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Abstract—Researchers have found that we artificially add 

perturbation to the input image to generate adversarial 

examples which can cause the deep learning model to 

misclassify. The existing method of generating adversarial 

examples can achieve high white-box attack success rate, but 

the one of black-box attack is low. In order to improve the 

transferability ability of adversarial examples and obtain 

higher attack success rate, we apply the Nesterov momentum 

optimization method to the gradient-based adversarial 

examples generation method. Combined with the momentum 

and decay factor, the iterative gradient is optimized during the 

optimization process. This effectively escapes the local minima 

during the optimization process, resulting in faster iterations 

and better adversarial examples generation. The experiment 

showed that the white-box attack achieves 100% attack success 

rate, and the powerful transferability of the examples make the 

black-box attack success rate significantly higher than the 

original methods. 

 

Index Terms—Adversarial examples, attack success rate, 

powerful transferability, nesterov momentum optimization 

method. 

 

I. INTRODUCTION 

Deep neural network performs well in some hard machine 

learning tasks, especially in the field of image recognition. 

Classification accuracy of deep neural network is comparable 

to that of humans [1], [2]. However, researchers found that 

existing deep neural networks are vulnerable to adversarial 

attack. Szegedy et al. [3] first proposed this concept of 

adversarial example in the field of image recognition. It adds 

small noise that is not easily noticeable to humans to clean 

image, which causes model misclassify.  

White-box attack assumes that the attacker knows the 

complete knowledge of the target model, including its 

parameter values, architecture, training methods, and 

training data. In this case, there are many methods for 

generating adversarial examples for white-box attack, 

including one-step gradient method such as fast gradient sign 

method [4], basic iterative method [5], and universal 

perturbation [6]. These methods can achieve high white-box 

attack ability. Since different deep learning models obtain 

similar decision boundaries [7] after pre-training using the 
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data in the same sample space, the adversarial examples 

generated by the white-box attack have the transferability 

ability [8]-[10]. That means adversarial examples generated 

for the specific model also misclassify other models with the 

same classification task. The transferability of adversarial 

examples makes it perform black-box attack on other 

unknown models. However, the black-box attack capabilities 

of these methods are often limited.  

The existing black-box [11]-[13] attack success rate of 

adversarial examples is very low. First, the attacker does not 

know the parameters and structure of the target model, which 

brings certain difficulties to the attacker. In addition, for 

models with special defense mechanisms, ensemble 

adversarial training [14] can significantly improve the 

robustness of deep neural networks, so most of the attack 

methods have a low success rate for black-box attack. In 

particular, the transferability ability to adversarial examples 

based on simple iterative methods [5] is not high, so this 

method’s black-box attack is very inefficient. In view of the 

difficulties in the practical application of black-box attacks, 

we have been exploring more efficient black-box attack 

method from an optimization [15] perspective.  

In this paper, we study the adversarial examples 

generation method based on Nesterov momentum 

optimization, which is a gradient-based momentum iterative 

optimization algorithm. Our method aims to generate 

adversarial examples with powerful transferability ability 

because of breaking the limit of local extreme value. This 

method brings a significant improvement in the attack ability 

and we will show that it has a higher success rate in both 

white-box and black-box attacks. Our contributions are as 

follows:  

1)  We apply the gradient-based Nesterov optimization 

method to the adversarial examples generation method, 

which breaks through the optimization extreme value, and 

generate powerful transferability adversarial examples.  

2) The decay factor plays a key role in the momentum 

optimization algorithm and we determine the optimal of it 

through experiments.  

3) We compare the attack success rate of adversarial 

examples against four test models to demonstrate the 

advantage of our method for improving the transferability 

ability. 

 

II. BACKGROUND 

A.  Attack Description 

Given a classifier ( ) :f x x X y Y    that outputs a 
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label y as the prediction for an input x, the goal of adversarial 

attacks is to seek an example *x  in the vicinity of x but is 

misclassified by the classifier. For a correctly classified input 

x  with ground-truth label 
y

such that f(x)=y, an adversarial 

example 
*x  is crafted by adding small noise to x without 

changing the ground-truth label, but misleads the classifier 

as *( )f x y . In most cases, the pL  norm of the adversarial 

noise is required to be less than an allowed value   as  

*

p
x x   , where p could be 0, 1, 2,  . 

