

Abstract—Sign language recognition problem should be

represented as a time series classification model with high
accuracy. In the previous studies, Indonesian sign language
(BISINDO) had been modeled with one of stochastic time series
classification model, i.e. Hidden-Markov Model (HMM), but
has low accuracy. In other studies, BISINDO had been
recognized with high accuracy but using an unrepresentative
model (non-time series classification model), i.e. the modified
Generalized Linear Vector Quantization (mGLVQ) model with
mode function. In this paper, we tried to use a deterministic
time series classification model, named Accurate and Fast
Dynamic Time Warping (AF-DTW) model. AF-DTWmodel is a
modified form of Dynamic Time Warping (DTW) model. It is
not only to improve the accuracy of DTW but also to accelerate
the finding of optimal warping path. The output results showed
that AF-DTW has a much higher accuracy than HMM,
although it is not as accurate as mGLVQ.

Index Terms—BISINDO, dynamic time warping, sign
language recognition, time series classification.

I. INTRODUCTION
Humans communicate with each other using language.

Different with ordinary people who use spoken language to
communicate, the deaf use sign language because of their
limitations in speaking and listening. Sign language uses
hand gestures and facial expressions.
Sign language recognition is one of more popular research

topics in computer vision. It is used to solve the
communication problems between the deaf and ordinary
people who does not know about sign language by creating a
software application that can translate sign language into a
spoken/written language [1]. Several studies have been
conducted to build an automatic sign language translator
through computer vision technology based on gesture
recognition such as Microsoft Glove and Kinect XBox (see
Fig. 1).
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In this paper, we usedMicrosoft Kinect Xbox [2]–[5] as a
data acquisition tool because it is equipped with various
sensor features that can receive multi-modal inputs such as
gestures of shoulders, upper arms, forearms, hands, fingers,
and face [6] not only fingers gestures like those acquired by
gloves.

(a)

(b)
Fig. 1. (a) Glove (b) Kinect.

After the sign language gestures data has been recorded, it
is recognized by some of classification models. However, the
chosen classification model needs to represent the sign
language that expressed as a sequence of gestural patterns to
convey a meaning of words at uniform time of intervals [7].
The sign language gestures data in the form of sequence of
frames is classified as time series data such that it needs to be
represented by time series classification model [8]. In recent
decades, large number of studies have focused on the
development of time series classification models where it can
be roughly divided into two approaches, i.e. the deterministic
and stochastic approaches that represent conditions under
certainty and uncertainty, respectively.
There are two kinds of sign languages applied in Indonesia,

i.e. Sistem Isyarat Bahasa Indonesia (SIBI) [9], [10] and
Bahasa Isyarat Indonesia (BISINDO) [1], [6]. We tried to
continue our research by setting BISINDO recognition as our
research objectives because of its gestures are more natural
and practical for the deaf or hard-hearing people [6]. In the
previous studies, BISINDO has been modeled with one of
stochastic time series classification model, i.e.
Hidden-Markov Model (HMM), but has low accuracy [6]. In
other studies, BISINDO has been recognized with high
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accuracy but using an unrepresentative model (non-time
series classification model), i.e. the modified Generalized
Linear Vector Quantization (mGLVQ) model with mode
function [1]. Based on these results, we tried to find a
representative time series classification model with high
accuracy. And finally, we decided to use one of deterministic
time series classification model, named Dynamic Time
Warping (DTW) model [11]–[14].
DTW model has recently been widely used to measure

similarity between two time series by finding an optimal
warping path in a cumulated matrix. DTW model suffers
from high computational costs and space complexity when it
works for large time series datasets. However, it is still
potential to be a feasible answer to find an optimal warping
path by providing a time series similarity measurement which
is flexible and easy to interpret [13]. To improve the
computational efficiency and the accuracy of similarity
measurement, Li and Yang modified the DTW model into an
Accurate and Fast Dynamic Time Warping (AF-DTW)
model [15].
AF-DTW model is divided into three parts i.e. backward

strategy, reduced scope process, and threshold value
determination. Different with DTW model which found the
optimal warping path by using forward strategy, AF-DTW
model use backward strategy instead. Moreover, to narrow
the warping path scope, it reduces the scope and choose a
method to determine the threshold value. In the
implementation, backward strategy and reduced scope
process are run concurrently.
AF-DTW model is known as an optimization model for

aligning two time series data which may vary in time or speed.
In the AF-DTW model, sign language gestures data are
compared one-by-one for each sign language gestures record
in the database. The time series classification result is a word
of BISINDO with warping cost below a certain threshold
within the test sequence [12]. In other words, AF-DTW
model is used to optimize the similarity between sign
language gestures records from a sign language gestures
database [11]. The detail how to implement AF-DTW model
on the Indonesian sign language (BISINDO) recognition is
explained comprehensively in Section II. The results of
BISINDO recognition using AF-DTW model and its
comparison with previous studies are given in Section III.
Finally, the conclusions and future works of this paper are
given in Section IV.

