

level ( ) respectively. 

The experimental results confirm that the conventional 

splitting measures like Gini index and gain ratio are not 

suitable to classify the imbalanced datasets. For the splitting 

measures proposed to deal with the class imbalanced problem 

like AE and ME including DCSM, they show impressive 

results in terms of precision which is the same for OBE. This 

happens because they concentrate on the region of minority 

class avoiding the majority classes’ region. Therefore, the 

majority instances are less likely to be defined as the minority 

class, making them to obtain high precision. However, 

DCSM and AE along with ME show inferior results when 

considered in terms of recall. This happens because of 

focusing too much on the minority class may cause an overfit 

phenomenon. Hence, the value of recall corresponding to the 

minority class is inferior. However, this incident does not 

happen to OBE due to its mechanism that balancing the 

proportion of each class. All classes still receive attention 

based on their weights in the process of selecting the splitting 

condition, which will avoid the overfitting problem. 

 

V. CONCLUSIONS 

This paper presents a new splitting measure for inducing 

the decision tree classifier, named class overlapping- 

balancing entropy (OBE), to handle the class imbalanced 

problem. It arises from expanding the interesting concept of 

minority entropy (ME). OBE employs the proportion of the 

weighted values corresponding to the instances in each class 

as a calculation component. The overlapping weighting 

function ( j ) and the balancing weighting function (  ) are 

proposed for assigning the weighted values based on the 

overlapping region between classes and the proportion of 

each class respectively. Theoretically, the weighted values 

given to each instance correspond to the two initial principal 

assumptions, i.e., 1) the weights of instances locating in the 

overlapping region are less than the weights of other 

instances from the same class and 2) the total weights in each 

class are equal. 

The improved performance to classify an imbalanced 

dataset of Shannon's entropy using OBE is shown by two 

collections of experiments which are synthetic datasets and 

real-world datasets from UCI. It shows that OBE 

significantly outperforms the traditional splitting measures 

of decision trees. For all evaluation metrics, it provides 

significantly better results than Gini index and gain ratio. 

Importantly, the overfitting problem found in the splitting 

measure designed for an imbalanced dataset specifically like 

AE and ME including DCSM does not occur to OBE, which 

shows from the recall improvement. In term of precision, 

OBE also shows impressive results which has the lowest 

average rank compared to other splitting measures which 

implies that it has notably better overall performances via 

F-measure and G-measure. 

Although OBE is highly successful in handling the class 

imbalanced problem, it is not able to work with a dataset 

containing categorical attributes including multiple classes 

which are the original important feature of the decision tree 

model. The proposed weights assignment needs to be 

generalized to be able to apply for a multi-class imbalanced 

dataset with all types of attributes.  
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