B. Traditional Gradient-Based Adversarial Attack 

Methods 

In this section, we express two more classic gradient-based 

adversarial attack methods: minimum perturbation method 

(Deepfool)[16] and fast gradient sign method (FGSM)[4]. 

These two methods are used to generate adversarial examples 

in conjunction with our Nesterov momentum optimization. 

Deepfool search for the closest distance from the clean 

image to the decision of the targeted classifier, so it attempts 

to perturb the data point to cross the decision boundary of the 

model to change the model classification results. Deepfool 

iteratively find the minimum perturbation by using the 

objective function gradient. The perturbation vector is 

defined as follows: 

1

( )
( )

( )

t

t

t

f x
f x

f x
   


                             (1) 

The perturbation vector is iteratively acquired and is added 

to the clean images until the model is misclassified. The 

obtained adversarial example can be expressed as 

* * *

0 1       = t tx x x x                                  (2) 

For a given target input image, Goodfellow et al. proposed 

FGSM which is a method for quickly calculating adversarial 

perturbation along the gradient direction with respect to the 

input image. The adversarial perturbation is defined as 

follows: 

( ( , ))xsign J x y                                 (3) 

In order to limit the amplitude of the perturbation, the fast 

gradient sign method must meet the condition *

p
x x    

The adversarial example can be expressed as follows: 

* ( ( , ))xx x sign J x y                              (4) 

where ( , )xJ x y  represents the gradient of the loss function 

calculated under the model parameter  . 
(.)sign

defines the 

sign function.   is a small value and limits the perturbation 

amplitude. 

 

III. PROPOSED METHOD 

A. An Framework of Generation Adversarial Example 

Fig. 1 shows the method of generation adversarial example 

in our framework. Under the condition that the white-box 

model and the clean images are known, the original attack 

methods generate gradient-based adversarial examples by 

solving the constrained optimization. In the process of 

solving an optimization problem, the adversarial 

perturbation is iteratively searched. 

 

Adversarial perturbation

Adversarial example

Adversarial perturbation 

generation 

Apply Nesterov 

momentum to 

algorithm

 
Fig. 1. An framework of generation adversarial example. 

 

 In our framework, we apply the Nesterov momentum 

optimization method to attack method and iteratively search 

for gradient-based adversarial perturbation instead of 

gradient descent. This can escape the local extremum during 

the optimization process, and improve the transferability 

ability of adversarial examples to achieve higher attack 

success rate. The adversarial example generated based on our 

method still maintain ground-truth label, which is 

completely meet human sensory perception. Therefore, our 

method based on optimized perspective can guarantee attack 

rate and semantic inconvenience. 

A (at the stagnation)

B ( at saddle point)

C （at local minima）

D (at minima)

E（at local minima）

F  (seek  for minima  )

 
Fig. 2. Different areas of the optimization process. 

 

B. Nesterov Momentum Optimization 

In the process of solving the optimization problem, there 

are two problems encountered in the gradient descent process. 

First, in the region with small gradient, the iterative speed of 

the algorithm is particularly slow, and it falls into a state of 

stagnation like point A in Fig. 2. Second, the C point or the E 

point is located where the gradient is 0, then the algorithm 

pauses the iteration here. The only local minima point is 

obtained instead of the desired global minimal. In addition to 

the extreme value, there is a very common situation in the 

optimization process called the saddle point such as the B 

point. Although the saddle point has a gradient of 0, it is 

neither a local maximum nor a local minimum.  

The problems encountered in the gradient descent 

algorithm can be solved by applying Nesterov momentum 
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optimization. The Nesterov momentum optimization method 

can help the algorithm iterative process to rush out of 

extreme value or saddle point and reach desired global 

minimal. We show this method as follows. 

Given objective function f(x), initial point 0x  and initial 

momentum 0v . Repeat the iteration until the stop criterion is 

reached: 

 

( )t t tx f x v                                (5) 

 

1t t tv v x                                    (6) 

 

1 1t t tx x v                                     (7) 

 

On the basis of the gradient descent, the last moment of 

momentum v is retained, and each iteration is multiplied by 

decay factor   which affects the magnitude of the 

momentum term. In general, each iteration update consists of 

two parts: one is the gradient direction which is not the 

current position, but a further position along the current 

momentum term and the other part is momentum term. 