II. RESEARCHMETHODOLOGY

In this paper, the sign language gestures data consist of
some variables obtained from various Kinect sensors input so
that classified as multivariate time series data. Each variable
represents the shoulder-center joint angle for each X-axis and
Z-axis (see [6] for the detail). We used sign language gestures
data from previous studies [1], [6] for comparative purposes.
It is a recording of the gestures demonstrated by two deaf
people (male and female) from the Indonesian Sign
Language Interpreter Service Center, Jakarta.
Dynamic Time Warping (DTW) is one of popular models

to measure similarity between two time series [15]. DTW
model finds an optimal path which align two sets of time
series data without requirement that they have the same

length. DTW model measures the similarity or distance
between these two sets of time series data by warping them
non-linearly in time where the distance metric used does not
necessarily hold triangle equality [16]. Fig. 2 illustrates
alignment of two time series data.
DTW model allows to compute the distance and alignment

between two time series data in the following procedure.
Assuming there are two records of sign language gestures
data:

� ㄠ � � � ��� ㄠ h� �� � � ���
and

� ㄠ � � � ��� ㄠ h� �� � � ��h .

Fig. 2. Alignment of two time-dependent sequences [16].

To align these two time series data using DTW model, we
need to define the distance matrix D containing Euclidian
distances between all pairs of points     ,x i y j , � �
h�� and � � h�h as

      , , ,D i j d x i y j (1)

where

        , .d x i y j x i y j 

Thematrix element  ,D i j corresponds to the alignment

between values  x i and  jy of the sign language
gestures data x and y.
We then construct a warping path  1 2, , , KW w w w 

of matrix elements  ,D i j in equation (1). At the same time,
the warping path W much satisfy at least three constraints
such as boundary conditions, continuity, and monotonicity:

1. Boundary conditions: �h ㄠ � h�h ��� ㄠ � ��h ;
2. Continuity: for  ,K K Kw D i j and

 1 1 1,K K Kw D i j
  
 , 1 1K Ki i


  and 1 1K Kj j


  ;

and
3. Monotonicity: 1 0K Ki i


  and 1 0K Kj j


  .

Fig. 3. Top left: two similar time series data but out of phase produce a large
Euclidean distance; Bottom left: Non-linear alignment of DTWmodel; Right:

warping matrix [17].
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To form a warping path, we start at element D(1, 1) and
then move at most one index right or up until ending at
� ��h (See Fig. 3). DTW creates a matrix D depicted as a
black and white grid in the Fig. 3 on the right side. The DTW
model then runs through D from the first index (bottom left)
up to the last index (top right). Enumerate all paths w and find
an optimal warping path which is shown as the darkened line.
The alignment between these two time series data is shown in
the Fig. 3 on the left side [13]. The path which minimizes the
warping cost gives us the distance value of DTWmodel [17]:

   
1

, min .
K

k
W

k

DTW x y w


  (2)

In general, dynamic programming is used to get the
optimal warping path of DTW model by adding the distance
���� �� with the minimum of the cumulative distance of the
three adjacent elements which defines as a cost matrix [15],
i.e.

� ��� ㄠ � ��� � ��h
� ��� � h

� � � h�� � h
� � � h��

, (3)

where � ��� ㄠ �� � ��� ㄠ � ��� ㄠ �.
In this paper, we used the improved version of DTWmodel

called Accurate and Fast Dynamic Time Warping (AF-DTW)
model. It consists of three parts: (i) constructing the main idea
of AF-DTW model by using a backward strategy; (ii)
reducing the scope of cumulative distance in the cost matrix;
and (iii) determining a threshold value used to reduce the
scope in part (ii) [15].
The algorithm of AF-DTWmodel is constructed by using a

backward strategy. This strategy starts from ��h to �h� h�
where each of elements in the cost matrix is less than the
three top right adjacent ones. There is a significant difference
between DTW and AF-DTW models in the cost matrix
construction. In equation (3), DTW model used the minimum
of the cumulative distance of three bottom left adjacent
elements for calculating a current element ���� �� while
AF-DTW model used the maximum of the cumulative
distance of three top right adjacent elements ones. This
component is then subtracted by the distance ���� �� to obtain
the current element �t��� �� of AF-DTW model, i.e.,