Under the influence of the momentum term, the algorithm 

iteration is equivalent to having the inertia, so that it helps 

algorithm pass through the extreme value or the stagnant 

zone. 

 
Fig. 3. Function optimization process. 

 

C. Comparison between Gradient Descent Algorithm and 

Nesterov Momentum optimization 

As showed in Fig. 3, we respectively use the gradient 

descent algorithm and the Nesterov momentum optimization 

method to solve convex optimization problem. The contour 

line in the Fig. 3(a) shows that the gradient descent 

algorithm is oscillating in an iterative process, and this 

wave-like process of going to the valley undoubtedly weakens 

efficiency and energy of the iteration. So this iterative process 

is not easy to achieve optimal. From the Fig. 3(b), the 

Nesterov momentum optimization algorithm is applied to the 

algorithm iterative process to break through the dilemma and 

obtain faster convergence performance. From the starting 

point, the closest gradient optimization direction is quickly 

obtained, and the canyon is passed to the lowest point of the 

valley instead of complex iterative process. The Nesterov 

momentum algorithm can also pre-determine its update 

direction during the gradient descent, making the gradient 

descent direction more stable. 

D. Applying Nesterov Momentum to Deepfool and FGSM 

The Nesterov momentum algorithm is an accelerated 

gradient descent technique that allows the algorithm to 

accumulate velocity vectors in the direction of the gradient 

during the iterative process, which helps to cross the 

stagnation zone and the local extremum zone. We applied the 

Nesterov momentum method to two gradient-based 

adversarial examples generation methods and found that the 

effects are very prominent. 

To generate an adversarial example *x  from a clean 

example x  which satisfies the L  norm bound, 

gradient-based approaches seek the adversarial example by 

solving the constrained optimization problem: 

* *

*

arg min ( ( ), ),    . . 

     

J f x y s t x x

x




 
               (8) 

where   is the size of adversarial perturbation. Deepfool 

generates adversarial examples by iteratively find adversarial 

perturbation in equation (1). It interferes with the decision 

boundaries of the model to misclassify. However, the poor 

optimization makes it fall into local extremum during the 

process of crafting adversarial examples. It limits the attack 

ability and transferability ability of adversarial examples. To 

break this limitation, we apply Nesterov momentum to the 

Deepfool algorithm so that the algorithm can escape local 

extremum and maintain a stable gradient update direction 

during the iteration process. 

The following is the pseudo code of Nesterov 

Momentum-Deepfool: 

 

Algoithm 1 Nesterov Momentum-Deepfool (NM-Deepfool) 

Input: A classifier f  with loss function J ; a clean image x  and 

ground-truth label y ; size of perturbation  ; iterations T and decay 

factor  . 

Output: An adversarial example * x  with  

*x x 


   

1: / T   

2: *

0 00;        v x x    

3: for t = 0 to T – 1 do 

4:   Input 
*

tx  to f and obtain the gradient ( )tf x   

5:   Update 1tv   by accumulating the velocity 

vector in the gradient direction as 

          1

1

( )
( )

( )

t

t t t

t

f x
v v f x

f x
   


                        (9) 

6:    Update 
*

1tx 
 as 

              

* *

1 1t t tx x v  
                        (10) 

7: end for 

8: return 
* *

Tx x  

 

Equation (9) means the momentum accumulated by the 

first t-step iteration under the effect of the decay factor   . 

After the T-step iteration which each step is  , the 

minimum adversarial perturbation is found and the 

adversarial example *x  is generated. In each iteration, the 

current gradient ( )tf x  is normalized to the 1L  distance 
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because we find that the scale of the gradients in different 

iterations varies in magnitude. 

Our method is a framework that can be combined with 

different gradient-based perturbation generation method. So, 

we combine Nesterov momentum optimization method with 

FGSM and change the cumulative way of the momentum on 

the gradient in equation (9) to Equation (11). 

1

1

( , )

( , )

x

t t

x

J x y
v v

J x y
 


 


                         (11) 

FGSM based on Nesterov momentum(NM-FGSM) is 

formed after multiple iterations (12). 

* *

1 1( )t t tx x sign v                              (12) 

 

IV. EXPERIMENTS 

A.  Setup 

We selected four models Inception v3 (Inc-v3) [17], 

Inception v4 (Inc-v4), Inception Resnet v2 (IncRes-v2) [18], 

Resnet v2-152 (Res-152) [19] to study the attack success rate 

against white-model and black-model.  

It is less meaningful to study the transferability ability of 

adversarial examples if the models cannot classify the 

original image correctly. Therefore, we randomly selected 

1000 images from the ILSVRC 2012 validation set [20], 

which can be correctly classified by all 4 models in our 

inspection. These 1000 images make up our test set. 

In our experiments, we first verified the white-box attack 

ability and black-box attack ability of the FGSM method and 

the Deeofool method. Then we apply the Nesterov 

momentum algorithm to the iterative process to examine the 

transferability ability of our methods. In order to limit the gap 

between the adversarial example and the original example, 

we use the 
L  norm bound to limit the amplitude of 

adversarial examples. 

B. Comparison of Original Method and Our method in 

Attack Success Rate 

From the Table I, the adversarial examples are generated 

for trained model Inc-v3, Inc-v4, InvRes-v2 and Res-152 

respectively using Deepfool and FGSM. The perturbation 

amplitude   of the pixel is set to 20 and the pixel value is 

limited to the interval [0, 255].The success rates are the 

misclassification rates of the corresponding model with 

adversarial images as inputs. From the table, we can observe 

that Deepfool and FGSM remain as strong white-box 

adversary since White-box attack success rate is around 90%. 

The adversarial examples are crafted for trained model 

Inc-v3 using FGSM which achieve White-box attack success 

rates of 89%. The adversarial examples are crafted for 

trained model Inc-v3 using Deepfool which achieve 

White-box attack success rates of 93%.  

However, it is worth noting that FGSM and Deepfool are 

less powerful in attacking the black-box model. The 

adversarial examples are generated for the trained model 

Inc-v3 using FGSM and Deepfool methods and attack 

against Inc-v4. The attack success rates only reach 27.2% 

and 41.3% respectively. This means that the adversarial 

examples generated by the traditional FGSM and Deepfool 

show insufficient performance in the model transferability 

ability, resulting in weak black-box attack ability. Lower 

black-box attack success rate is not only reflected on test 

model Inc-v4, but also on InvRes-v2 and Res-152. 

 
TABLE I: THE SUCCESS RATES(%) OF ADVERSARIAL ATTACKS TEST MODEL. THE ADVERSARIAL EXAMPLES ARE CRAFTED FOR TRAINED MODEL USING FGSM 

AND DEEPFOOL. * NDICATES THE WHITE-BOX ATTACKS 

Test Model 

 

Trained Model 

 

Attack 

 

Inc-v3 

 

Inc-v4 

 

IncRes-v2 

 

Res-152 

Inc-v3 
FGSM 89* 27.2 19.3 26.7 

Deepfool 93* 41.3 39.2 40.4 

Inc-v4 
FGSM 41.8 83.4* 24.8 30.6 

Deepfool 36.8 91.7* 32.5 34.3 

IncRes-v2 
FGSM 42.6 35.3 87* 40.2 

Deepfool 50.8 49.1 93.4* 47.6 

Res-152 
FGSM 42 44.8 43.7 85.2* 

Deepfool 48.3 49.1 46.2 91.6* 

 

We improve the iterative ability of the algorithm from the 

perspective of optimization and break through the extreme 

value region in the iterative process. Therefore, we apply 

Nesterov momentum optimization to attack method to 

investigate the advantages of our methods in black-box 

attacks. The perturbation amplitude   of the pixel is the 

same as the original method. The decay factor μ is set to 1.0, 

and excessive learning rate  may result in 

non-convergence, so the recommended value is 0.1. We test 

attack success rate on Inc-v3, Inc-v4, InvRes-v2 and Res-152 

again.  