�t ��� ㄠ �h�
�t ��� � h

�t � � h�� � h
�t � � h��

� � ��� , (4)

where ��� ㄠ h�h � h� � � � � h��t h � h�h � h ㄠ �� and
�t ��h � h ㄠ �t ��h � h ㄠ� �.
Similar with DTWmodel, a new warping path of AF-DTW

model, �t ㄠ �h
t ���

t �����
t , contains some of distance

matrix elements with subject to the boundary conditions,
continuity, and monotonicity. The optimal warping path of
AF-DTW model with maximum warping cost can be
obtained by also using the dynamic programming in this
backward strategy as follow,

����� ��� ㄠ max
�t �ㄠh

� ��
t� . (5)

However, ����� ��� formula in equation (5) has the
same time and space complexity with ��� ��� formula in

equation (2). This complexity can be decreased by reducing
the scope of cumulative distance �t in the cost matrix. We do
not need to work with all cells in the original cost matrix
because the optimal warping path always exist in the reduced
scope (e.g. only the positive cells) with regards to a large
enough threshold value � . ����t ����� in equation (6)
reduce the time and space complexity of ����� ��� for
improving the performance of AF-DTW model [15],

����t ����� ㄠ � � ����� ��� . (6)

Note that the reduced scope does not necessarily reduce the
accuracy of the result.
First, choose � � �������� such that the optimal warping

path is surrounded by the positive cells in the original cost
matrix. There are some rules to construct the reduced scope
by using backward strategy such as the current cell is set to be
zero when it has negative value or the three top right adjacent
cells are zero so that the current iteration is broken and
AF-DTW model continued by calculating the positive cells
until it gets the reduced scope. The minimum distance
between time series x and y is retrieved from that reduced
scope.
The selection of � affects the computational time of

AF-DTW model implementation because the larger value of
� the increasing number of positive cells in the cost matrix.
However, two different large values of � does not have a
significant difference in terms of number of positive cells.
This dilemma can be solved by determining an optimal
threshold value such that the initial purpose of the reduced
scope to reduce the time and space complexity of AF-DTW
model can be achieved.
We know that the increasing number of positive cells in the

cost matrix the more time and space are needed. In other
words, � ㄠ ��� ��� produces the smallest scope of
cumulative distance in the cost matrix even though its
minimum distance is unknown and needs to be calculated
first. To find the � which is closed to ��� ��� , we need to
determine the relatively small initial value of � as a sum of
elements in the initial warping path (e.g. the opposite
diagonal warping path), i.e. � ㄠ �ㄠh

� ��� . Li and Yang
showed that the reduced scope obtained by this technique is
equal with the optimal reduced scope obtained by � ㄠ
��� ��� [15]. There are many techniques that can be
developed to obtain small � which is larger than ��� ���
but produces the same reduced scope to reduce the time and
space complexity of AF-DTW model.

III. RESULTS AND DISCUSSION

The Indonesian sign language (BISINDO) gestures which
captured by Microsoft Kinect Xbox as an extracted skeleton
data is divided into three groups based on their gender, i.e (i)
male, (ii) female, and (iii) mixed. The extracted skeleton data
consists of various features related to the gestures of
shoulders, upper arms, forearms, hands, fingers, and face.
However, in this study we only used some of them such as
shoulders, upper arms, forearms, and hands by first
transforming all gestures into angles between each of them
and the shoulder-center. At the same time, we also label our
recordings according to the BISINDO words that were
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exhibited. Furthermore, we used supervised learning
approach to recognize BISINDO by using AF-DTW model.
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Fig. 4. Flowchart of BISINDO recognition using AF-DTW model.

Fig. 4 shows the flowchart the AF-DTW model to
recognize BISINDO. We worked on the training and testing
dataset which are obtained by dividing the cleansed dataset
into two groups. The cross-validation technique is used to see
the performance of Accurate and Fast Dynamic Time
Warping (AF-DTW) model in BISINDO recognition. The
cross-validation procedure is carried out by dividing the data
into 5 groups, then 2 groups are used as training dataset while
the rest as testing dataset. AF-DTW model as explained on
the previous section provided with a dotted line boundary in
Fig. 4 is worked on the testing dataset by using training
dataset as referenced templates [18]. The recognition results
are then evaluated by using a predetermined threshold to
decide whether further learning is needed or not. If necessary,
we use incremental learning method as recommended by
Ding, et al. [18]. We added the worst series of frames in
testing dataset recognized by AF-DTW into a new referenced
template in the training dataset such that the accuracy of
AF-DTW model can be improved. But if not, the
cross-validation procedure can be continued until it is ready
to calculate the average of accuracy of AF-DTW model to
recognize BISINDO.

TABLE I: COMPARISON OF THE AVERAGE OF ACCURACY FOR BISINDO
RECOGNITION

Sex HMM [8] mGLVQ [1] AF-DTW
Male 63.94% 94.375% 90.95%
Female 61.41% 93.975% 92.875%
Mixed 70.31% 91.8125% 91.625%

In this paper, AF-DTW algorithm in Fig. 4 is coded by

Python programming language that produces output as
shown in Table I.

Fig. 5. The accuracy of AF-DTW model to recognize each word of
BISINDO for each experiment.

The average of accuracy of AF-DTW model for each of
experiments is then compared with the average of accuracy of
the other models that have been applied in the previous
studies, i.e. Hidden-Markov Model (HMM) [8] and modified
Generalized Linear Vector Quantization (mGLVQ) model
with mode function [1]. It shows that HMM has the lowest
average of accuracy when compared to the other two models.
Meanwhile, the average of accuracy of mGLVQ and
AF-DTW models are not much different. Although the
average of accuracy of AF-DTW model is less than mGLVQ
model, it represents the sign language recognition problem
which is time series classification. This is contrast to the
Generalized Linear Vector Quantization (GLVQ) model
which classifies sequence of frames in each frame. Therefore,
we need to modify GLVQ into mGLVQ by involving some
functions such as mode so that the real problem can be
approached more objectively [1]. Objectivity is important to
make our model becomes explainable.
The objectivity of AF-DTW model is also reflected in this

result where the average of accuracy for mixed group is in
between the other two groups, i.e. male and female groups.
This is different with the results obtained in the previous
studies where mixed group has the highest average of
accuracy for HMM. In contrast, mGLVQ model produced the
lowest average of accuracy in the mixed group. In fact, a
model has its own specifications. Objectively, when the
dataset is mixed, it will certainly reduce the average of
accuracy of the best specification, and most likely be above
the worst specification. AF-DTW model has better
specifications in representing the female than the male
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groups so that the mixed group has the average of accuracy in
between the other two groups. This characteristic did not
occur in the other two models so that the average of accuracy
of HMM and mGLVQ models cannot be explained further.
The accuracy of AF-DTW model to recognize each word

of BISINDO for each experiment is shown in Fig. 5. Most of
the words that are tested can be well recognized, only a little
number of words which are slightly different performance for
each experiment. However, the accuracy of AF-DTW model
is relatively more balanced for each word when compared to
mGLVQ (see [1] for the detail).

IV. CONCLUSION
Accurate and Fast Dynamic Time Warping (AF-DTW)

model as one of deterministic time series classification model,
is an appropriate model to recognize the Indonesian sign
language (BISINDO). It represents the time series
classification problems with high accuracy, i.e. around 90% –
92%. Based on the results obtained in this paper and previous
studies related to BISINDO recognition, we decided to use
AF-DTW model for our next research in recognizing
sentence of BISINDO. However, some deep learning
algorithms can be tried to improve the accuracy of BISINDO
recognition, as in [19], [20]. In fact, the sign language is used
by the deaf or hard-hearing people to communicate in the
form of sentence, not a word. Some of previous studies
forced to recognize a sentence of sign language with
word-by-word techniques which is unnatural because we
need to pause for a moment to show each word in the
sentence. There is a problem for detecting the change point of
multivariate time series in this new topic. We need to split the
sentence of BISINDO into words and then applied AF-DTW
to recognize these words. This, of course, has a direct impact
on the significant increasing of computational time so that
needs to be solved by parallel computing technique.
Furthermore, we need to consider several things in linguistic
perspectives such as morphology, syntax, or semantics.
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