Table II shows the success rate of adversarial attacks. It 

can be found that NM-FGSM and NM-Deepfool methods 

have greatly improved both white-box attacks and black-box 

attacks. The adversarial examples are crafted for trained 

model Inc-v3 using NM-Deepfool and NM-FGSM achieve 

White-box attack success rates of 100%. The adversarial 

examples are generated for the trained model Inc-v3 using 

NM-FGSM and attack against Inc-v4. The black-box attack 

success rate reaches 52.4%, which is nearly twice as powerful 

as FGSM. The adversarial examples are generated for the 

trained model Inc-v3 using NM-Deepfool and attack against 

Inc-v4. The black-box attack success rate reaches 64.7%, 

which is 23.4% high than Deepfool method. Compared with 

the attack success rate of black-box model in Table I, our 

approach has also been greatly improved on other test models. 
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Therefore, it is effective to improve the attack success rate of 

adversarial examples from the perspective of optimization. 

 

 

Fig. 4. The adversarial examples generated for Inc-v3 by NM-FGSM against 

Inc-v3(white-box), Inc-v4, IncRes-v2, Res-152(black-box),with   ranging 

from 0.0 to 1.0. 

 

 

Fig. 5. The adversarial examples generated for Inc-v3 by NM-Deepfool against 

Inc-v3(white-box), Inc-v4, IncRes-v2, Res-152(black-box),with   ranging 

from 0.0 to 1.0. 
 

C. Influence of Decay Factor   in Nesterov Momentum 

The decay factor   plays an important role in the 

momentum optimization algorithm, which greatly affect the 

attack success rate of adversarial examples. If 0   both 

NM-Deepfool and NM-FGSM based on Nesterov momentum 

turn to Deepfool and FGSM. Therefore, we study the 

appropriate value of the decay factor.  The adversarial 

examples are generated for Inc-v3 using NM-FGSM and 

NM-Deepfool with perturbation 20   and the decay factor 

  is ranging from 0.0 to 1.0 with a granularity 0.1.  

When 0  , it means that there is no momentum 

retained during the iteration. Therefore, the attack success 

rate of NM-FGSM and NM-Deepfool shows as the same as 

original method. As the decay factor increases, the attack 

success rate is also improved. When 1  , the  maximized 

momentum accumulated in the gradient direction is retained 

in the last iteration , which makes it have the greatest impact 

on the gradient of this iteration. As can be seen from Fig. 4 

and Fig. 5, the white-box success rate of adversarial 

examples can be increased to 100% with the increase of  . 

The transferability of adversarial example is also enhanced, 

so the success rate of the black-box attack is also increasing. 

The attack success rate reaches a peak with decay factor 

when 1  . We can see from Fig. 4 and Fig. 5 that the 

adversarial examples generated for Inc-v3 by NM-FGSM 

and NM-Deepfool achieve more than 40% attack rate when  

1  . It is a very big boost for black-box attacks. 

 

TABLE II: THE SUCCESS RATES(%) OF ADVERSARIAL ATTACKS TEST MODEL. THE ADVERSARIAL EXAMPLES ARE CRAFTED FOR TRAINED MODEL USING 

NM-FGSM AND NM-DEEPFOOL. *INDICATES THE WHITE-BOX ATTACKS 

Test Model 

 

Trained Model 

 

Attack Inc-v3 Inc-v4 IncRes-v2 Res-152 

Inc-v3 
NM-FGSM 100* 52.4 49.4 47.3 

NM-Deepfool 100* 64.7 63.6 61 

Inc-v4 
NM-FGSM 67 100* 54.6 51.8 

NM-Deepfool 70.2 100* 69.2 67.4 

IncRes-v2 
NM-FGSM 65.2 64.9 100* 60.3 

NM-Deepfool 71.3 70.9 100* 69.2 

Res-152 
NM-FGSM 66.2 69.1 63.4 100* 

NM-Deepfool 69.4 70.2 68.5 100* 

 

V. CONCLUSION 

Deep neural networks are vulnerable to adversarial 

examples, which cause white-box attacks and black-box 

attacks because of their transferability ability. In this paper, 

adversarial examples with powerful transferability ability are 

generated because the Nesterov optimization momentum is 

applied to the algorithm iterative process to find the 

perturbation. Experiments show that the adversarial 

examples generated by our method achieve a higher attack 

success rate than the traditional Deepfool and FGSM 

methods in both white-box attack and black-box attacks. The 

decay factor plays an important role in improving the attack 

success rate and we have studied its best value. 
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